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Parallel Octree-Based Finite Element Method for Large-Scale Earthquake
Ground Motion Simulation
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Abstract: We present a parallel octree-based finite el-
ement method for large-scale earthquake ground motion
simulation in realistic basins. The octree representa-
tion combines the low memory per node and good cache
performance of finite difference methods with the spa-
tial adaptivity to local seismic wavelengths characteris-
tic of unstructured finite element methods. Several tests
are provided to verify the numerical performance of the
method against Green’s function solutions for homoge-
neous and piecewise homogeneous media, both with and
without anelastic attenuation. A comparison is also pro-
vided against a finite difference code and an unstruc-
tured tetrahedral finite element code for a simulation of
the 1994 Northridge Earthquake. The numerical tests
all show very good agreement with analytical solutions
and other codes. Finally, performance evaluation indi-
cates excellent single-processor performance and paral-
lel scalability over a range of 1 to 2048 processors for
Northridge simulations with up to 300 million degrees of
freedom.

keyword: Earthquake ground motion modeling, oc-
tree, parallel computing, finite element method, elastic
wave propagation

1 Introduction

Wave propagation simulations for earthquake-induced
ground motion have been performed for over 30 years
to gain a better understanding of the distribution of the
earthquake motion in urban regions in space and time.
Such insight has contributed to the development of build-
ing codes in which a seismic-prone region is divided into
different zones of comparable seismic hazard, with the
goal of reducing seismic risk. The dramatic improve-
ment in supercomputing performance has more recently
enabled seismologists and earthquake engineers to more
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accurately understand the effects of source, wave prop-
agation, and local site conditions on the ground motion.
In particular, using parallel computers with several thou-
sand processors, it has now become possible to model
ground motion in large, highly heterogeneous basins,
such as the Los Angeles (LA) basin, with sufficient reso-
lution to capture frequencies of interest, for realistic ge-
ological models.

An earthquake ground motion simulation entails solving
numerically the elastodynamic wave equations. There
are several numerical methods available for ground mo-
tion simulations. The finite difference method (FDM),
the boundary element method (BEM) and the finite ele-
ment method (FEM) are commonly used. In seismology
and earthquake engineering, the FDM has been the most
popular technique due to its satisfactory accuracy, ease of
implementation, and low memory needed per grid point
[e.g., Virieux (1984); Levander (1988); Graves (1996);
Pitarka, Irikura, Iwata, and Sekiguchi (1998)]. A number
of earthquake ground motion simulations in the greater
LA basin have been computed using the FDM [e.g., Vi-
dale and Helmberger (1988); Frankel and Vidale (1992);
Yomogida and Etgen (1993); Schrivner and Helmberger
(1994); Olsen and Archuleta (1996); Graves (1998)].
However, for heterogeneous media with large contrasts
in material stiffness, the (conventional form of the) FDM
suffers due to its reliance on a regular grid, as illustrated
in Figure 1a. The regular grid is not capable of adapting
to the local wavelengths of propagating waves, which are
shorter for softer materials. Thus, grid resolution is dic-
tated by the shortest wavelengths, which results in over-
refined grids in stiffer regions. In addition, material inter-
faces are resolved with O(h) geometric error, unless the
interfaces are axis-aligned. Finally, the time step in an
explicit time integrator (which is most commonly used
in wave propagation) is artificially small to accommo-
date the CFL stability condition in the over-refined stiff
regions.

The main advantage of the BEM is its unique ability
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(a) Regular grid (b) FEM

(c) Octree

Figure 1 : Examples of spatial discretization of a
basin for different numerical methods. (a) Regular grid
[Pitarka, Irikura, Iwata, and Sekiguchi (1998)]. (b) Un-
structured tetrahedral mesh [Bao, Bielak, Ghattas, Kalli-
vokas, O’Hallaron, Schewchuk, and Xu (1998)]. (c) Oc-
tree mesh [Kim, Bielak, and Ghattas (2003)].

to provide a complete solution in terms of boundary
values only, with substantial savings in modeling ef-
fort. Zang and Chopra (1991) used a BEM approach
to study the 3D response of a canyon in an elastic
half-space. Others have investigated different types of
integral equations and their numerical treatment [e.g.,
Sánchez-Sesma (1978); Wong (1979), Sánchez-Sesma
and Esquivel (1979); Wong (1982); Dravinski (1982);
Sánchez-Sesma, Bravo, and Herrera (1985); Kawase
(1988)]. But the BEM is not appropriate for ground
motion simulations in heterogeneous basins, since it re-
quires piecewise-homogeneity of the domain.

