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Aerodynamic Design of Turbomachinery Cascades Using an Enhanced
Time-Marching Finite Volume Method

J. C. Páscoa1, A. C. Mendes1 , L. M. C. Gato2 , R. Elder 3

Abstract: The paper presents an aerodynamic design
method for turbomachinery cascades of blades. The pre-
scribed conditions are the aerodynamic blade load and
the blade thickness distributions. An iterative proce-
dure was implemented, based on the solution of the Eu-
ler equations, to seek the blade geometry that provides
the specified design conditions. A central finite-volume
explicit time-marching scheme is used to solve the Eu-
ler equations in two-dimensional flow. The numerical
scheme uses an adaptive nonlinear artificial dissipation
term based on the limiter theory. Starting with the results
from the flow analysis through an initially guessed cas-
cade geometry, the design code modifies the blade cam-
ber line by relating the axial distribution of the mean tan-
gential velocity component through the cascade with the
blade camber-line angle. The procedure allows the itera-
tive calculation of the blade geometry that gives the de-
sired aerodynamic blade load distribution. The accuracy
of the method has been verified by calculating a parabolic
cascade and by redesigning a transonic compressor cas-
cade.

keyword: inverse method, time-marching, finite vol-
ume.

1 Introduction

Modern turbomachinery design processes do not simply
seek the efficiency increase of the devices. They are
also conceived to minimize human interaction and, in this
manner, reduce design errors and costs. By using auto-
matic design methods the designer prescribes certain de-
sired conditions for the flow domain, whereas the method
provides the blade geometry. Some of these techniques
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are nowadays used in industry for turbomachinery de-
sign. However, they still require more development stud-
ies in order to reduce human involvement [Pierret and
van den Braembussche (1998)].

Among the possible automatic design approaches, some
authors couple flow-analysis tools to optimization meth-
ods and artificial neural networks. This mimics the trial
and error process of the human iterative design [Köller,
Mönig, Küsters, and Schreiber (2000); Burguburu, Tou-
ssaint, Bonhomme, and Leroy (2004)]. The goal of an
optimization method is to find the geometry that mini-
mizes the objective function, the blade performance be-
ing evaluated with an analysis code, see [Okumura and
Kawahara (2000)]. Besides, in three-dimensional flow
the control over the flowfield imposed by the constraints
on the blade surface and side walls seems more effi-
ciently tractable by other inverse design approaches. This
is due to possible difficulties in specifying the objective
function and because optimization methods have been
found to require very large computational times. Re-
cent results from Levin and Shyy (2001) demonstrate
that typical optimizations, based on the response surface
method, may require as much as 250 flowfield analysis.
Their solutions were based on an inviscid/viscous proce-
dure that couples a panel method code and a boundary
layer integral method. Moreover, this class of methods
is very prone to find local (instead of global) minima for
the objective function. Optimization techniques coupled
to finite-volume codes, solving either the Euler or the
Navier-Stokes equations, are feasible but take large com-
putational time for routine design tasks. Consequently,
fast, robust and versatile inverse methods are required,
with potential for extension to three-dimensional flow.
Nevertheless, optimization techniques can eventually be
coupled to other type of inverse methods in order to opti-
mize the imposed flow conditions. This approach might
diminish the computational load as compared to those of
the pure optimization methods.
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Earlier inverse methods were based on potential flow
models considering either analytical or numerical ap-
proaches, see [Lewis (1982); Borges (1990)]. Later,
due to the increasing availability of computer resources,
methods were developed that manage to handle rota-
tional flows with shock waves, by solving the Euler sys-
tem of equations [Nicke, Steinert, Weber, and Starken
(1993); Dang and Isgro (1995); Borges, Gato, and
Pereira (1996)]. Usually the equations are solved in
a numerical domain which changes during the calcula-
tion, since the blade geometry is part of the solution
of the problem. Therefore, the method is iterative and
a first guess of the geometry is needed to initiate the
calculation. A purely mathematical algorithm performs
the modification of the geometry, by minimizing an er-
ror function that expresses the difference between the
desired and the actual blade pressure distributions. In
some two-dimensional blade-to-blade inverse methods,
the usual choice for prescribing the flow conditions is the
pressure distribution over the blade pressure and suction
surfaces. The specification of the pressure distribution is
usually selected because it makes it easier to avoid flow
separation in design conditions, by controlling the pres-
sure gradient along the blade surface. This design phi-
losophy is easily applicable in two-dimensional flow, be-
cause the streamlines are known to lie in the plane under
consideration. In a truly three-dimensional design, the
prescription of velocity or pressure on both blade sur-
faces may lose its advantage since the stream surface
twist is not known in advance. Furthermore Demeule-
naere and van den Braembussche (1998) reported some
difficulties when defining target pressure distributions to
design blade shapes respecting thickness requirements.
Recently, they considered a different strategy that com-
bines aerodynamic and structural design. This strategy
was implemented by prescribing the blade thickness dis-
tribution and the static pressure either on the suction side
or on the pressure side. This resulted in some loss of
aerodynamic efficiency but allowed the design of blades
with realistic thickness distributions, particularly near the
trailing edge.

