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Extension of the Variational Self-Regular Approach for the Flux Boundary
Element Method Formulation

P. A. C. Porto1, A. B. Jorge1 and G. O. Ribeiro2

Abstract: This work deals with a numerical solution
technique for the self-regular gradient form of Green’s
identity, the flux boundary integral equation (flux-BIE).
The required C1,α inter-element continuity conditions for
the potential derivatives are imposed in the boundary
element method (BEM) code through a non-symmetric
variational formulation. In spite of using Lagrangian
C0 elements, accurate numerical results were obtained
when applied to heat transfer problems with singular or
quasi-singular conditions, like boundary points and inte-
rior points which may be arbitrarily close to the bound-
ary. The numerical examples proposed show that the de-
veloped algorithm based on the self-regular flux-BIE are
highly efficient, and quite straightforward in that no in-
tegral transformations are necessary to compute the sin-
gular integrals and even a small number of integration
Gauss points gives very accurate results. The variational
self-regular flux-BIE formulation has improved the re-
sults for quadratic elements, while only minor improve-
ments were obtained for higher order elements. The pro-
posed approach is also compared with other formulations
showing to be a robust alternative as a BEM approach in
heat transfer problems.

keyword: BEM - Boundary Element Methods, Vari-
ational Formulation, Self-Regular Formulations, Near-
Boundary Heat Transfer.

1 Introduction

The purpose of this work is to extend the non-symmetric
variational self-regular traction-BEM formulation re-
cently presented by Jorge, Cruse, Fisher and Ribeiro
(2003) to the flux-BIE, demonstrating its application
through classical heat transfer examples and problems
with quasi-singular conditions (in what follows, ‘quasi’
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means that an interior or a boundary source point is very
close to the element where the integral is being evalu-
ated).

The main disadvantage that has prevented the general-
ized use of BEM algorithms is the mathematical singular-
ity that appears on the fundamental solutions of the gov-
erning equations leading to the use of analytical, semi-
analytical or special integrations schemes to prevent the
loss of stability and precision, see Sladek and Sladek
(1998).

One of the techniques to eliminate the need for special
numerical integration procedures for singular integrals is
regularization. Several approaches for regularization can
be found in the literature, such as for potential, elastic-
ity and fracture mechanics problems, as seen in Bonnet
(1999), Cruse and Richardson (2000), and Dominguez,
Ariza and Gallego (2000). Most of these approaches re-
quire the primary variable to have C1,α smoothness and
the unit normal to be continuous, at the collocation point.
These continuity requirements ensure that the resultant
integrals are convergent, i.e. that the regularization is ef-
fective.

According to Krishnasamy, Rizzo and Rudolphi (1992),
a sufficient condition for the existence of the hypersin-
gular integral is the C1,α continuity of the density func-
tion at the source point. Standard isoparametric bound-
ary elements do not satisfy this requirement and for
this reason, approximate solution techniques for solv-
ing hypersingular integral equations by means of the
BEM require special consideration. One of them is the
self-regular formulation proposed by Huang and Cruse
(1994) and developed by Cruse and Richardson (2000)
and by Jorge, Ribeiro, Cruse and Fisher (2001). This
formulation, based on conforming C0 elements, uses the
idea of “relaxed” continuity, as these elements do not
comply with the above continuity requirement. Indeed,
standard isoparametric boundary elements provide only
a piecewise C1,α interpolation, which is the basis for this
so-called relaxed continuity approach.
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In spite of the very successful numerical results reported
by Richardson, Cruse and Huang (1997) and Richardson
and Cruse (1999) using various forms of these relaxed
algorithms combined with piecewise C1,α interpolations,
Krishnasamy, Rizzo and Rudophi (1992) and Martin and
Rizzo (1996), have concluded that these algorithms could
not be theoretically justified. This means that from a
strictly mathematical point of view, only boundary ele-
ment implementations that ensure C0,α or C1,α continuity
at each collocation point can be applied in the discretiza-
tions of the standard, or the hypersingular boundary inte-
gral equations, respectively.

Martin, Rizzo and Cruse (1998) renewed the discussion
between the theoretical continuity requirements and the
good numerical results reported by Cruse and his co-
workers. They reaffirm the smoothness requirements of
the density function for the existence of limits to the
boundary, which give rise to Cauchy-singular and hy-
persingular integral equations, and they have pointed out
two possibilities for relaxing the theoretical smoothness
requirements. The first possibility is the introduction
of various apparent or “pseudo-limits” to the boundary,
and the second one is the relaxed regularization in which
a regularized integral equation, derived rigorously un-
der certain smoothness assumptions, is used when less
smoothness is available.

