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Construction of Integral Objective Function/Fitness Function of
Multi-Objective/Multi-Disciplinary Optimization
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Abstract: To extend an available mono-objective op-
timization method to multi-objective/multi-disciplinary
optimization, the construction of a suitable integral ob-
jective function (in gradient based deterministic method-
DM) or fitness function (in genetic algorithm-GA) is im-
portant. An auto-adjusting weighted object optimization
(AWO) method in DM is suggested to improve the avail-
able weighted sum method (linear combined weighted
object optimizationLWO method). Two formulae of fit-
ness function in GA are suggested for two kinds of design
problems. Flow field solution is obtained by solving Eu-
ler equations. Electromagnetic field solution is obtained
by solving Maxwell equations. Bi-disciplinary optimiza-
tion computation is carried out by coupling these two so-
lutions with a nonlinear optimization method. Numerical
results show that the needed Pareto solutions can be ef-
fectively obtained by using these suggested methods to
meet the original design requirements.

keyword: multiobjective/multidisciplinary optimiza-
tion, Euler equations, Maxwell equations, genetic
algorithms

1 Introduction

Multi-objective (MO)/Multi-disciplinary (MD) opti-
mization can be applied effectively to general engineer-
ing designs, which by its very nature often require trade-
offs between disparate and conflicting objectives, such
as modern aircraft design. Stealthy performance has
become one of the basic requirements for a modern
flight vehicle. Nevertheless, in a practical design, the
shape requirements for stealthy performance are gen-
erally in conflict with those for aerodynamic perfor-
mance. The pervasiveness of these tradeoffs in engi-
neering design has given rise to a rich and vast ar-
ray of approaches for MO/MD optimization. Exam-
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ples include the weighted sum and compromise pro-
gramming approaches (Osyczka, 1985; Standler, 1984;
Steuer, 1986), genetic algorithm-based approaches (Osy-
czka et al, 1995; Schaumann et al, 1998,Mathur et al,
2003), Pareto front approximations (Kasprazak et al,
1999; Zhang et al, 1999),response surface method(Levin
et al, 2002), and heuristic topology method (Tapp et al,
2004).

Many researchers have pointed out the drawbacks of
weighted sum method as: i) it fails to capture the Pareto
points where the Pareto frontier is non-convex, and ii) an
evenly distributed set of weights fails to produce an even
distribution of points in the Pareto solution front. Messac
et al (2000, 2001) discussed in detail the necessary con-
ditions for capturing any Pareto point, and the required
form of the aggregate objective function to capture the
points in a non-convex Pareto frontier.

In recent years, many methods have been shown to over-
come the drawbacks of weighted sum method; these
include the compromise programming and exponential
weighted criteria (Athan and Papalambros, 1996), nor-
mal boundary intersection method (Das and Dennis,
1998) and using physical programming method (Messac,
1996; Messac et al, 2001, 2002), surrogate approxima-
tion (Wilson et al, 2001) and evolutionary computation
(Bramanti et al, 2001) to explore Pareto frontiers effi-
ciently. Those new methods have shown the ability of
being effective and efficient multiobjective optimization
methods.

It is desired to emphasize that the objective of this pa-
per is not to advocate the generation of the Pareto fron-
tiers as a normal means to reach an optimal design. In
some engineering design applications, such as the shape
optimization of airfoil and wing, it is desired to obtain
the needed Pareto solution at a minimal computing ex-
pense, rather than to obtain the solution from the Pareto
front, for computing time is huge to generate the Pareto
front when the Euler and N-S equations are used to cal-
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culate the flow field. For this purposes the authors tried
to improve the classical optimization method to obtain
the needed Pareto solution in different individual design
tasks at a minimal computing expense using the Euler
equations for flow field calculation or the Maxwell equa-
tions for electromagnetic field calculation.

Mono-objective optimization is a scalar optimization,
while MO/MD optimization is a vector optimization. In
order to apply those available mono-objective optimiza-
tion algorithms to MO/MD optimization, the vector op-
timization problem has to be formulated as a problem
of scalar optimization. The central issue of doing it
is to construct a suitable integral objective function (in
DM)/fitness function (in GA) to meet the requirements of
the design problem. This issue is discussed in the present
paper.