On the other hand, the FEM is designed to be effec-
tive for heterogeneous media. Unlike the FDM, the
FEM is capable of adapting the mesh to local features
of the solution, as shown in Figure 1b. Thus over-
refinement is avoided and longer time steps can be taken,
since the CFL stability limit is on the order of that re-
quired for accuracy. These advantages become more
dramatic with increasing contrast in shear wave veloc-
ity in the heterogeneous medium. However, the FEM
comes with several disadvantages relative to FDM: gen-

erating an appropriate wavelength-adaptive mesh can re-
quire considerable effort; storing the system stiffness ma-
trix requires considerable memory, since the “stencil”
varies from node to node; and indirect addressing as-
sociated with unstructured meshes results in generally
poorer cache performance. In fact, these disadvantages
are not intrinsic to the FEM; they are associated with un-
structured mesh methods in general. For regular grids,
the FEM can be implemented with all of the advan-
tages of the FDM. Because of the difficulties in mesh-
ing complex heterogeneous basins, there are fewer ex-
amples of FEM-based earthquake ground motion simu-
lations [e.g., Toshinawa and Ohmachi (1988); Li, Bielak,
and Ghattas (1992); Bao, Bielak, Ghattas, Kallivokas,
O’Hallaron, Shewchuk, and Xu (1996); Bao, Bielak,
Ghattas, Kallivokas, O’Hallaron, Schewchuk, and Xu
(1998); Komatitsch and Tromp (1999); Yoshimura,
Bielak, Hisada, and Fernandez (2003); Akcelik, Bielak,
Biros, Epanomeritakis, Fernandez, Ghattas, Kim, Lopez,
O’Hallaron, Tu, and Urbanic (2003)].

In this article, we present, verify, and demonstrate an
octree-based finite element method for seismic wave
propagation that overcomes the difficulties of the un-
structured mesh-based FEM cited above [Kim (2003)].
The octree method combines the adaptivity of the FEM
to local wavelengths with the low memory requirements
and good cache performance associated with the FDM.
The keys are an octree data structure for generating, rep-
resenting, and refining the mesh (as illustrated in Fig-
ure 1c); a matrix-free implementation enabled by the
regular shape of the elements; and enforcement of al-
gebraic constraints at hanging nodes to maintain a con-
forming approximation across element interfaces. Sec-
tion 2 describes the ingredients of the octree method,
while Section 3 discusses the discretization and solution
of the elastic wave propagation equation. Incorporation
of anelastic attenuation is described in Section 4. Sec-
tion 5 presents numerical verification tests of the octree
method, while Section 6 provides performance and scal-
ability results to 2048 processors.

2 Octree-based finite element method

Octrees have been used as a basis for finite element ap-
proximation since at least the early 90s [Young, Melvin,
Bieterman, Johnson, Samant, and Bussoletti (1991)].
Our interest in octrees stems from their ability to adapt
to the wavelengths of propagating seismic waves while
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maintaining a regular shape of finite elements. here,
leaves associated with the lowest level of the octree are
identified with trilinear hexahedral finite elements and
used for a Galerkin approximation of a suitable weak
form of the elastic wave propagation equation. The hex-
ahedra are recursively subdivided into 8 elements un-
til a local refinement criterion is satisfied. For seismic
wave propagation in heterogeneous media, the criterion
is that the longest element edge should be such that there
result at least p nodes per local shear wavelength, as
determined by the local shear wave velocity β and the
maximum frequency of interest fmax. In other words,
hmax < β

p fmax
. For trilinear hexahedra and taking into ac-

count the accuracy with which we know typical basin
properties, we take typically p = 10. An additional con-
dition that drives mesh refinement is that the element size
not differ by more than a factor of two across neighboring
elements (the octree is then said to be balanced). Note
that as in finite difference methods, the octree does not
explicitly represent material interfaces within the earth,
and instead accepts O(h) error in representing them im-
plicitly. This is usually justified for earthquake model-
ing since the location of interfaces is known at best to
the order of the seismic wavelength. If needed, higher-
order accuracy in representing arbitrary interfaces can be
achieved by local adjustment of the finite element basis
[e.g., Young, Melvin, Bieterman, Johnson, Samant, and
Bussoletti (1991)].