As shown in Martin, Rizzo and Cruse (1998), a BIE un-
der relaxed continuity conditions is related to a pseudo-
limit to the boundary. The limit exists, the results are
bounded, but there is no theoretical study showing that
these results correspond to the unique solution of the
original boundary value problem, although some previ-
ous numerical results were promising.

Introducing constraints equations into the original sys-
tem of equations Jorge, Cruse, Fisher and Ribeiro (2003)
presented a non-symmetric variational approach. In
that paper, C1,α continuity requirement was enforced at
inter-element nodes for the self-regular traction-BIE dis-
cretized using the relaxed continuity approach with La-
grangian C0 elements. With this approach, the authors
reported impressive improvements.

It should be pointed out that all the aforementioned dis-
cussions are related to the collocation approach for the
traction-BEM using conforming C0 elements. Other so-
lutions of the traction-BIE through either global Petrov-
Galerkin type BEM (Han and Atluri, 2003) or through
the meshless local Petrov-Galerkin methods (Atluri, Han

and Shen, 2003) have also being shown very promising,
especially for solving elastic problems in which the sin-
gularities in any variable are of primary concern.

A non-symmetric variational form for the self-regular
flux-BIE is implemented for quadratic and higher order
elements in this work. The validity of the relaxed conti-
nuity hypothesis in the self-regular flux-BIE implemen-
tation is investigated by comparing the numerical results
of benchmark problems and quasi-singular heat transfer
problems. For comparison purposes, a previously de-
rived local error estimator based on an external formu-
lation for the potential is extended in this work to include
also the evaluation of the gradient magnitude at exterior
points, and thus two independent measures of the exter-
nal local error are implemented.

2 Self-regular BEM formulations

2.1 Self-regular flux-BIE for 2-D potential problems

The standard boundary integral equation (BIE) formula-
tions lead to singular integrals for which the computation
can be simplified if these formulations are written in a
self-regular bounded form. Using the proposed approach
applied to Green’s identity for 2-D Laplace’s equation, a
self-regular flux-BIE can be obtained. In this section this
formulation is only presented, and further details can be
found in Jorge et al. (2001) and in Cruse and Richardson
(1999).

Green’s second identity for Laplace’s equation is writ-
ten as follows, using the 2-D fundamental solutions inte-
grated over the closed boundary plane curve S = ∑m

i=1 Si,
where each Si curve segment is taken to be smooth in the
sense of Liapunov (Kupradze, 1979).

2πφ (y) = −R
s

φ (s)�∇ ln
(

1
r(s,y)

)
·�n(s)dS+

R
s

�∇φ (s) ·�n(s) ln
(

1
r(s,y)

)
dS ∀y ∈ R

(1)

The boundary S bounds the finite plane region R with
outward unit normal vector ṅ(s). The points y and s are
taken to be the interior free point and the boundary in-
tegration point respectively. The fixed boundary point
xmay be at an intersection of two curved segments. The
interior y ∈ R form of the Green’s identity is given
by the following combination of double and single layer

potentials as in Eq. 1, where the term
−→
∇ φ(S)is the gra-
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dient of the potential ø evaluated at the boundary point s
unless otherwise noted by a subscript.

The potential field ø(y) satisfies Laplace’s equation and
the boundary conditions (B.C.) for the finite region. Us-
ing the directional derivative definition, then

�∇ ln

(
1

r (s,y)

)
·�n(s) =

d
dn

ln

(
1

r (s,y)

)
(2)

Equation 2 represents the derivative of the fundamental
solution in the outward normal direction defined by ṅ(s).

The Green’s identity for problems in which the potential
field is continuous in the Hölder sense can be regularized
(Dominguez et al., 2000). The Hölder continuity condi-
tion is denoted as T(y)∈ C0,α, α > 0. The procedure of
regularization consists in subtracting and adding back the
integral:

φ(x)
Z

S

�∇ ln

(
1

r(s,y)

)
·�n(s)dS (3)

Equation 3 has the value of φ(x)(−2π), as the swept an-
gle integral of the two-dimensional closed boundary is 2π
for any y ∈ R. The self-regular form of the potential-BIE
is then given by

2πφ (y) = 2πφ (x)+
R
s

�∇φ (s) ·�n(s) ln
(

1
r(s,y)

)
dS

−R
s
[φ(s)−φ(x)]�∇ ln

(
1

r(s,y)

)
·�n(s)dS

(4)

The first integral in Eq. 4 is regular and bounded for
all points, while the second is weakly singular but also
bounded. The result is called self-regular in the sense that
the mathematical properties of the double-layer potential
and the Hölder continuity of the harmonic function as
y → s are all that is required to modify the original
formulation, as discussed in Jorge et al. (2001).