In order to circumvent some of the limitations referred
to above, as design variables we use the mean tangen-
tial velocity distribution V y (x) along the cascade and the
blade thickness distribution [Borges, Gato, and Pereira
(1996)]. An immediate consequence of this choice is that
the designer no longer has direct control over the stream-

wise velocity distribution or the pressure distribution on
the blade surface. However, this drawback is compen-
sated in a number of ways. First of all, the prescription
of a convenient thickness distribution ensures that a re-
alistic blade shape will always be obtained. Also, since
the blade stress is directly related to the blade thickness,
the ability to prescribe the thickness allows the designer
to take the stress issue into account before starting the
aerodynamic design. This saves a large amount of time
in the iteration between the aerodynamic and the struc-
tural design. Indeed, it is envisaged to strengthen the link
between these two design criteria by coupling the present
inverse aerodynamic design method with a fluid-structure
analysis code [Rugonyi and Bathe (2001)]. Secondly,
specifying the blade pressure load, instead of the veloc-
ity or the pressure distribution on both surfaces, greatly
eases the constraints imposed by the existence problem.
Actually there is no closed solution for this problem in
compressible flow, but we may drain some insights to
this class of flow from the work of Volpe and Melnik
(1981). More recently, numerical experiments presented
in [Páscoa, Mendes, and Gato (2004)] gave evidence that
most of the designs with arbitrarily specified blade load-
ing distributions have solution. Consequently, this design
strategy seems more robust than those for which the vari-
ables are specified on both blade surfaces, see also [Dang
(1995)]. One of the drawbacks of the latter methodol-
ogy is that a dozen of flow analysis cycles are typically
needed in order to reach convergence, an issue that re-
quires further attention. In order to reduce computa-
tional costs a novel class of methods, called Meshless Lo-
cal Petrov-Galerkin (MLPG) methods could be used, see
[Atluri and Zhu (1998)]. Particulary the MLPG5 method,
which uses meshless trial functions and a Heaviside func-
tion in overlapping subdomains, can be considered as a
Meshless Finite Volume Method, see [Atluri and Shen
(2002)]. The use of such methods may contribute for a
better description of the flow through cascades of blades
of complex geometry and for an efficient treatment of
shock wave discontinuities, for instance by means of grid
adaptation.

Nevertheless, the present method is foreseen to be
straightforwardly extensible to the design of three-
dimensional geometries. Moreover, this method is eas-
ily applicable to treat viscous flows [Demeulenaere,
Leonard, and van den Braembussche (1997)], in contrast
with other design methods that modify the blade bound-
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Figure 1 : Rectilinear cascade of blades.

ary conditions during the calculations in order to achieve
faster convergence rates. In the present implementation,
a robust Euler code enabled the use of the flowfield re-
sults from the previous design iteration as the initial con-
dition for the following flow analysis. The computed
numerical results showed that a substantial reduction of
the computational time has been accomplished with this
methodology.