Figure 2 depicts the octree mesh (and its 2D counter-
part, a quadtree). The left drawing illustrates a factor-
of-two edge length difference (a “legal” refinement) and
a factor-of-four difference (an “illegal” refinement). Un-
less additional measures are taken, so-called hanging
nodes that separate different levels of refinement (in-
dicated by solid circles and the subscript h in the fig-
ure) result in a possibly discontinuous field approxima-
tion, which can destroy the convergence properties of the
Galerkin method. Several possibilities exist to remedy
this situation by enforcing continuity of displacement
field across the interface either strongly (e.g., by con-
struction of special transition elements) or weakly (e.g.,
via mortar elements or discontinuous Galerkin approxi-
mation). The simplest technique is to enforce continuity
by algebraic constraints that require the displacement of
the hanging node be the average of the displacement of
its anchored neighbors (indicated by open circles and the
subscript a). As illustrated in Figure 2, the displacement
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Figure 2 : Quadtree and Octree-Based Mesh

of an edge hanging node, uuuh, should be the average of its
two edge neighbors uuui

a and uuu j
a, and the displacement of a

face hanging node, ûuuh, should be the average of its four
face neighbors uuui

a, uuu j
a, uuuk

a, and uuul
a. Efficient implementa-

tion of these algebraic constraints will be discussed in the
next section. As evident from the figure, when the octree
is balanced, an anchored node cannot also be a hanging
node.

Our earlier earthquake modeling code was based on
an unstructured mesh data structure and linear tetrahe-
dral finite elements [Bao, Bielak, Ghattas, Kallivokas,
O’Hallaron, Shewchuk, and Xu (1996); Bao, Bielak,
Ghattas, Kallivokas, O’Hallaron, Schewchuk, and Xu
(1998)]. Compared to that approach, the present octree-
based method has several important advantages:

• The octree meshes are much more easily generated
than general unstructured tetrahedral meshes, par-
ticularly when the number of elements increases
above 50 million. We use an efficient out-of-
core octree-based hexahedral mesh generator [Tu,
O’Hallaron, and López (2002); Tu and O’Hallaron
(2004)] that can generate meshes of sizes that
are limited only by available disk space. (Since
each basin is meshed just once for a given resolu-
tion of interest—but subjected to many earthquake
scenarios—mesh generation can be done off-line.)

• The hexahedra provide somewhat greater accuracy
per node (the asymptotic convergence rate is un-
changed, but the constant is typically improved over
tetrahedral approximation).

• The hexahedra all have the same form of the ele-
ment stiffness matrices, scaled simply by element
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size and material properties (which are stored as
vectors), and thus no matrix storage is required at
all. This results in a substantial decrease in required
memory—about an order of magnitude, compared
to our node-based tetrahedral code.

• Because of the matrix-free implementation, (stiff-
ness) matrix-vector products are carried out at the
element level. This produces much better cache uti-
lization by relegating the work that requires indirect
addressing (and is memory bandwidth-limited) to
vector operations, and recasting the majority of the
work of the matrix-vector product as local element-
wise dense matrix computations. The result is a sig-
nificant boost in performance.

These features permit earthquake simulations to substan-
tially higher frequencies and lower resolved shear wave
velocities than heretofore possible. In the next section,
we describe the octree-based discretization and solution
of the elastic wave equation.

3 Wave propagation model and octree discretization

We model seismic wave propagation in the earth via
Navier’s equations of linear elastodynamics. Let uuu rep-
resent the vector field of the three displacement compo-
nents, λ and µ the Lamé moduli and ρ the density distri-
bution, bbb a time-dependent body force representing the
seismic source, and ttt =

[
µ
(
∇uuu+∇uuuT

)
+λ(∇ ·uuu)I

]
nnn the

surface traction vector. Let Ω be an open bounded do-
main in R

3 with free surface ΓFS, truncation boundary
ΓAB, and outward unit normal to the boundary nnn. The
initial–boundary value problem is then written as:

ρüuu−∇ ·
[
µ
(

∇uuu+∇uuuT
)

+λ(∇ ·uuu)I
]

= bbb

in Ω× (0,T ) ,
nnn×nnn×ttt = nnn×nnn× u̇uu

√
ρµ on ΓAB × (0,T) ,

nnn ·ttt = nnn · u̇uu
√

ρ(λ+2µ) on ΓAB × (0,T) ,

ttt = 000 on ΓFS × (0,T ) ,
uuu = 000 in Ω×{t = 0} ,

u̇uu = 000 in Ω×{t = 0} , (1)

With this model, p waves propagate with velocity α =√
(λ+2µ)/ρ, and s waves with velocity β =

√
µ/ρ. The

continuous form above does not include material atten-
uation, which we introduce at the discrete level via a

Rayleigh damping model, as discussed below. The vec-
tor bbb comprises a set of body forces that equilibrate an
induced displacement dislocation on a fault plane, pro-
viding an effective representation of earthquake rupture
on the plane. For example, for a seismic excitation ide-
alized as a point source, bbb = −µvAMMM f (t)∇∇∇δ(xxx−ξξξ) [Aki
and Richards (1980)]. In this expression, v is the average
earthquake dislocation; A the rupture area; MMM the (nor-
malized) seismic moment tensor, which depends on the
orientation of the fault; f (t) the (normalized) time evolu-
tion of the rupture; and ξξξ the source location.