Since Eq. 4 is continuous for y → x, ∀x ∈ S, including at
corners, by taking the limit to the boundary, the boundary
integral equation is obtained for all boundary points, and
is given by

0 = −R
S

[φ(s)−φ(x)] d
dn ln

(
1

r(s,x)

)
dS+

R
S

dφ
dn

∣∣∣
S

ln
(

1
r(s,x)

)
dS

(5)

The self-regular form of the flux-BIE is derived by tak-
ing the gradient of the integral representation for the
potential at the interior point y, followed by subtract-
ing and adding back a linear potential field given by
φL(s) = φ(x) + φ,i?x[xi (s) – xi(x)]. The gradient of this
linear field is given by ∇φL (s)= ∇φ(x). This use of a lin-
ear field is the analogous operation for the gradient equa-
tion as the constant field is for the regular potential repre-
sentation. The resultant equation is the self-regular form
of the potential gradient at an interior point y, which is
regular for all interior point limits to the boundary, where
the continuity condition φ(y) ∈ C1,α is satisfied.

By taking the limits to the boundary, y→x, at all bound-
ary points satisfying the condition φ(y) ∈ C1,α, at any
given point s≡x, the following regular boundary integral
equation is obtained

0 =
R
S

[φ(s)−φL(s)] ln
(

1
r(s,x)

)
,i j n j(s)dS−

R
S
[�∇φ (s)−�∇φ (x)] ·�n(s) ln

(
1

r(s,x)

)
,i dS

(6)

This vector equation is called the gradient-BIE Green’s
identity for potential theory. This equation is over-
specified and it is usual to operate on it with the local nor-
mal ni(x). The resulting scalar equation is called the flux-
BIE, and this is the usual scalar form which produces the
best numerical results. The flux-BIE is expressed by:

0 = ni(x)
R
S
[φ(s)−φL(s)]ln

(
1

r(s,x)

)
,i j n j(s)dS−

ni(x)
R
S
[�∇φ (s)−�∇φ (x)] ·�n(s)ln

(
1

r(s,x)

)
,i dS

(7)

It is worth noting that the above self-regular formula-
tions, the potential-BIE in Eq. 5 and the flux-BIE in Eq.
7, were obtained through manipulation and limit to the
boundary of the integral equations before discretization.
The self-regular form of these equations and their limit
to the boundary are predicated on the same continuity
requirements that went into the derivation of the singu-
lar integrals in the original problem, before regulariza-
tion. Thus, the regularized integrals contain no strong
or non-integrable singularity only if the density is suffi-
ciently continuous at the limit as the field point goes to
the boundary, as assumed in the derivations.
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2.2 Self-regular BEM formulations including domain
sources

A very common heat transfer problem arises in the eval-
uation of the potential field when nonzero interior heat
sources are present. In these cases, a contribution term
should be added in the right-hand side of Eq. 5 and Eq.
7 as a domain integral. The domain integral to be added
to Eq. 5 has the form

−
Z

Ω

ln

(
1

r(p,x)

)
b(p)dV(p) (8)

while the domain term to be added to Eq. 7 corresponds
to the gradient form of the term in Eq. 8.

The heat source b(p) can be a laser beam aimed to any
point. In this case, the domain point source could be in-
terpreted as a singularity in the potential field at the point
source. So, the source can be written as QD*δ(y,XD),
where QD is the magnitude of a domain source located
at the point XD and δ(y, XD)is the Dirac Delta function.
For an interior point y�=XD, then δ(y,XD) = 0, and the
potential field is continuous.

In the case of NDdomain point sources, the integral on
the domain is transformed in just the sum of the value
of each magnitude QDtimes the fundamental solution at
point p = PD. In this case, the self-regular potential-BIE
and flux-BIE can be written respectively as (Jorge, Porto
e Ribeiro, 2004):
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For domain points approaching the source point where
the singularity is concentrated, numerical difficulties
may arise when evaluating the potential field. The sin-
gular point is out of the domain where the potential is

defined, so the solution for the potential field at interior
points in the vicinity of the point source is also seen as a
near-boundary heat transfer problem.

On the other hand, if the domain has one dimension that
is much smaller than the other one, then the domain point
source will be located very close to some part of the
boundary, this can represent a quasi-singularity in the
boundary solution at a boundary points close to this do-
main point source.