2 Computational methods of flow field and electro-
magnetic field solutions

In the flow field calculation, Euler equations are used as
governing equations. The finite volume method is used
to discretize Euler equations and Van Leer’s scheme (Van
leer, 1982) is used to discretize the inviscid flux vector. A
LU factorization is used for time integration. The local
time step and multigrid technique are used in the pro-
cess of solution to accelerate convergence (Siikonen, et
al, 1989). The boundary conditions are treated in a usual
way, i.e., zero normal velocity on the wall and nonreflect-
ing boundary conditions in infinite are used. In the fol-
lowing calculation examples, drag CD is equal to inviscid
drag CDW , because Euler equations are taken as govern-
ing equations. Up to now, radar is one of the main mea-
sures to detect a flight vehicle, thus reducing radar cross
section (RCS) is the most important part of low observ-
able technique of a flight vehicle. The evaluation of RCS
can be based on the numerical solution of time domain
Maxwell equations, which are the governing equations
describing an electromagnetic field. In the present paper
Maxwell equations of TM mode are solved by using the
flux splitting scheme (Zhu et al, 1998). For the perfectly
conducting scatters, the reflecting boundary condition of
the electric field on body surface is satisfied. The nonre-
flecting boundary condition (Mur, 1981) is used in infi-
nite. The solution of the above boundary value problem
is called as near-field scattered solution H s and E s. By
using equivalence principle (Umashankar et al, 1982),
the obtained near-field solution is converted into a far-

field solution, which is transformed to frequency domain
using Fast Fourier Transformation. The RCS usually de-
fined in frequency domain can then be evaluated (Zhu et
al, 1998).

In optimization process the airfoil shape varies continu-
ously and a lot of iteration of field solution is required.
Thus a fast, robust and high qualitative grid generation
method is essential. A transfinite interpolation grid gen-
eration method applying B spline curve lines and sur-
faces is used. The basic considerations are:

i) Origin B spline method can produce a high qual-
itative curve surface grid, but the grid boundaries
are only similar to and not coincident with the ini-
tial boundaries. Applying transfinite interpolation
method, they can be completely coincident.

ii) Transfinite interpolation method can generate the
smoothest grid with continuous second derivatives
when B spline is used as blending function, espe-
cially when the inverse algorithm of B spline curve
surface generation is used, in which the bound-
ary conditions of tangential vector at end points of
boundary and torque vector at 4 corners are used.
These vectors can be controlled and adjusted to
meet the requirement to the grid.

In 3D calculation 2D grid is generated in streamwise di-
rection by using this method and the spanwise grid top-
ogy is of H type.

3 Optimization methods

The available gradient based deterministic optimization
methods take successive search. Its optimization speed
is high when the design parameters are few, but slow
down rapidly as the number of parameters increases. In
some cases it leads to local optimization easily. The other
type genetic algorithm is not limited by restrictive as-
sumptions about the search space, such as continuity, uni-
modality and regulation. It is roubst, can arrive to global
optimization, and has the nature of parallel computation,
though its computational work is huge.

3.1 Auto-adjusting weighted object optimization
(AWO) method

A commonly used method (LWO) (Standler, 1984) to
formulate a vector optimization as a scalar one is tak-
ing the weighted sum of individual objective functions,
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which is
n
∑

i=1
ci fi(x) as the resultant objective function.

Here is a weighted coefficient, 0 ≤ ci ≤ 1 and
n
∑

i=1
ci = 1.

The disadvantage of LWO is that its solution is very sen-
sitive to the combination of weighted coefficients, which
is determined mainly with user’s experience. To im-
prove LWO an auto-adjusting weighted object optimiza-
tion (AWO) method is suggested. In AWO, the weighted
coefficients are adjusted automatically according to the
information about the improving rates of individual ob-
jective functions during the optimization process to pro-
tect the further optimization of other objective functions
from being hampered by too fast optimization of some
individual functions. Thus, in AWO all individual objec-
tive functions can be optimized at almost the same speed,
and the Pareto optimal solution is achieved.