2 Inverse design formulation

Here we briefly explain the inverse design method based
on the iterative analysis procedure of Borges, Gato, and
Pereira (1996). The differences between that method and
the implementation presented here are emphasized. The
design methodology uses the information obtained by the
iterative flowfield analysis, see Fig. 1. The direct anal-
ysis program is based on the time-marching algorithm
described in section 3. The design method assumes that
the prescribed mean tangential velocity component along
the cascade is a function of the blade camber-line angle.
Therefore, the design method modifies the blade camber
line while the computed mean tangential velocity is con-
verging to the one prescribed as input. We note that the
blade thickness distribution is also given as input.

The mean tangential velocity distribution V y (x) along
the cascade is chosen as a design variable. This is di-
rectly related to the flow-produced force on the blade. By
performing a momentum balance along the direction y,

Fig. 1, Borges, Gato, and Pereira (1996) have shown that
the following relation exists between the aerodynamic
blade load distribution (pressure difference, ∆p, between
the blade suction and pressure surfaces) and the deriva-
tive of the mean tangential velocity component

− d
dx

⎡
⎢⎢⎢⎣

yP∫
yS

ρVxVydy

yP∫
yS

ρVxdy

⎤
⎥⎥⎥⎦ =

∆p
ṁ

. (1)

Here ρ is the density, Vx and Vy are the Cartesian com-
ponents of velocity, Fig. 1, and ṁ is the mass flow rate
per unit width. The mean (mass averaged) values of the
tangential and the axial velocity components,

V y (x) =

yP∫
yS

ρVxVydy

yP∫
yS

ρVxdy
, V x (x) =

yP∫
yS

ρV 2
x dy

yP∫
yS

ρVxdy
, (2)

are calculated from the numerical results for the cas-
cade flow, Fig. 2. The value for the mean axial veloc-
ity component of the flow at the entrance to the cascade,
V x1, is known for the design conditions. Therefore, the
flow angle, tanβ = V y (x)

/
V x1, and the prescribed an-

gle, tanβp = V yp (x)
/

V xp1, are determined. For a given
V yp (x) the camber line angle θ is obtained iteratively
from(

dycl
dx

)N+1
= tanθN+1

= K(p)
[

V yp(x)
V xp1

−
((

V y(x)
V x1

)N − tan θN

)]
+

(
1−K(p)) tanθN ,

(3)

where the superscript N denotes the design iteration num-
ber. Occasionally, numerical instabilities occur for some
cases. In order to avoid this, the values obtained from
Eq. 3 are smoothed by means of a polynomial inter-
polation to achieve consistent variation of the parame-
ters that could otherwise impair the convergence rate.
The relaxation constant K(p) usually ranges between 0.2
and 0.6. The better the initial camber-line approxima-
tion is, the faster the method converges. The initial ap-
proximation is calculated from the axial distribution of
the mean tangential velocity component and from the
flow angle at the entrance. For the initial geometry we
adopt a linear variation for dycl/dx. This ranges be-
tween tanβ1 =V y1

/
V x1, at the leading edge, and tanβ2 =
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Figure 2 : Iterative inverse method.

V y2
/

V x2, at the trailing edge. Here the mean axial veloc-
ity component V x2 is calculated from the values of ṁ and
V y2, imposed downstream of the cascade, assuming isen-
tropic flow. The exit flow angle is initially unknown, be-
cause the mean axial velocity distribution at design con-
ditions, V xp (x), is a result of the calculation. This ve-
locity distribution is then estimated from mass conserva-
tion ρV xp (x) = constant. It should be noticed that the
stagnation pressure, the temperature and the flow angle
are known at the entrance. Design convergence criterion
consists in the maximum variation in the camber-line or-
dinates, Φp = max

(
yN+1

cl −yN
cl

)/
yN

cl , being less than 1%.

