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Tsunami Propagation from a Finite Source

George F. Carrier 1 and Harry Yeh 2

Abstract: Sea-bottom displacements associated with
seismic events are confined largely to strips of large but
finite aspect ratio. We analyze waves that are initiated
on such a strip and that propagate across a region of fi-
nite depth. We invoke the classical shallow-water-wave
theory to obtain rather comprehensive descriptions of the
non-dispersive aspects of the waves. The directivity of
the energy radiation and the domain of pulse persistence
are discussed.

keyword: Tsunami, Directivity

1 Introduction

Sea-floor displacements associated with subduction-type
seismic ruptures are often elongated in the strike direc-
tion – the direction in which the fault plane intersects the
horizontal plane. Under such a circumstance, directivity
of tsunami propagation is well recognized; the azimuthal
dependence of the energy radiation is affected by the ori-
entation of a tsunami source of a finite length; tsunami
energy tends to radiate in the direction perpendicular to
the major axis of the elongated source. This charac-
teristic was experimentally examined by Takahashi and
Hatori (1962) who observed wave propagation from an
elliptic-shape source. Many case studies by numerical
simulations clearly exhibit the directivity (e.g. the 1960
Chilean Tsunami, the 1964 Alaskan Tsunami, and the
2004 Sumatran Tsunami). It appears the more elongated
the source is, the stronger the directivity. Based on the
work by Ben-Menahem (1961) on the azimuthal depen-
dence of seismic-wave radiation, Okal (2003) demon-
strated that a tsunami generated by instantaneous sea-
floor displacement has a strong directivity pattern in the
direction normal to the seismic dislocation. Using a
Green’s function technique, Kajiura (1970) solved this
problem for tsunamis generated by uniform or linear bot-
tom deformation of a rectangular shape with a constant
vertical velocity of the bottom movement. In spite of his
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formal treatment, Kajiura’s method is difficult to obtain a
quantitative solution accurately for the displacement with
a large ratio of the side lengths of the rectangle: for this
reason, he only computed the cases with the aspect ratio
up to 3. We take a different approach from Kajiura (1970)
to obtain a quantitative description of the tsunami prop-
agation, including the cases with the very large aspect
ratio. A convenient self-similar expression is derived
from the exact solution of the axisymmetrical problem,
thereby the complete propagation field generated from a
finite source can be efficiently computed.
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Figure 1 : A definition sketch for wave-field configura-
tion indicating the dimensional coordinates (x∗, x ∗+l)
of source domain, and dimensionless source location
(X ,X + L). A wave arrival locale of interest is indicated
by Y = y(x = 0).

A schematic plan-view sketch of the initial tsunami-
source configuration is depicted in Fig. 1. The occur-
rence of a sudden, seismically generated, vertical excur-
sion of a segment (x*, x*+ l) of the sea floor implies an
almost simultaneous vertical displacement of the sea sur-
face and the gravity wave so initiated radiates outward
from that source. When the displaced segment of the
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seafloor lies in deep water but has lateral dimensions that
are large compared to the depth, and the displacement
time scale is much shorter than (or negligible to) the flow-
establishment time scale, the initial surface displacement
has a static deformation with a shape that is a smoothed
replica of the sea-floor displacement. More precisely, the
ratio of the magnitude of the spectral intensity of the sur-
face displacement to that of the sea-floor displacement
is of the order cosh−1(kh), where k is the wave number
and h is the depth of the water; we consider kh → 0. The
propagating wave undergoes a dispersion in which, when
the wave has traveled a distance q from its source, the
spectral contributions whose wavelengths are small com-
pared to (q/h)1/3h have traveled so slowly that they no
longer contribute to the shape or intensity of the energetic
leading wave system away from the tsunami source (Car-
rier, 1966, 1971). For a very large tsunami generated by
a giant earthquake (Mw > 8.5, e.g. the 1960 Chile Earth-
quake, the 1964 Great Alaska Earthquake, and the 2004
Sumatran Earthquake), the breadth of the sea floor dis-
placement is sufficiently large – the leading wavelength
is very long O(100 km) – and the vertical displacement
is small, less than several meters.

Hence, both frequency and amplitude dispersion have
negligible effects on the leading wave as it propagates
across an ocean. For example, suppose a tsunami 150 km
long and 2.0 m high occurs in an ocean 3,500 m deep,
then, based on the criteria proposed by Hammack and
Segur (1978), the interval of applicability of linear non-
dispersive long-wave theory is approximately 13,000 km,
which is about the diameter of the Earth (≈ the longest
distance across the Pacific Ocean). Note that the tsunami
wavelength recorded for the 2004 Sumatran tsunami was
approximately 450 km! Such a very long wave can prop-
agate in a distance equal to three times the Earth’s cir-
cumference without frequency-dispersion effect. Hence,
the use of linear non-dispersive long-wave theory is jus-
tified to study tsunami propagation in deep oceans.