Since we model earthquakes within a portion of the earth,
we require appropriately positioned absorbing bound-
aries to account for the truncated exterior. For simplicity,
in (1) the absorbing boundaries are given as dashpots on
ΓAB, which approximate the tangential and normal com-
ponents of the surface traction vector ttt with time deriva-
tives of corresponding components of the displacement
vector. Even though this absorbing boundary is approx-
imate, it is local in both space and time, which is partic-
ularly important for large-scale parallel implementation.
Finally, we enforce traction-free conditions on the free
surface of the earth.

We apply standard Galerkin finite element approxima-
tion in space to the appropriate weak form of the initial-
boundary value problem (1). Let U be the space of ad-
missible solutions (which depends on the regularity of
bbb), Uh be a finite element subspace of U, and vvvh be a test
function from that subspace. Then the weak form is writ-
ten as follows.
Find uuuh ∈ Uh such that
Z

Ω

[
ρüuuh ·vvvh +

µ
2

(
∇uuuh +∇uuuT

h

)
·
(

∇vvvh +∇vvvT
h

)]
dxxx

+
Z

Ω
[λ(∇ ·uuuh)(∇ ·vvvh)−bbb ·vvvh] dxxx

=
Z

ΓAB

√
ρµ(nnn×nnn× u̇uuh) · (nnn×nnn×vvvh) dsss

+
Z

ΓAB

√
ρ(λ+2µ)(nnn · u̇uuh) (nnn ·vvvh) dsss, ∀vvvh ∈ Uh. (2)

Finite element approximation is effected via piecewise
trilinear basis functions and associated trilinear hexahe-
dral elements on an octree mesh. This strikes a balance
between simplicity, low memory (since all element stiff-
ness matrices are the same modulo scale factors), and
reasonable accuracy.4

4 The output quantities of greatest interest are displacements and
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Upon spatial discretization, we obtain a system of ordi-
nary differential equations of the form

MMMüuu+
(
CCCAB +CCCatt)u̇uu+KKKuuu = bbb,

u̇uu(000) = 000,

uuu(000) = 000, (3)

where MMM and KKK are mass and stiffness matrices, arising
from the terms involving ρ and (µ,λ) in (2), respectively;
bbb is a body force vector resulting from a discretization
of the seismic source model; and damping matrix CCCAB

reflects contributions of the absorbing boundaries. We
have also introduced the damping matrix CCCatt to simulate
the effect of energy dissipation due to anelastic material
behavior; it consists of a linear combination of mass and
stiffness matrices and its form will be discussed in the
next section.

The time dimension is discretized using central differ-
ences. The algorithm is made explicit using a diagonal-
ization scheme that (1) lumps the mass matrix MMM, the
absorbing boundary matrix CCCAB, and the mass compo-
nent of the the material attenuation matrix CCCatt (all of
which have Gram structure and are therefore spectrally
equivalent to the identity), and (2) splits the diagonal and
off-diagonal portions of the stiffness component of CCCatt ,
time-lagging the latter. The resulting update for the dis-
placement field at time step k +1 is given by[
MMM +

∆t
2

CCCAB
diag +

∆t
2

CCCatt
diag

]
uuuk+1

=
[

2MMM−∆t2KKK − ∆t
2

CCCAB
off −

∆t
2

CCCatt
off

]
uuuk

+
[

∆t
2

CCCAB +
∆t
2

CCCatt −MMM

]
uuuk−1 +∆t2bbbk. (4)

The time increment ∆t must satisfy a local CFL condition
for stability. Space is discretized over the octree mesh
(each leaf corresponds to a hexahedral element) that re-
solves local seismic wavelengths as discussed above.
This insures that the CFL-limited time step is of the order
of that needed for accuracy, and that excessive dispersion
errors do not arise due to over-refined meshes.