3 Euler solver

In the absence of external forces and heat conduction,
the two-dimensional inviscid flow, in an infinitesimal el-
ement, fixed in space, can be described by the system of
the Euler equations:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= 0 , (4)
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Figure 3 : Mesh and control volume Ωc.
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⎧⎪⎪⎨
⎪⎪⎩
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ρV 2
x + p
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⎪⎪⎩

ρVy

ρVxVy

ρV 2
y + p

ρVyH

⎫⎪⎪⎬
⎪⎪⎭ .

(5)

Here U represents the specific conservative variables
per unit volume, mass, momentum and energy. F and
G are the convective fluxes in the x and the y direc-
tions, in a Cartesian coordinate system, Fig. 1, E is
the stagnation specific energy and H = E + p

/
ρ is the

stagnation specific enthalpy. For steady flow the en-
ergy equation reduces to H = constant all over the do-
main. Considerable benefits are achieved in terms of ef-
ficiency and simplicity of the method by assuming that
H = constant during the time-marching calculation. By
doing this, the evolution of the solution loses its physi-
cal significance in transient flow. The pressure is given
by p = (γ−1)ρ

[
E −(

V 2
x +V 2

y

)
/2

]
. Our improved nu-

merical model is based on the Ni’s variant of the Lax-
Wendroff single step method, see [Páscoa, Mendes, and
Gato (2002)]. This variant makes use of a finite volume
discretization in which two superposed meshes are con-
sidered, as shown in Fig. 3.

The primary mesh has its nodes in points 1-2-3-4, with
reference to which the values of the variables are stored.
The secondary mesh has its vertices a-b-c-d in the cen-
ter of the previous volumes. The solution is obtained by
marching in time with

Un+1
i, j −Un

i, j = ∆Ui, j
∼=

− ∆t
Ωi, j

[ ∫
Ωi, j

(−Fdy+Gdx)+1
2

∫
Ωi, j

(−∆Fdy+∆Gdx
)]n

.

(6)
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In this method, the first term on the right-hand side (r.h.s.)
of Eq. 6 is determined by

∆t
Ωi, j

∫
Ωi, j

(−Fdy+Gdx)

= 1
4Ωi, j

(
Ωa∆Ua +Ωb∆Ub +Ωc∆Uc +Ωd∆Ud

) . (7)

Defining ∆x21 = x2 − x1 and ∆F12 = F1 + F2, the terms
on the r.h.s of Eq. 7 are evaluated as

∆Ua
Ωa
∆t

= ((∆F12∆y21 −G12∆x21)+(F23∆y32−G23∆x32)
+(F34∆y43−G34∆x43)+(F41∆y14 −G41∆x14))/2.

(8)

The second term on the r.h.s. of Eq. 6 is calculated from:

∆fc = ∆t
Ωc

[−∆Fc (−∆ylc)+∆Gc (−∆xlc)
]
,

∆gc = ∆t
Ωc

[
∆Fc (−∆ymc)−∆Gc (−∆xmc)

] . (9)

Assuming that the elements of the surrounding volumes
a, b, c and d have approximately equal volumes, we
rewrite Eq. 6 as

∆Ui, j =
[(

∆Ua +∆fa +∆ga

)
+

(
∆Ub +∆fb −∆gb

)
+

(
∆Uc −∆fc −∆gc

)
+

(
∆Ud −∆fd +∆gd

)]
/4

.

(10)

To increase the computational efficiency, the different
terms of Eq. 9 are determined taking

∆U =

⎡
⎣ ∆ρ

∆(ρVx)
∆(ρVy)

⎤
⎦ , (11)

∆F =

⎡
⎣ ∆(ρVx)

Vx∆(ρVx)+Vx (ρ∆Vx)+∆p
Vy∆(ρVx)+Vx (ρ∆Vy)

⎤
⎦ , (12)

∆G =

⎡
⎣ ∆(ρVy)

Vx∆(ρVy)+Vy (ρ∆Vx)
Vy∆(ρVy)+Vy (ρ∆Vy)+∆p

⎤
⎦ , (13)

∆p =
(

γ−1
γ

)
×[

∆ρH − 1
2 (Vx∆ρVx +Vy∆ρVy +Vxρ∆Vx +Vyρ∆Vy)

] ,

(14)

ρ∆Vx = ∆(ρVx)−Vx∆ρ, (15)

ρ∆Vy = ∆(ρVy)−Vy∆ρ. (16)

The corrections to variables given by Eq. 8 are calculated
using Eq. 11, 12 and 13. The local time step is limited by
the Courant condition.