As an example, let the bi-objective optimization problem
be a minimizing one. The procedure of adjustment can
be stated as:

∆ob ji =
ob ji−Reob ji

|Reob ji| , (i = 1,2) (1)

Glob j =
2

∑
i=1

Ci ·ob ji,
2

∑
i=1

ci = 1 (2)

Where Reob ji is the reference quantity of that objective
function. If ∀(i = 1,2), ∆ob ji ≤ δ0 then the solution is
accepted and Reob ji = ob ji. Otherwise the solution is
abandoned. Here δ0 is a control value, usually δ0 ≤ 0.1.
If the solution is accepted, the weighted coefficients will
be adjusted as:

Cbetter = Cbetter −δc

Cworse = Cworse +δc
(3)

Where δc is the adjusted step size, Cbetter is the weighted
coefficient of better optimized object and Cworse is the
weighted coefficient of worse optimized object. In the
present paper δc = 0.1×0.9L, L is the number of having
optimized steps.

3.2 Optimization search algorithm

The search algorithm greatly influences the optimiza-
tion result in DO method. With the fast development of
computer technology, direct searching algorithms are be-
coming favorable to engineers. They are simpler than
other ones, such as gradient and second derivative meth-
ods. Powell method (Powell, 1964), which does not need

to calculate derivatives of design variables and is easily
linked with flow solver, is chosen as an optimum search-
ing algorithm in the present paper.

3.3 Genetic Algorithm (GA)

GA is stochastic searching algorithm based on natural se-
lection and evolution behavior (Holland, 1975; Goldberg,
1989). Design variables are coded with some coding
techniques to represent as individual members of a pop-
ulation and to form “chromosomes”, in which “genes”
maintain the features of individual members. Individuals
are evaluated for a fitness value, which is a measurement
of individual quality and based on which highly fit in-
dividuals are more likely to survive and become parents
conducted via a selection strategy. The selected parents
then mate and produce offspring. In GA, the process of
selection, mutation, crossover, evaluation, and reproduc-
tion are repeated until the convergence of a suitable so-
lution to the problem is achieved. The procedure of the
method can be stated as follows: (1) Encoding the de-
sign variables; (2) Initializing the population; (3) Evalu-
ating fitness values; (4) Appling selection strategies; (5)
Operating genetic operators; (6) Utilizing the stop rule.
In present paper, the decimal coding and game selection
strategy are used. The parameters are: population size
40, generation number 40, crossover probality 0.6, and
mutation probality 0.4. Considering the large computa-
tional work of applying GAs, which is particularly evi-
dent if Euler or Navier-Stokes flow analysis is employed,
parallel computation is carried out on cluster PCs con-
nected via Ethernet under PVM/MPI environments to al-
low a reasonable total computing time. A network of 2
or 4 PCs is used in 2D calculation and a net work of 40
PCs is used in 3D calculation.

3.4 Construction of the fitness functions

In nature, the quality of a species is usually evaluated
with the degree of fitness to the environment, in GAs
also necessary to construct an environment (design prob-
lem) for the population and then evaluate the quality of
individuals with certain criteria. Obviously, the higher
the fitness value, the better the individual’s quality. So
the quality of the fitness function greatly influences the
results of using GAs. How to evaluate the satisfactory
degree of the MO/MD optimization results is not easy.
In practical tasks most objects have their own physical
meanings, such as lift, drag, etc. They are usually con-
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flicting with or restricting to each other, i.e., when one
object value becomes better, some others’ values may be-
come worse. There is no such a solution, in which all the
objects’ values approach to their own optimal values si-
multaneously. While in optimization process only one
abstract quantity, which reflects our satisfactory degree
to the result, can be used. It is necessary to combine all
the objects into a suitable quantity to be used as a fitness
function, which has to be constructed according the de-
sign problem nature and requirements. Two formulae of
fitness function corresponding their own design require-
ments are suggested at the present paper.

Fitness function I

It is desired to obtain certain expected objective values
in many designs, such as expected lift and drag values at
given flight conditions in aerodynamic design. Such kind
design problem is stated as:

To minimize

min
∣∣ f j(x)−O j

∣∣ , j = 1, . . .,M (4)

Subject to

Φq(x) ≥Cq,q = 1, . . .,m (5)

Then the fitness function can be suggested as:

F(x) =
m
Π

q=1
exp[Aq(Φq(x)−Cq)]/

M

∑
j=1

δ j( f j(x)−O j)2 (6)

Where f j(x) is an objective function, M the number
of objective functions, Φq(x) a constraint function, m
the number of constraints, δ j the “nondimensional” cor-
responding coefficient of the objective function (here
“nondimensional” is to make the contribution of multi-
objective functions to the fitness value at the same or-
der), Aq the penalty coefficient of the constraint function,
and O j, Cq are given constants representing the goal’s
expected value and the boundary value of the constraint,
respectively.