Equations 9 and 10 allow the evaluation of the influence
of domain sources for the aspect ratio problem and for
the near-boundary interior point problem, either problem
considered separately or in combination.

3 Variational self-regular BEM formulation for po-
tential problems

The discretization of the self-regular flux-BIE into C0

elements violates the C1,α continuity requirements for
the flux at the interface between adjacent elements. In
this section, a non-symmetric variational approach, sim-
ilar to the one proposed by Jorge et al. (2003), is de-
veloped for potential problems, leading to a set of sub-
sidiary constraint equations to enforce C1,α continuity on
the smooth parts of boundary when discretized using the
relaxed continuity.

3.1 C1,α continuity for the potential derivatives at
smooth inter-element nodes

By noting�q = dφ
/

d�n, the geometry xk, the potential φk

and the flux qk in the above self-regular potential-BIE
formulations can be obtained based on a discretization
using standard isoparametric functions, Ni:

xk(S) ≈ xk(ξ) =
m
∑

i=1
Ni(ξ)xi

k

φk(S)≈ φk(ξ) =
m
∑

i=1
Ni(ξ)φi

k

qk(S)≈ qk(ξ) =
m
∑

i=1
Ni(ξ)qi

k

(11)

Using the relaxed continuity approach, the same dis-
cretization is applied to the above self-regular flux-BIE
formulations.

Considering that the potential derivatives are evaluated
independently for each element in terms of nodal po-
tentials and fluxes, a jump discontinuity in the potential
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derivatives (∆φ,i) as evaluated in the first node (ξ = -1)
of element I, in comparison with its evaluation at the last
node (ξ = 1) of the previous element I −1 can be defined
as:

∆φI
,i = φI

,i(ξ = −1)−φI−1
,i (ξ = 1) (12)

The strategy that follows is to introduce constraint equa-
tions to enforce the C0 discretized regularized poten-
tial density, φ(S)− φL(S) in Eq. 7 or Eq. 10, to have
zero value and zero derivative at the inter-element source
points where the boundary is smooth. In other words, the
goal is to eliminate any “jump” discontinuity of the po-
tential derivatives, as defined in Eq. 12, at all the smooth
boundary inter-element source points.

For the 2-D case, an inter-element node shares two con-
tinuous elements. In this case, the normal unit vector is
continuous at the smooth node, leading to a simpler set
of equations where only the equations for continuity of
derivatives in the tangent direction (noted in what follows
as i = 1) need to be introduced as constraint equations in
the original formulation:

φI
,1(ξ = −1) = φI−1

,1 (ξ = 1)

φI
,ξ(ξ=−1)

JI(ξ=−1) =
φI−1

,ξ (ξ=1)
JI−1(ξ=1)

(13)

where J(ξ) is the Jacobian of the transformation between
the original boundary element (of coordinate S) and the
standard element (of coordinate ξ). Also, the potential
derivatives, φ,i, are obtained from Eq. 11:

φ,i =
m

∑
i=1

N
′
i (ξ)φi (14)

The new set of equations to be obtained uses only bound-
ary unknowns evaluated at existing nodes, so no extra
variables are added. Writing these constraint equations
in matrix notation gives:

[Qdd]{q}= {0} (15)

It has to be pointed out that, in this work, only the vari-
ational formulation with constraint equations defined at

smooth nodes is implemented, adapted from a similar
formulation for the elasticity problem presented in Jorge
et al. (2003). As discussed by the authors in that case, the
implementation of an equivalent variational formulation,
for the variables in global coordinates at corner nodes,
lead to poor numerical results, and thus this corner-node
variational formulation is not implemented here.

3.2 System of equations from minimization of energy
functional

In Brebbia, Telles and Wrobel (1984) it was shown that
the total potential energy functional for an elastic sys-
tem could be written in terms of boundary integrals only.
An extension for the potential case could be written as
Π = Π = (φ,q). Now introducing the approximation of
{φ} and {q} using the element shape functions, the po-
tential energy functional Π can be rewritten with respect
to nodal boundary variables asΠ = Π(φn,qn). A non-
symmetric system of equations can be obtained by re-
quiring the first variation δΠ to be zero. Because each
variation δφn and δqn is arbitrary, a system of equations
is obtained.

The boundary solution must satisfy the self-regular flux-
BIE a priori. The solution for the system of equations
[A]{x}={b} obtained from the discretized BIE is unique,
provided the appropriate inter-element continuity and
boundary conditions are imposed. In the 2N-dimensional
space for the boundary solution, where N is the number
of boundary nodes, the solution of the BIE is represented
by one point. This boundary solution satisfies exactly
the original boundary value problem in the N collocation
points.