Numerical algorithms for the solution of the Euler system
of equations need to contain a certain level of numerical
dissipation. This can be explicitly added to an intrinsi-
cally non dissipative numerical scheme, or naturally oc-
cur due to the kind of spatial discretization, as generally
found in the upwind schemes, see [Henriques and Gato
(2002, 2004)]. In the present case a dissipative term is
added to the r.h.s. of Eq. 4,

Di, j =
(

di+ 1
2 , j −di− 1

2 , j

)
+

(
di, j+ 1

2
−di, j− 1

2

)
, (17)

where the term associated to the i direction is given by

di+ 1
2 , j =

[
λi+ 1

2 , j.ε
(2)
i+ 1

2 , j

]
(Ui+1, j −Ui, j)−[

λi+ 1
2 , j.ε

(4)
i+ 1

2
(Ui+2, j −3Ui+1, j +3Ui, j −Ui−1, j)

] . (18)

The remaining terms of Eq. 17 are obtained in an analo-
gous way. The Jacobean flux matrix is scaled using the
maximum value of the spectral radius of F and G,

λi+ 1
2 , j = 1

2

[
(λl)i, j +(λl)i+1, j +(λm)i, j +(λm)i+1, j

]
,

where λl = |u∆ym −v∆xm| + c∆m and λm =
|v∆xl −u∆yl| + c∆l. The coefficients ε(2) and ε(4)

take values that depend on the existence of flow discon-
tinuities in the neighborhood of the computational cell,
as given by

νi =
|pi+1 −2pi + pi−1|

(1−ε)(|pi+1 − pi|+ |pi − pi−1|)+εLP
, (19)

where LP = pi+1 + pi + pi−1. This parameter was derived
from the van Leer’s limiter and has a switching effect, see
[Turkel and Jorgenson (1993)], for its theoretical deriva-
tion, and [Páscoa, Mendes, and Gato (2002)], for the cor-
responding numerical implementation. Here ε is chosen
automatically as a function of shock strength,

ε = {min(pi−2, pi−1, pi, pi+1, pi+2) /
max (pi−2, pi−1, pi, pi+1, pi+2)}σ , (20)

where σ is as a free parameter. A reasonable range for σ
is [0.5, 1]. Furthermore, we need to define

ε(4)
i+ 1

2 , j
= max

[
0,

(
K(4)−ε(2)

i+ 1
2 , j

)]
, (21)

ε(2)
i+ 1

2 , j
= K(2) max (νi−1, j,νi, j,νi+1, j,νi+2, j) . (22)
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The constants K(2) = 0.25 and K(4) = 0.0001 are speci-
fied by the user.

In the analysis mode, the inlet boundary conditions for
subsonic flow are the stagnation pressure, the stagnation
temperature and the flow angle. The exit boundary con-
dition for subsonic flow is the static pressure. The re-
maining boundary conditions are obtained from the char-
acteristic function theory: the values at the boundary are
calculated from the values inside the domain. The slip
condition is imposed on the solid boundaries and the pe-
riodicity is observed along the periodic boundary.

4 Numerical results

Results presented in [Páscoa, Mendes, and Gato (2002)]
validated the described flow analysis algorithm and
demonstrated the ability of the method to compute tran-
sonic flows with strong shock waves. The above studies
also suggested that the method is robust enough to be
used in the iterative design of highly loaded (large de-
flection) turbomachinery blade cascades.