Spatial discretization via refinement of an octree pro-
duces a non-conforming mesh, resulting in a discontin-
uous displacement approximation. We restore continuity
of the displacement field across refinement interfaces by

velocities, as opposed to stresses.

imposing algebraic constraints that require the displace-
ment at a hanging node to be consistent with the approx-
imation along the neighboring element face or edge, as
discussed above. We can express these algebraic conti-
nuity constraints in the form

uuu = BBBũuu,

where ũuu denotes the displacements at the non-hanging
(i.e., independent) nodes, and BBB is a sparse constraint ma-
trix. In particular, BBBi j = 1

4 if hanging node i is a face
neighbor of anchored node j and 1

2 if it is an edge neigh-
bor; BBBi j = 1 simply identifies a non-hanging node; and
BBBi j = 0 otherwise. Rewriting the linear system (4) as

AAAuuuk+1 = ccc(uuuk,uuuk−1)

we can impose the continuity constraints via the projec-
tion

BBBTAAABBBũuuk+1 = BBBTccc(uuuk,uuuk−1). (5)

The reduced matrix BBBTAAABBB is then further lumped to ren-
der it diagonal, so that the constrained update (5) is ex-
plicit. In fact the resulting reduced matrix can be con-
structed simply by dividing the contributions of the hang-
ing nodes and adding them in equal portions to diagonal
components of the corresponding anchored nodes. The
righthand side of (5) is determined at each time step by
computing ccc(uuuk,uuuk−1), i.e. the righthand side of (4), in
an element-by-element fashion, and then applying the re-
duction BBBTccc. This amounts again to dividing the contri-
butions of the hanging components of ccc equally among
the corresponding anchored nodes. The work involved
in enforcing the constraints is proportional to the num-
ber of hanging nodes, which can be a sizable fraction of
the overall number of nodes for a highly irregular octree,
but is at most of O(N). Therefore, the per-iteration com-
plexity of the update (5) remains linear in the number of
nodes.

The combination of an octree-based wavelength-adaptive
mesh, piecewise trilinear Galerkin finite elements in
space, explicit central differences in time, constraints that
enforce continuity of the displacement approximation,
and local-in-space-and-time absorbing boundaries yields
a second-order-accurate in time and space method that is
capable of scaling up to the very large problem sizes that
are required for high resolution earthquake modeling. In
the next section we discuss incorporation of anelastic at-
tenuation.
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4 Anelastic Attenuation

Many studies have found that anelastic attenuation plays
an important role in earthquake-induced ground mo-
tion modeling in sedimentary basins such as Los An-
geles because elastic waves may be overamplified by
trapped waves that are reflected and refracted within
basins [Frankel and Vidale (1992); Yomogida and Et-
gen (1993); Olsen and Archuleta (1996); Olsen, Nig-
bor, and Konno (2000); Wald and Graves (1998); Pitarka,
Irikura, Iwata, and Sekiguchi (1998); Sato, Graves, and
Somerville (1999)]. There are several difficulties in in-
corporating attenuation within time domain seismic wave
propagation simulations, including the large memory
necessary to store additional variables that are usually
required to represent anelastic attenuation, and the dif-
ficulty in estimating the quality factor (Q) for highly het-
erogeneous media. Day and Bradley (2001) have sug-
gested a coarse-grained implementation of the memory
variables that improves performance in terms of accu-
racy of solution and efficiency of memory use. More-
over, Olsen, Day, and Bradley (2003) have demonstrated
an effective Q model for the LA basin in the context of
simulations of the 1994 Northridge earthquake.

In this study, we instead use a Rayleigh damping model
because of its convenience, simplicity, and consistency
with our existing seismic wave propagation code. Here,
the element damping matrix is taken proportional to ele-
ment mass and stiffness matrices,

CCCe = κ1MMMe +κ2KKKe, (6)

where CCCe is the element material damping matrix, MMMe is
the element mass matrix, KKKe is the element stiffness ma-
trix, and κ1 and κ2 are scalar coefficients that are to be
determined element-wise with the goal that the damping
ratio for each mode is independent of the frequency over
a given frequency range. Pre- and post-multiplying (6)
by the nth eigenvector,

φT
nCCCeφn = κ1φT

n MMMeφn +κ2φT
n KKKeφn, (7)

and making use of orthonormality and the modal damp-
ing assumption, we obtain

2ωnζn = κ1 +κ2ω2
n (8)

or

ζn =
1

2ωn
κ1 +

ωn

2
κ2, (9)
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Figure 3 : Relation between damping ratio and shear
wave velocity

where the damping ratio ζn is equivalent to 1
2Q and ωn

is the natural frequency associated with the nth mode.
Assuming that the damping ratio ζ varies with the inverse
of the shear wave velocity, β [as in Bao, Bielak, Ghattas,
Kallivokas, O’Hallaron, Schewchuk, and Xu (1998)],