On the other hand, new equations have been added to the
problem constraining this boundary solution to satisfy a
minimum in the potential energy. The problem is over-
constrained because the boundary solution must satisfy
both the BIE at a finite number of collocations points and
the minimum condition for the energy functional on the
entire boundary. When using the collocation approach,
the boundary solution is exact at the boundary nodes and
approximated everywhere else. Also, the exact solution
for the boundary value problem corresponds to the min-
imum of the potential energy functional. Only in the
limiting situation, when the number of collocation points
tends to infinity (and the element sizes tend to zero), will
both equations represent exactly the same constraint for
the boundary variables. For a sufficiently large number
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of collocation points, the solution to the discretized BIE
is approximately equivalent to the solution of the prob-
lem of minimization of the functional Π.

{
∂Π
∂φn

∂Π
∂qn

}
= {0}approx.⇔ [A]{Xn} = {B} (16)

A variation about the original solution can be allowed so
that this perturbed solution now is imposed to satisfy a set
of modified equations (to include extra degrees of free-
dom) and a number of subsidiary equations. In this work,
the subsidiary equations are given by the inter-element
continuity conditions for the temperature derivatives as
explained in Section 3.1.

For each new subsidiary equation, one Lagrange multi-
plier is inserted allowing for a variation of the solution
in the form of a set of {λdd}={λφλq}T . For 2-D prob-
lems, a set of at most 2N equations (depending on the
boundary conditions) is added to the original system of
2N equations, and the boundary solution is now embed-
ded in an expanded set of variables {φn, qn , λT , λq}T of
dimension at most 4N. In a general case, subsidiary con-
straint equations and the corresponding degrees of free-
dom in the form of Lagrange multipliers can be added
to a particular BEM formulation obtained from the dis-
cretization of the BIE so that extra relations for both the
nodal temperatures and fluxes can be enforced. An aug-
mented Lagrangian functional L can be constructed from
the original functional Π = Π(φn,qn) and the subsidiary
constraint equations as

L(φn,qn,λ) = Π(φn,qn)+{{φn}T{qn}T}[Qdd]{λdd}
(17)

so that the problem of minimization of the functional Π
with the constraining subsidiary equations is recast as a
problem of finding the stationary point of the augmented
Lagrangian L. The first variation of the Lagrangian δL=0
gives an augmented system of equations for the nonsym-
metric variational BEM formulation.

The approximate boundary solution is a perturbation or
variation from the original BIE solution. This approxi-
mate solution satisfies the modified discretized BIE and
the subsidiary constraining equations for the boundary
solutions, forming an expanded set of equations. The
original problem for minimization of the functional Π is

now transformed into a constrained minimization prob-
lem with subsidiary equations.

This approach possesses some similarity to that em-
ployed by Mustoe, Volait and Zienkiewicz(1982) for a
variational symmetric BEM formulation, except that con-
straining equations for equilibrium of stresses were en-
forced in that case, instead of the inter-element conti-
nuity equations used here. In this work, the system of
equations is non-symmetric and the double integrations
to symmetrize the system of equations are not needed.
Thus, no extra equations, such as the ones that would be
equivalent to the equilibrium of stresses used in the case
referenced, are needed to be enforced here as an extra set
of constraining equations.

Technically, the implementation of this non-symmetric
variational approach simply involves obtaining the aug-
mented system of equations directly from the existing
system of equations [A]{x}={b} of the discretized BIE,
and adding to this system extra columns of the form
[Q]T {λ} and extra rows of the form [Q]{φn un}T = 0.
Finally, a boundary solution is obtained by solving the
augmented system of equations for this expanded set of
variables, now including both the boundary variables and
the Lagrange multipliers.

The boundary conditions and the appropriate inter-
element continuity conditions for temperature and fluxes
are imposed now for the added terms involving the matri-
ces [Qdd] so that the augmented system of equations can
be solved. Besides the original 2N nodal temperature and
flux variables, 2N (at most) extra unknowns in the form
of Lagrange multipliers {λdd} are added to account for
the subsidiary equations enforcing the inter-element con-
tinuity of the displacement derivatives. By enforcing the
boundary conditions, the subsidiary equations are rewrit-
ten as in Eq. 15, so that the augmented system of equa-
tions is obtained as

[
[A] [Qdd]

T[
Qφn

ddQqn

dd

]
[0]

]{
X
λdd

}
=

{
B
Bdd

}
(18)

which is obtained from the original system of equations
by adding 2N (at most) extra columns and rows to matrix
[A]. The number of additional equations depends on the
boundary conditions. If the potential is prescribed at all
nodes in both adjacent elements, then the corresponding
constraining equation has no boundary unknowns associ-
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ated with it and is a redundant equation. In this case, no
constraining equation is added. The added columns and
rows represent sparse sub-matrices.