4.1 Consistency evaluation on a parabolic cascade

The consistency of the method was first checked by re-
covering a given cascade geometry. The test was done
considering a parabolic cascade with the blade thickness
distribution yth = ±0.326(x(1−x))2 and the blade cam-
ber line ycl = 0.3(x(1−x))1.4, see [Ahmadi and Ghaly
(1997)]. The pitch-to-chord ratio is 0.5. The specified
conditions are the inlet flow Mach number, M−∞= 0.5,
and the inlet flow angle, α−∞ = 5.5◦. Calculations were
performed using an H-type mesh with 20×80 nodes, 40
of them on the blade surface. The analysis code was
first used to compute the V y distribution along the cas-
cade, considering the above geometry and the prescribed
flow conditions, see Fig. 4. Next, the inverse method was
able to recover the original cascade geometry by starting
the calculation with a wrong blade camber line geome-
try, Fig. 5, and specifying the calculated distribution for
V y, together with the blade thickness distribution. The
asymptotic convergence behavior of the camber line dur-
ing the design iterations is observed in Fig. 5. Results
plotted in Fig. 4 show good agreement between the spec-
ified V y distribution for the design and that calculated
in the last design iteration. Convergence of the design
method is also shown in Fig. 6 that compares the original
blade section with the blade section calculated by the in-
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-0.05
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0.1

0.15

V
∗ y
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V
y/

V
x1

x/c
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Inverse

Figure 4 : Parabolic cascade: non-dimensional mean
tangential velocity distributions as a function of the axial
coordinate calculated in the analysis (solid line) and in
the design (symbols) modes.

verse method. Convergence was achieved after 13 design
iterations, when the maximum relative camber-line vari-
ation Φp was less than 1%, see Fig. 7. The algorithm was
programmed in FORTRAN and the redesign took around
23 minutes running in a 2 GHz Pentium IV processor.

4.2 Redesign of a transonic compressor cascade.

This test case considers the Sanz’s supercritical compres-
sor cascade reported in [Denton, Hirsch, and Meauzé
(1990)]. The original compressor cascade was obtained
by the hodograph method. The inlet Mach number and
the inlet flow angle are M−∞= 0.711 and α−∞ = 30.81◦,
respectively. The exit flow angle is α+∞ = −0.35◦, thus
giving an overall design flow turning of 31.16◦. The
pitch-to-chord ratio is 1.034. The present Euler code
was first used to analyze the flow through the compressor
cascade. Like in the results of other Euler calculations
[Léonard (1992)], the present numerical results do not
completely recover the hodograph supercritical solution
and show the presence of a shock wave at about 35% of
the chord, Fig. 8.

The above design methodology was then applied to
demonstrate the ability of the inverse method to produce
a new blade camber-line section such that the flow shock-
wave is eliminated, when assuming the same design con-
ditions, i.e. overall deflection and load. To illustrate
the capabilities of the above design method, a symmet-
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ric fourth-order-polynomial blade-load axial distribution
g(x) was considered for the new design, Fig. 10. This
load distribution was imposed by specifying the mean
tangential velocity distribution along the x direction (see
Eq. 1), Fig. 1. The values of V y2 and V y1 were calculated
from the above blade design conditions. The imposed
mean tangential velocity distribution is plotted in Fig. 9
as a solid line. Also shown in Fig. 9 are the V y distri-
butions obtained in the flow analysis of the original ge-
ometry and in the last design iteration, respectively. The
non-dimensional pressure load for the original cascade
exhibits a sharp drop due to the presence of the shock-
wave, Fig. 10. The imposed load distribution is almost
achieved for the redesigned blade, except near sonic con-
ditions were the analysis method introduces small oscil-
lations. The calculations were performed using an H-
type mesh with 160×80 nodes.
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m
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)/ yN cl

Figure 7 : Convergence history for the redesigned
parabolic cascade.

Fig. 11 presents the geometry and the stagnation pres-
sure loss contours, Π = 1− p0/p01, for the original and
the redesigned blade geometries, respectively. Results
plotted in Fig. 11 clearly show that the flow through
the redesigned cascade presents lower numerically pro-
duced stagnation pressure-loss levels, as could be ex-
pected from the analysis of the Mach number distribu-
tions plotted in Fig. 12. In fact, for the above flow con-
ditions, the results of the Euler calculation predict the
occurrence of a strong shock-wave that extends along the
inter-blade channel of the original cascade. In spite of
the geometric modification of the compressor blade, the
design conditions for the overall deflection is kept, re-
sulting in an exit flow angle of α+∞ = −0.36◦ in the last
design iteration.