ζ =
γ1

β+ γ2
, (10)

where γ1 and γ2 are scalars determined by assuming that
ζ is 2% at the shear velocity β of 200 m/s while ζ is 0.5%
at β of 1000 m/s. This yields γ1 = 5.333 and γ2 = 66.67,
for which the relation between the damping ratio and the
shear wave velocity is shown in Figure 3. For any given
shear velocity, then, (10) determines the desired damping
ratio. Our goal is to find the Rayleigh constants κ1 and κ2

such that (9) yields as close to this desired damping ra-
tio as possible over a realistic frequency range (ω1,ω2).
This can be formulated as the linear least squares prob-
lem:

min
(κ1,κ2)

Z ω2

ω1

(
ζ− κ1

2ω
− κ2ω

2

)2
dω (11)

For example, solving this least squares problem for ζ =
0.5% over the frequency range (0.1,1.1) Hz gives the plot
in Figure 4 of ζ as determined by (9). The near-constant
ζ, and thus Q, over the frequency range of interest, is ev-
ident in the figure. The Rayleigh damping model, which
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Figure 4 : Relation between damping ratio and fre-
quency for an optimized Rayleigh damping model

increases both linearly and inversely with frequency, pro-
vides a reasonable damping model for many soils, al-
though very low and very high frequencies are over-
damped.

5 Numerical Tests for Validation

To verify our octree-based seismic wave propagation
code, we have conducted a number of numerical tests
ranging from idealized models to realistic basins with
various properties and excitations Kim (2003). Here, we
present four representative examples. In all cases, the
mesh is generated with the out-of-core octree/hexahedral
mesh generator Euclid [Tu, O’Hallaron, and López
(2002); Tu and O’Hallaron (2004)], and partitioned
with the parallel mesh partitioner ParMETIS [Karypis,
Schloegel, and Kumar (2002)].

First, we solve a layered half space problem with point
source excitation. The problem description is given in
Table 1. Figure 5a illustrates the location of the point
source excitation.

The medium is piecewise-homogeneous, consisting of a
homogeneous elastic layer over an elastic half space. The
excitation is defined as a double-couple, located in the
half space as a point source. The mesh size is chosen so
that shear wavelengths corresponding to a frequency of
1 Hz are resolved with 10 nodes per wavelength. This
results in an element size in the half space of 450 m

Table 1 : Layered half space problem description
domain size: 36×36×18 km3

depth of layer: 1.8 km
layer: ρ = 2500 kg/m3

α = 3900 m/s
β = 2250 m/s

half space: ρ = 3048 kg/m3

α = 7800 m/s
β = 4500 m/s

excitation: M0[ t
T0
− 1

2πsin(2π t
T0

)] 0 ≤ t ≤ T0

M0 t > T0

strike, dip, rake: 30◦, 40◦, 60◦

magnitude (M0): 1.4×1013 Nm
rise time (T0): 1 s

source location: (−225 m, 225m, −6075 m)

and in the top layer of 225 m, resulting in a mesh with
435,200 elements, 469,485 total nodes, and 19,360 hang-
ing nodes. The time step size is 0.02 s for the 40 s sim-
ulation. A Cartesian coordinate system is chosen with x
positive in the East (E) direction, y positive in the North
(N) direction, and z positive in the Upward (U) direction.
This axis convention applies to the remaining examples.
Figures 5b, 5c, and 5d provide a comparison of the oc-
tree FEM solution with that from an analytical Green’s
function code.5 We compare at 8 observation points near
the top surface along a diagonal from the epicenter. Both
numerical and analytical results are low-pass filtered to 1
Hz, the target resolution. These results show good graph-
ical agreement between the two solutions.

To investigate the influence of mesh irregularity due to
octree refinement, we construct a mesh that is adapted
to the shear wave velocities of the Southern California
Earthquake Center (SCEC) model version 2.2 [Magis-
trale, Day, Clayton, and Graves (2000)] for a frequency
of 0.2 Hz. We replace the spatially-variable SCEC ve-
locity model with a homogeneous material model in or-
der to compare with the Green’s function solution. Table
2 lists the problem data. Figure 6 depicts the irregular
mesh for this model. The ratio of the largest element size
(h = 1250 m) and smallest element size (h = 156.25 m) is
8, corresponding to an octree with four levels. Compar-
isons with Green’s function solutions are shown in Figure
7a, 7b, and 7c for a number of observation points that are

5 The Green’s function code was written by Y. Hisada.



106 Copyright c© 2005 Tech Science Press CMES, vol.10, no.2, pp.99-112, 2005

Hypocenter

18
 k

m
18

 k
m

18 km 18 km

12
 k

m
6 

km

12 km6 km

x

z

x

y y

z

Isometric view in
the simulation model

front view

top view side view

x

y

z

Observation Points

1. (        0,         0,    -50)
2. (  2000,   2000,    -50)
3. (  4000,   4000,    -50)
4. (  6000,   6000,    -50)
5. (  8000,   8000,    -50)
6. (10000, 10000,    -50)
7. (12000, 12000,    -50)
8. (14000, 14000,    -50)