4 Numerical results

Some numerical examples of two-dimensional heat
transfer problem problems are performed to evaluate the
strategy proposed. In all cases the numerical integrations
are performed using eight Gaussian points.

The boundary solution accuracy is analyzed comparing
the numerical results either to an analytical solution or
using an error estimator. The error estimator proposed
herein is an extension of a local and global error esti-
mator derived by Jorge, Ribeiro and Fisher (2001). The
essentials of the approach are summarized below.

Boundary integral equation (BIE) formulations are ex-
act representations of boundary value problems (BVP).
In spite of that, errors may appear in the discretization
process because the BIE is valid only at a finite number
of collocation points.

The error estimator is based on the fact that the accuracy
in the boundary solution plays an important role on the
accuracy on any interior point solution. If exterior points
are treated as interior points, i.e. solutions at exterior
points are evaluated using the interior point’s subroutine,
thus the solution at those points will reflect the accuracy
on the boundary.

As both the exact potential and the exact gradient magni-
tude at any external point should be zero, any depart from
zero in the numerical solution will be an indication of er-
ror. The closer is this external point to some region of
the boundary, the more this error indicator is influenced
by this part of the boundary. Thus, by positioning this ex-
ternal point at a small distance with regard to an element,
most of the contribution to the error will come from this
element, giving a local measure of the error (the element
error).

On the other hand, because fundamental solutions are
functions of the distance between source and field points,
the error measure is sensitive to the external point posi-
tion for non-trivial problems. In this work, a distance of
0.25 of the size of the element closer to the external point
is selected, following Jorge et al. (2001).

4.1 Square domain

At first, the code is used in a very simple problem of a
square domain, with straight line elements, as shown in
Fig. 1. The exact density variation is either constant or
linear throughout the boundary due to the boundary con-
ditions. Any BEM solution can easily follow this distri-
bution, regardless of the integration order, or the interpo-
lation polynomial used. Thus, this problem could work
as an approximate “patch” test.

It should be noted that an exact patch test is taken to be
one in which the solution is within computer accuracy,
regardless of the order of integration (at least above some
low-level integration order).

As stated above, this problem has an analytical solution
and according to Fourier’s law, the flux and potential are
either constant or vary linearly throughout the boundary.
Thus, for any interpolation polynomial of order higher
or equal than one, there is no error related to the inter-
polation of these quantities in the boundary. Hence, any
errors present in the numerical solution must be due to
the formulation itself.

Figure 1 : Square domain

Table 1 summarizes, for four-element meshes, the rela-
tive errors for potential and flux obtained with the varia-
tional and non-variational approaches of the self-regular
flux-BIE. The square domain patch test reveals that, even
for a coarse discretization, the variational self-regular
flux-BIE produces highly accurate results, which are of
the order of machine precision in some cases.
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Table 1 : Variational and non-variational flux-BIE

Element Potential:
Magnitude of maximum error (%)
Variational Non- Variational

Quadratic Mach. precision ∼ 10−14

Cubic Mach. precision ∼ 10−10

Quartic ∼ 10−12 ∼ 10−10

Element Flux:
Magnitude of maximum error (%)
Variational Non- Variational

Quadratic ∼ 10−12 ∼ 10−12

Cubic ∼ 10−12 ∼ 10−10

Quartic ∼ 10−11 ∼ 10−9

Even in the worst case presented in Table 1, the errors
are less than 10−9and no improvement is obtained when
increasing the degree of the interpolation polynomial. In-
stead, due to the greater number of calculations to be per-
formed, round-off errors seemed to become important,
and even predominant, so that the results for higher or-
der elements are in fact, poorer than the results for the
quadratic interpolation.

Figure 2 presents a comparison of the global error in
the flux-BIE for finer meshes, with quadratic, cubic and
quartic elements. This figure highlights the important
error reduction obtained when using the variational for-
mulation with quadratic elements, whilst only minor im-
provements in the error are obtained for cubic and quar-
tic elements. The errors in the non-variational form of
the flux-BIE are greatly influenced by its non-conformity
with the C1,α continuity requirements, and are especially
high for quadratic elements. The variational formulation
is able to improve the error results, the error reduction
being important for quadratic elements, where higher er-
ror existed in the non-variational form. On the hand, only
a minor error reduction is obtained for cubic and quartic
elements, where the errors in the original non-variational
formulation are already small.