Fitness function II

In some designs the following two requirements should
be met:

a) Make the gains of all objects obtained as equal as pos-
sible, for example, increase lift 50% and decrease drag
50%.

b) Make total gain of all objects as large as possible.

(i) Biobjective (BO)/Bidisciplinary (BD) case

In BO/BD case, by using the nonlinear objective
function combination method (OFCM) a fitness
function formula is suggested as (Zhu et al, 2003):

FF = expRβ[(1−α)(1−φ2)+α],
α, β = const (7)

φ =

⎧⎨
⎩

4
π

∣∣∣arctan(GO2
GO1

)− π
4

∣∣∣
4− 4

π

∣∣∣arctan(GO2
GO1

)− π
4

∣∣∣ ,
GO1 > 0
GO1 < 0

(8)

R = (GO1)2 +(GO2)2 (9)

Where GO1, GO2 are the increments of two objects’
values, respectively. α=0.1, β=0.4 are taken in the
present paper.

(ii) MO/MD case

In present paper, the OFCM method is extend to
MO/MD case, the quantities R and φ can be ex-
pressed as:

R =
n

∑
i=1

(GOi)2 (10)

φ =
4
π

arccos(
k1√

k2
1 +k2

2

) (11)

where

k1 =
1√
n

n

∑
i=1

(GOi) (12)

k2 =

√
n

∑
j=1

[GO j − 1√
n
(

n

∑
i=1

GOi)2] (13)

when n equals 2, Eq. (10)-(13) are regressed to Eq.
(7)-(8).

(iii) Effect of the constraints

Usually there are some constraints in an optimiza-
tion problem. These constraints can be satisfied by
adding a penalty function to the resultant objective
function F. If the constraints are ψi ≥ Di, i=1, 2,. . . ,
m, the resultant objective function with constraints
can be written as:

F = F ·
m

∏
i=1

Pi, Pi =
{

eAi(Di−ψi)

1
,

ψi < Di

ψi ≥ Di
(14)
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Table 1 : Calculated results of AWO and LWO methods with initial weighted coefficients (0.5, 0.5)

LC WD
C

180
RCS

q= WDL CC /NACA0012 

0.7M ¥ = ,

2.57a =

initial 0.48567 0.021880 -2.8480 22.197 

optimal 0.58173 0.024989 -100.89 23.280 LWO 

(%)opt ini

ini

V V
V
-

D =
19.8 14.1 -3422.4 4.88 

optimal 0.62550 0.018786 -91.688 33.298 AWO 

(%)opt ini

ini

V V
V
-

D =
28.8 -14.1 -3119.4 50 

3.5 Representation of airfoil and wing

The coordinates of airfoil contour are presented as:

y = yb(x)+∑aiSi(x) (15)

Where yb(x) is the baseline airfoil, Si(x) are analytic
shape functions (Hager et al, 1992), which are used to
systematically perturb baseline airfoil, and undetermined
coefficients αi are taken as the design variables. 4 design
variables are used in the 2D calculation. Five sections
are used as control sections in 3D calculation. In each
of them four coefficients αi are used as design variables.
The total number of design variables is 20.

4 Numerical results and discussion

4.1 2D calculations

Case 1: Airfoil NACA0012 is chosen as a baseline air-
foil. It is desired to modify its shape to minimize its drag
CDW and at the same time to minimize the RCS at the
leading edge of airfoil under the condition of Mach num-
ber M∞=0.75, and angle of attack α=2.57o and the con-
straint of that the maximum thickness is larger than or
equal to the original thickness, i.e., (t/c)max ≥ (t/c)0

max.
The calculation is carried out by using both AWO method
and LWO method with weighted coefficients (0.5, 0.5).
Table. 1 presents the calculated results. In Table 1 CL is
the lift and CL/CDW is the ratio of lift to drag.

It is seen that RCS is decreased significantly with both
methods, but CDW is increased too in LWO solution.