1
2

3
4

5
6

7
8

Hypocenter
(-225, 225 -6075)

Strike = 30 (deg)
Dip = 40 (deg)

Rake = 60 (deg)

(a) Layered half space model 0 5 10 15 20 25 30 35 40

1

2

3

4

5

6

7

8

 
E−W  velocity (m/s): point source

lo
ca

tio
n

time(sec)

10−5 m/s

GREEN−elastic
QUAKE−elastic

(b) E-W component of response

0 5 10 15 20 25 30 35 40

1

2

3

4

5

6

7

8

 
N−S  velocity (m/s): point source

lo
ca

tio
n

time(sec)

10−5 m/s

GREEN−elastic
QUAKE−elastic

(c) N-S component of response

0 5 10 15 20 25 30 35 40

1

2

3

4

5

6

7

8

 
U−D  velocity (m/s): point source

lo
ca

tio
n

time(sec)

10−5 m/s

GREEN−elastic
QUAKE−elastic

(d) U-D component of response

Figure 5 : Comparison of octree (dotted) with Green’s function (solid) solution for layered half space problem.
(a) Problem description. (b) E-W component of velocity. (c) N-S component of velocity. (d) U-D component of
velocity.

located in a similar pattern as in the half space problem.
Results are filtered to 0.2 Hz. The comparison with the
analytical solution is again very good, suggesting correct
treatment of the mesh size transitions.

To examine the implementation of anelastic attenuation,
we use the same model that was used for the layered half
space problem (Figure 5a). We choose damping ratios
ζ1 = 15% (Qs = Qp = 3.33) for the layer and ζ2 = 3%
(Qs = Qp = 16.67) for the half space. The damping ra-

tios are high for the given properties; in fact our goal is
to verify the anelastic implementation with the Green’s
function solution for large attenuation. This comparison
is shown in Figure 8a, 8b, and 8c and again the agreement
is very good.

Finally, we perform a simulation of the 1994 Northridge
earthquake in the LA Basin and compare our octree-
based FEM results with synthetic seismograms from the
FDM code of Graves (1998) and our earlier tetrahe-
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Table 2 : Half space with irregular octree mesh
domain size: 80×80×30 km3

half space: ρ = 2000 kg/m3

α = 5000 m/s
β = 2500 m/s

excitation: M0[ t
T0
− 1

2πsin(2π t
T0

)] 0 ≤ t ≤ T0

M0 t > T0

strike, dip, rake: 30◦, 40◦, 60◦

magnitude (M0): 1.4×1013 Nm
rise time (T0): 1 s

source location: (40.625 km, 40.625 km, −14.375 km)
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Figure 7 : Comparison of octree (dotted) with Green’s function (solid) solution for irregular mesh of LA Basin, with
homogeneous properties. (a) E-W component of velocity. (b) N-S component of velocity. (c) U-D component of
velocity.
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Table 3 : Performance analysis of octree code for 1994 Northridge earthquake simulation

Model 0.1 Hz 0.2 Hz 0.5 Hz 1.0 Hz 1.0 Hz 1.0 Hz

Procs 1 16 128 512 1024 2048

Nodes (×106) 0.134 0.618 14.8 47.6 102 102

MFLOPS/s 505 491 469 451 450 443

Par Effcny 100% 97% 93% 89% 89% 88%

CPU Effcny 25.3% 24.6% 23.5% 22.6% 22.5% 22.2%

Figure 6 : Irregular mesh for LA basin model

dral code [Bao, Bielak, Ghattas, Kallivokas, O’Hallaron,
Shewchuk, and Xu (1996); Bao, Bielak, Ghattas, Kalli-
vokas, O’Hallaron, Schewchuk, and Xu (1998)]. The di-
mensions of the basin model are 80 × 80 × 30 km3. Ma-
terial properties are taken from the SCEC velocity model
and the fault rupture model is based on Wald, Heaton,
and Hudnut (1996). The maximum resolved frequency
is 0.5 Hz. Anelastic attenuation is based on Q factors
given by Olsen, Day, and Bradley (2003). The resulting
mesh has approximately 12 million elements and 15 mil-
lion nodes. Figure 9 compares synthetic results from the
three codes at a number of observation stations. The syn-
thetic seismograms have been low-pass filtered using a
Butterworth filter with 4 poles and 2 passes. The overall
agreement once again is very good.