5 Conclusions

The paper describes an improved inverse-design two-
dimensional method for turbomachinery blading based
on the iterative use of an analysis code. The design
variables are the mean tangential velocity and the blade
thickness distributions along the axial direction. The for-
mer gives direct control to the designer over the aerody-
namic load distribution on the blade surface, whereas the
latter allows the designer to take the stress issue into ac-
count before starting the aerodynamic design.

Two test cases were presented to validate the design
method. The first was a consistency analysis that showed
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Figure 8 : Compressor blade cascade: Sanz’s hodograph
solution (solid line) and present Euler solution (dashed
line) for the Mach number distribution on the blade sur-
face.
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dimensional mean tangential velocity distributions as a
function of the axial coordinate.
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pressure load prescribed in the design (doted line, Eq. 1),
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(dashed line) blade geometries.

1
1

1

11 1

11
1

1

2

22 2

2

2

2

22

2

2

3
3

33 3

3

3
4 444

4

4

1

1
1

11

1

1
1

1

11

1

1

1

1

11

1

1 1

1

4

1

1

1

1

2

2

22

3 3

33

4

44

-1 0 1 2 3

Level
4 0.004
3 0.003
2 0.002
1 0.001

x/c

Π
Initial

Redesigned

Figure 11 : Compressor blade cascade: stagnation pres-
sure loss contours for the original (solid line) and re-
designed (dashed line) blade geometries.



Aerodynamic Design of Turbomachinery Cascades Using an Enhanced Time-Marching Finite Volume Method 545

0 0.25 0.5 0.75 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
M

x/c

Figure 12 : Compressor blade cascade: Mach number
distributions on the blade surface for the original (dashed
line) and redesigned (solid line) blade geometries.

the ability of the method in recovering a parabolic cas-
cade of blades. The second test case considered the re-
design of the Sanz’s supercritical compressor cascade,
originally calculated by the hodograph method. The in-
verse method was successful in redesigning the compres-
sor cascade, resulting in a new blade camber-line, and
blade stagger, for which the Euler calculation predicts a
smooth blade pressure-loading distribution, and the elim-
ination of the shock-wave earlier predicted for the origi-
nal cascade, when assuming the same design conditions
in both cases.

The inverse method here presented is planned to be
extended to three-dimensions by further specifying the
blade stacking line and the mean-swirl distribution along
the leading and trailing edges of the blade row.
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Páscoa, J. C.; Mendes, A. C.; Gato, L. M. C. (2004):
An Inverse Method for Turbomachinery Cascades of
Blades — investigation of the existence and uniqueness
of solution. In Mendes, A. C.; Rahman, M.; Brebbia,
C. A.(Eds): International Series on Advances in Fluid
Mechanics, volume 40, pp. 3–12. WIT Press.

Pierret, S.; van den Braembussche, R. (1998): Tur-
bomachinery blade design using a Navier-Stokes solver
and artificial neural network. In Proceedings of the RTO
AVT Symposium on Design Principles and Methods for
Aircraft Gas Turbine Engine. RTO-MP-8, France.

Rugonyi, S.; Bathe, K. J. (2001): On Finite Element
Analysis of Fluid Flows Fully Coupled with Structural
Interactions. CMES: Computer Modeling in Engineer-
ing & Sciences, vol. 2, no. 2, pp. 195–212.

Turkel, E.; Jorgenson, P. (1993): Central Difference
TVD Schemes for Time Dependent and Steady State
Problems. Journal of Computational Physics, vol. 107,
pp. 297–308.

Volpe, G.; Melnik, R. E. (1981): Role of Constraints
in Inverse Design for Transonic Airfoils. AIAA Journal,
vol. 22, pp. 1770–1778.