4.2 Pipe problem

This example is concerned with heat transfer in a cylin-
drical domain with known analytical solution as well.
Due to the symmetry, only a quarter of the circle is ana-
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Figure 2 : Square problem: Variational X non-
variational flux-BIE . Important improvement for
quadratic elements while minor improvement for cubic
and quartic elements.

lyzed with the geometry and boundary conditions shown
in Fig. 3.

Figure 3 : Pipe problem

The influence of the variational formulation in the error
behavior for higher order elements is also investigated.
Comparisons using the external error estimator are pre-
sented in Fig. 4 for discretizations with 156, 160 and 288
nodes. One can note the improvement in the global error
when using quadratic elements, while only minor reduc-
tions in the error, or even a disadvantage, are obtained for
the case of cubic and quartic elements.
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flux-BIE . A considerable improvement with quadratic
elements while minor improvement, or even a disadvan-
tage, for cubic and quartic elements.

Figure 5 : Motz problem

4.3 Motz problem

The problem proposed by Motz, as presented in Jaswon
and Symm (1977), consists of a rectangular domain, as
shown in Fig. 5, in which a singularity exists at the point
O (s = 7). The potential (temperature) is prescribed in the
element to its left, and the flux equals zero in the element
to its right. The flux is singular at point O in the element
where the potential is prescribed.

The results for potential and flux in a region close to the
singular point in the Motz problem using the 26 quadratic
elements (52 DOF) with the self-regular potential-BIE,
the self-regular flux-BIE and the proposed variational
self-regular flux-BIE formulations are presented in Fig.
6a and Fig. 6b respectively. These results are also com-
pared to those obtained by self-regular flux-BIE using a
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Figure 6 : Motz problem: (a) Equivalence between
potential-BIE (non-variational) and variational flux-BIE
in potential. (b) Values of the flux close to singular point
do not oscillate but are lower than the expected.

finer mesh of 52 elements (104 DOF). One can observe
that, even with a finer mesh, the oscillations in the po-
tential along the line OB, existing in the flux-BIE (non-
variational) still remain, but otherwise, disappear when
the variational approach is implemented and the result
converges to the values obtained by potential-BIE.

In Fig. 6b, results are obtained for the flux along line
AO, where the flux is singular at point O. These results
are very close to each other in a region far away from the
singular point. When approaching the singular point, the
flux calculated by flux-BIE formulations (variational and
non-variational) grows up monotonically, but with val-
ues far away from those calculated by the potential-BIE.
This might happen due to the inability of the non-singular
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Figure 7 : Global error in potential: (a) no domain
source; (b) domain source of magnitude Q = 100 at the
center.

quadratic elements to reflect the singular evolution of the
flux. Mesh refinement or singular elements should be im-
plemented to account properly for the singular behavior
of the variable.

4.4 Near-boundary heat transfer

The discretized self-regular variational flux-BIE and the
external error estimator presented in the previous sec-
tions are now used in the study of near boundary heat
transfer in a square domain such as that presented in Fig.
1.

The numerical results for the average (global) error from
the external formulation are shown in Fig. 7, where part
(a) corresponds to the original problem, with no domain
source, and part (b) corresponds to a domain source of
magnitude QD = 100added at the center of the domain.

Starting from a 16-node mesh, refined meshes are ob-
tained in a simple h-refinement procedure, by just divid-
ing the element size by two. This means that at every
refinement, the distance between the external point and
the boundary, is also divided by two. This distance is
used for the error measure in the external error estimator
procedure described above. Using the potential-external
error estimator, the self-regular variational flux-BIE for-
mulation results are then compared with the available
results for self-regular potential-BIE, self-regular flux-
BIE, and standard Cauchy Principal Value (CPV) formu-
lations, presented in Jorge, Porto and Ribeiro (2004).

In all cases considered, the order of magnitude of the av-
erage (global) error estimate decreases with mesh refine-
ment, showing that the finer mesh is acting to decrease
the local error. If the exterior point (used to obtain error
estimator results) is approximated to the boundary with-
out refining the mesh, the error would increase due to the
proximity to the boundary. The self-regular BEM results
are slightly better than the corresponding standard-CPV
results for most cases, with the best results obtained for
the coarse mesh where the results are significantly better
than the corresponding standard-CPV results.

Regarding the flux-BIE, it is worth noting that the av-
erage error results degrade significantly when a domain
source is included, while the variational formulation for
the self-regular flux-BEM keeps the error at a level be-
tween the other formulations. For this reason, in what
follows, only the self-regular potential-BIE and the self-
regular variational flux-BIE formulation continue to be
compared.