This is obviously not the design meeting the requirement.
However, CDW is decreased by 14% in AWO solution,
making it a required Pareto solution. Though another
Pareto solution can be obtained using LWO method with
coefficients (0.8, 0.2), but choosing the suitable weighted
coefficients needs the user’s experience or more trail and
calculations are used. The calculated results are given in
table 2. As seen is table 2, its integral performance is
worse than that of the AWO solution. It means that with
AWO method not only the requirement of having experi-
ence choosing initial weighted coefficients is not needed,
but also a better compromised solution can be achieved.

Case 2: Airfoil NACA0012 is taken as baseline air-
foil. Two expected values of objects are: RCSθ=180◦ →
−35.0 and CL/CDW → 35.0. The constraint is (t/c)max ≥
(t/c)0

max. The calculated results using GA with fitness
function I are given in Table. 3.

Table 3 shows that result realizes the expected design
values of 2 objects and a required Pareto solution is ob-
tained.

Case 3: Airfoil RAE2822 is chosen as a baseline airfoil.
It is desired to modify its shape to minimize its drag CDW

and at the same time to maximize its lift CL under the
condition of M∞ = 0.75, α = 0◦. The goal is CL− >

0.45, CDW − > 0.004, and the constraints are (t/c)max ≥
(t/c)0

max and (CL/CDW ) > (CL/CDW )0. Table 4 gives the
calculated results.

The results show that the required solution is obtained.
Optimization increases lift by 15%, decreases drag by
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Table 2 : Calculated results of AWO and LWO methods with initial weighted coefficients (0.8, 0.2)g ( )

LC WD
C

180
RCS

q= WDL CC /NACA0012 

0.7M ¥ = ,

2.57a =

initial 0.48567 0.021880 -2.8480 22.197 

optimal 0.65712 0.018293 -68.618 32.923 LWO 

(%)opt ini

ini

V V
V
-

D =
35.3 -16.4 -2309.3 48.3 

optimal 0.69044 0.016796 -16.669 41.099 AWO 

(%)opt ini

ini

V V
V
-

D =
42.2 -23.2 -485.3 85.2 

Table 3 : Calculated results of GA method with fitness function I

LC WD
C

180
RCS

q= WDL CC /NACA0012 

0.7M ¥ = ,

2.57a =

initial 0.48567 0.021880 -2.8480 22.197 

optimal 0.68583 0.018645 -36.727 36.784 GA  
fitness
function I (%)opt ini

ini

V V
V
-

D =
41.2 -14.8 -1189.6 65.7 

Table 4 : Calculated results of GA with fitness function I
RAE2822 

0.75M¥ = , 0a =
LC WD

C
WDL CC /

initial 0.39839 0.0042563 93.599 
optimized 0.46170 0.0041817 110.41 

(%)opt ini

ini

V V
V
-

D =
15.9 -1.75 18.0 
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Table 5 : Calculated results of GA with fitness function II

LC WD
CNACA0012 

0.7M ¥ = ,

2.57a =
initial 0.30767 0.0043288 

optimal 0.35486 0.0038774 OFCM 

(%)opt ini

ini

V V
V
-

D =
15.3 -10.4 

optimal 1.0067 0.014081 LWO 

(%)opt ini

ini

V V
V
-

D =
227.2 225.3 

1.75% at the same time, and increases the ratio of lift
to drag to 110.409 (the increment is 18%) even though
the baseline airfoil has already had a high ratio.

This case is a multi-objective optimization of a single dis-
ciplinary and case 2 is a multi-disciplinary optimization.
The results of both cases show that the fitness function I
can solve the desired design task.

Case 4: The initial airfoil is NACA0012. It is desired
to increase lift and decreases drag at the same time and
as equally as possible under the condition of M∞ = 0.7,
α = 1.0◦, and the constraint of (t/c)max ≥ (t/c)0

max. Table
5 gives the calculated results of GA with fitness function
II. The results of GA with fitness function constructed by
using LWO (0.5, 0.5) method are also given in Table. 5.

It is seen from Table. 5 that CL(LWO) is increased sig-
nificantly and drag CDW is increased too. This does obvi-
ously not meet the design requirement. However, OFCM
method gives the desired solution.