6 Performance and scalability

Our octree-based finite element code has achieved excel-
lent performance and isogranular scalability over a range
of 1 to 2048 processors on the HP AlphaServer Cluster

at the Pittsburgh Supercomputing Center. Table 3 pro-
vides details on the performance of the code for a series
of simulations of the 1994 Northridge earthquake in the
LA basin corresponding to highest resolved frequency
ranging from 0.1 Hz (run on 1 processor) to 1 Hz (run
on 2048 processors). Problem size varies from 134,500
to over 100 million nodes. Scalability is excellent: 88%
parallel efficiency is maintained in scaling from 1 to 2048
processors. The scalar efficiency is also very good, de-
grading to just 22.2% of peak on each Alpha node (based
on 2 GFLOPS/s peak). This latter figure is very good for
a modern microprocessor, considering the irregular na-
ture of the computations. The 2048 processor simulation
sustains nearly a TFLOPS/s.

7 Concluding Remarks

We have presented a parallel octree-based finite element
method for large-scale earthquake ground motion simu-
lation in realistic basins. The octree representation com-
bines the low memory per node and good cache perfor-
mance of finite difference methods with the spatial adap-
tivity to local seismic wavelengths characteristic of un-
structured finite element methods. Several tests are pro-
vided to verify the numerical performance of the method
against Green’s function solutions for homogeneous and
piecewise homogeneous media, both with and without
anelastic attenuation. A comparison is also provided
against a finite difference code and an unstructured tetra-
hedral finite element code for a simulation of the 1994
Northridge Earthquake. The numerical tests all show
very good agreement with analytical solutions and other
codes. Finally, performance evaluation indicates excel-
lent single-processor performance and parallel scalabil-
ity over a range of 1 to 2048 processors for Northridge
simulations with up to 300 million degrees of freedom.

Acknowledgement: Two words stand out in our
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minds when we think of Cliff Astill: vision and integrity.

Soon after moving to his new position as Program Di-
rector of Ground Motion and Geotechnical Earthquake
Engineering at NSF in the late 1980s, Cliff came to the
realization that, along with experimentation and direct
field observation, model-based simulation would have to
play a leading role in research, along with experimenta-
tion and direct field observation, if real advances were to
be made in the understanding and prediction of the earth-
quake behavior of complex geotechnical systems. In his
unassuming, yet highly effective style, he was instrumen-
tal in creating VELACS, a multi-investigator project for
the validation of liquefaction analysis using centrifuge
studies. This was the first large-scale concerted effort to
evaluate the utility of numerical codes that included pore
pressure development and liquefaction modeling abilities
to function as real-life design codes. Through this and
other activities, Cliff became one of the primary forces in
setting the course of geotechnical earthquake engineering
for the next generation.

In our own work, Cliff provided a willing ear, and ini-
tially his own discretionary funds, to support our ex-
ploratory work on what would later become a major ef-
fort on earthquake ground motion simulation in large
basins. Even though we were neophytes at the time, with
his wisdom and encouragement he made us feel from the
very beginning as if we knew more than we did, thereby
giving us the confidence to actually achieve something
useful. Most appropriately, Cliff later served as NSF
cognizant officer for both the Grand Challenges (CMS-
9318163) and KDI (CMS-9980063) projects. The latter
supported the bulk of the underlying work for the present
paper.

While our initial relationship was purely professional,
over the years it grew into a real friendship. Through
it, we came to know Cliff as a humanist, lover of litera-
ture, and great athlete. Never would we have imagined
that he was a whitewater canoeist of the highest caliber
or that he would regularly participate with his wife in
walkathons that lasted more than 20 hours.

The illness that would ultimately take his life made ap-
parent the strength of character that we already knew
well. Always having had a keen intellectual curiosity,
Cliff became an expert on his own disease, and was able
to participate in his own treatment, and sometimes guide
his physicians in the appropriate course of action. Even
at the stage when many might have despaired, Cliff lived

life at its fullest to the very end.

For us, it is a privilege to have had the opportunity
of knowing and working with Cliff Astill, a first-rate
scholar, kind and generous person, gentleman, and a
wonderful human being. We dedicate this paper to his
memory.

We would also like to express our appreciation to George
K. Lea, who himself has provided guidance and encour-
agement to us through the years, for his kind invitation to
submit a contribution to this special issue of the journal.
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funded by NSF Cooperative Agreement EAR-0106924
and USGS Cooperative Agreement 02HQAG0008. The
SCEC contribution number for this paper is 947. We also
thank the Pittsburgh Supercomputing Center for its con-
tinued support of our large scale earthquake modeling re-
search. In particular, the simulations in this work were
conducted on the HP AlphaServer parallel system at PSC
under awards BCS020001P and MCA01S002P.
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