To evaluate the influence of the scaling factors and
the near-boundary location of the interior points in the
boundary solution accuracy, the heat conduction prob-
lem in the square domain is still considered. Regardless
of the aspect ratio of the “square”, if no domain sources
are added, the analytical solution equations for the po-
tential and for the flux are the same, thus allowing for the
exact error to be evaluated.

A point is collocated at the center of the square, and then
moved to the boundary though three different paths, as
shown in Fig. 8. The first path (to left) moves to a smooth
part with known potential. The second path (to bottom)
also moves to a smooth part of the boundary, in the mid-
dle of a side, with no discontinuities in the boundary and
with prescribed flux. The third path moves towards a
boundary corner, where both discontinuities of the nor-



Extension of the Variational Self-Regular Approach for the Flux Boundary Element Method Formulation 75

0

1

2

3

4

5

6

0 1 2 3 4 5 6

to left

to corner

to bottom

1

Figure 8 : Near-boundary problem: different paths lead-
ing towards boundary regions with different B.C.

1E-12

1E-10

1E-08

1E-06

0.0001

0.01

1

1E-05 0.0001 0.001 0.01 0.1 1 10

Distance to boundary

E
x
a
c
t 

e
rr

o
r 

in
 p

o
te

n
ti
a
l

to left

to corner

to bottom

Figure 9 : Exact local error in potential at interior points
approaching the boundary through different paths.

mal vector and of the boundary conditions occurred.

The exact error results for the potential at interior
points approximating the boundary following the differ-
ent paths, using the self-regular variational flux-BIE for-
mulation, are shown in Fig. 9. It is worth noting an in-
significant change in the error when approaching the re-
gion with prescribed flux, while small errors are obtained
even for interior points very close the boundary following
the others paths.

The influence of the domain aspect ratio is evaluated
by keeping constant the horizontal sides, while shrink-
ing the vertical sides, from the original 1:1 ratio (square
problem) to ratios up to 1:0.00001. For the problem dis-
cretized with 64 quadratic elements (128 nodes) and with
no domain sources, the exact error (error compared with
the available exact solution) in the potential in half of the
horizontal sides is shown in Fig. 10. The error increases
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Figure 10 : Influence of domain aspect ratio, without
domain sources: (a) Potential-BIE; (b) Variational flux-
BIE.

with shrinking and is higher in the self-regular potential-
BIE formulation (Fig. 10a) than in the self-regular varia-
tional flux-BIE formulation (Fig. 10b).

5 Conclusions

In this work, a non-symmetric variational approach was
derived, to enforce C1,αcontinuity requirement at inter-
element nodes for the self-regular flux-BIE discretized
using the relaxed continuity approach. For this purpose,
the variational approach has used only Lagrangian C0 el-
ements and the algorithm only enforced C1,αcontinuity at
smooth inter-element nodes.

The variational formulation for the flux-BIE was imple-
mented in this work for quadratic, cubic and quartic ele-
ments for three classical potential problems and for some
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near-boundary heat transfer problems.

Comparisons were also made with the potential-BIE,
which does not require C1,αcontinuity for the potential.
For all cases considered, the most impressive improve-
ments were obtained in the Motz problem where the non-
variational self-regular was unable to give reliable results
for the potential variable.

The lack of smoothness of the potential derivatives at
inter-element nodes was shown to be an important source
of both local and global errors for the flux-BIE formula-
tion, especially for quadratic elements. The accuracy of
the boundary solution obtained from the flux-BIE was
improved when C1,αcontinuity was enforced whenever
possible, i.e., at the smooth inter-element nodes only.
When the degree of the interpolating polynomial in-
creased to cubic and quartic, small improvements or even
worse results were obtained.

Local and global measures of the error were obtained by
means of a new error estimator based on a recently post-
processing error estimator derived by the authors. The
estimator proposed here is based on an external formula-
tion combining the potential and the gradient of the po-
tential at external points. Knowledge of the exact solu-
tion is not required.

The variational approach was able to demonstrate the in-
fluence of the aspect ratio, of the presence of domain
sources and of the proximity of interior points to do-
main boundary in a near-boundary heat transfer example.
Higher error values were present when the aspect ratio
increased, when a source was added, or when an interior
point was moved towards the boundary.

The boundary element method seems to be the most ap-
propriate approach to deal with near-boundary heat trans-
fer problems. Among the different BEM possibilities, the
variational self-regular flux-BIE formulations presented
in this work seems to offer slightly better – or at least
comparable – results than the self-regular potential –BIE
and CPV, yet to be confirmed by more exhaustive studies
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