Case 5: Airfoil RAE2822 is taken as a baseline airfoil.
It is desired to increase CL/CDW and decrease CDW under
the condition of M∞ = 0.73, α = 0◦ with the constraint
of (t/c)max ≥ (t/c)0

max. In this case, CL/CDW and 1/CDW

are taken as two optimization objects. Fitness function
II is used in the calculation with both GA and Powell
method. Table 6 gives the calculated results. Although
RAE2822 is a supercritical airfoil and has high ratio of
lift to drag, from table 6 it can be seen that design goal
is still reached, i.e. CL/CDW is increased by 3% and drag
is decreased by 1% using GA. This shows that present

method (OFCM) can be used in a fine design case. The
obtained solution using GA is better than the solution
using Powell method. Both solutions are required solu-
tions.

Case: 6 As a MO example, NACA65006 airfoil is taken
as a baseline airfoil. Object 1 and 2 are CL and 1/CDW at
M∞ = 0.7, α = 2◦ respectively, and object 3 is 1/CDW at
M∞ = 1.5, α = 0◦. It is obvious that the camber of the air-
foil has to be increased to improve subsonic aerodynamic
performance. But this will increase supersonic drag, too.
Optimization goal in this case is to get a suitable compro-
mised camber to obtain a subsonic performance as high
as possible and a supersonic drag as low as possible at
the same time. Table 7 gives the calculated results.

Table 7 shows that nearly the same satisfactory solutions
are obtained by using GA and Powell method. This illus-
trates that OFCM method can be used in multiobjective
optimization to obtain a better compromised solution.

4.2 Bi-objective aerodynamic optimization of a 3D
wing

A 3D wing plane is taken as the baseline, which has a
sweep angle of leading edge x = 35◦, an aspect ratio
λ = 3.5, and a taper ratio η = 0.17. The NACA65006
airfoil is taken as the wing-section profile. It is required
to increase and to reduce the drag CDW at the same time
under the condition at Ma=0.6, α = 2◦. The calculated
results are given in Table 8, in which the results using
LWO (0.5, 0.5) method are also given.
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Table 6 : Calculated results of RAE2822 airfoil

WDL CC / 1/
WD

CRAE2822 

0.73M¥ =

0a =
initial 117.3 330.5 

optimal 117.84 332.22 Powell 

(%)opt ini

ini

V V
V
-

D =
0.46 0.52 

optimal 120.9 334.134 GA 

(%)opt ini

ini

V V
V
-

D =
3.06 1.1 

Table 7 : Calculated results of MO optimization

 Subsonic  

LC

Subsonic  

1/
WD

C

Supersonic 

1/
WD

C

NACA65006 

initial 0.30820 268.19 37.34 
optimal 0.37250 328.7 35.20 Powell 

(%)opt ini

ini

V V
V
-

D =
20.9 22.6 -5.7 

optimal 0.37345 308.6 35.26 GA 

(%)opt ini

ini

V V
V
-

D =
21.2 15.1 -5.56 

It is seen from Table 8 that CL/CDW (LWO) is increased
significantly (54.3%) at the sacrifice of drag increase
(35.69%). The solution of OFCM method gives the de-
sired design. The optimization effect are not obvious in
this case, since the CDW of initial wing is already very
small.

5 Concluding Remarks

Traditional mono-objective optimization is a scalar op-
timization, while MO/MD optimization is a vector one.
In order to apply numerous available mono-objective op-

timization methods to MO/MD optimization, the most
important thing is to construct a suitable integral objec-
tive function (in DOM) or fitness function (in GA). AWO
method and fitness function I/II which are suggested in
the present paper can be effectively used in DOM or GA.
They can be used not only in aircraft design but also in
general engineering design problems. Numerical results
of BO/BD presented in this paper show that their solu-
tions can meet the desired design requirements, can ob-
tain the needed Pareto solutions, and are better than the
compromised solutions of the available LWO method in
both 2D and 3D cases.
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Table 8 : Calculated results of a 3D wing

LC WD
C

WDL CC /3D wing 
Ma =0.6 

2a = initial 0.045801 0.0051553 8.884 
optimal 0.047546 0.0051509 9.231 OFCM 

(%)opt ini

ini

V V
V
-

D =
3.8 -0.1 3.9 

optimal 0.095876 0.0069952 13.706    LWO 

(%)opt ini

ini

V V
V
-

D =
109 35.69 54.3 
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