Seismic fault rupture is not instantaneous in reality, but
the speed is finite; the finite speed of the sea floor dis-
placement influences the directivity of tsunami propaga-
tion. This characteristic can be explained by the analogy
to the shock-front formation generated by a fast moving
disturbance in shallow water. However, the fault rupture
speed (V ∼ 2.5 km/sec) is much faster than the speed
of water-wave propagation (c ∼ 0.2 km/sec in abyssal
plain). The offset angle deviated from the case of in-

stantaneous rapture is very small, i.e., sin−1c/V ∼
5 ˚ ,which is considered negligibly small. Accordingly,
nothing of importance is lost when we postulate for
our analysis a family of instantaneous water-surface dis-
placements whose spectra are already devoid of short
wavelength contributions.

2 Analysis

Classical linear long-wave theory suggests that the water-
surface displacement η of waves whose lateral character-
izing dimensions are large compared to the depth can be
approximated by solutions of

gh ∆∗η∗ −η∗
t∗t∗ = 0, (1)

where ∆∗ is the Laplace operator in dimensional coordi-
nates, h is the depth, t∗ is the time, g is the gravitational
acceleration, and the letter subscript denotes partial dif-
ferentiation. Our primary interest is focused on seafloor
displacements that are confined to a strip of length l
aligned in x as shown in the definition sketch, Fig. 1.

2.1 Axisymmetric Waves

Prior to considering an initial condition of an elongated
source, we first analyze the axisymmetric problem. It is
advantageous to scale x = x∗/β, y = y∗/β, r2 = x2 + y2,
t =

√
ght∗/β, and η = η∗/α, where α is the character-

istic source amplitude and β is the characteristic source
breadth. The axisymmetric solution η(r, t)is defined by

1
r
(rηr)r −ηt t = 0 in t > 0, 0 ≤ r < ∞ (2)

with initial conditions:

η(r, t = 0) = P (r) , and ηt (r, t = 0) = F (r) . (3)

Note that F (r) = 0 for the present problem, but we keep
it for generality of the analysis. Following Carrier, Wu,
and Yeh (2003), (2) and (3) are solved with the Fourier-
Bessel transform, and the inversion gives:

η(r, t) =
Z ∞

0
P(b)

∂
∂t

G(b, r, t)db

+
Z ∞

0
F (b)G(b, r, t)db, (4)

where

G (b, r, t) = b
Z ∞

0
J0 (ρr) sin ρ t J0 (ρb) d ρ. (5)
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Figure 2 : Plots of the integrand of a) (7), b) (8), and c)
(9). t = 102, r = 100

Equations (4) and (5) yield the general solution to the
two-dimensional axisymmetric wave equation.

For this investigation it is convenient to introduce one
particular solution and the wave generation for the strip
source region will be constructed using this solution, and
could be constructed as a superposition of individual dis-
placements each of whose y dependence is e−y2

, namely,

η(r,0) = P(r) = 2e−r2
and ηt(r,0) = F (r) = 0. (6)

Here we took the amplitude scaling parameter α = a∗/2
for convenience, where a∗ is the maximum water-surface
displacement at r = 0. Substituting (6) into (4), the exact
integral representation of the solution is found to be:

η(r, t) =
Z ∞

0
ρJ0 (ρr) cos ρ t

(Z ∞

0
2bJ0 (ρb) e−b2

db

)
dρ

=
Z ∞

0
ρJ0 (ρr) cos ρ t e−ρ2/4 dρ. (7)

While this integral is well behaved for small values of r
and t, it becomes formidable to compute for large values
of r and t as demonstrated in Fig. 2a. A more convenient
form for the integration can be found by the explicit so-
lution to the integral G in (5):

η (r, t) =
Z ∞

0
2e−ρ2

Gt (ρ, r, t) dρ (8)

=
∂
∂t

Z ∞

0
2e−ρ2

G (ρ, r, t) dρ, (9)

where

G(ρ, r, t)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2ρ
π
√

t2−(r−ρ)2
K

(
4rρ

t2−(r−ρ)2

)
for t > r +ρ

1
π

√
ρ
r K

(
t2−(r−ρ)2

4rρ

)
for |r−ρ| < t < r +ρ

0 for t < |r−ρ|
(10)

in which K (k) =
R π/2

0
dν√

1 − k sin2 ν
is the Complete Ellip-

tic Integral of the first kind. (Note that (10) was derived
previously by Carrier, Wu, and Yeh (2003).) The inte-
grand in (8) is plotted in Fig. 2b, which demonstrates an
accurate numerical integration even for large values of r
and t; the singularity that appears in the plot can read-
ily be handled by the standard software packages. Even
more accurate numerical integration could be achieved
with the use of (9) as seen in the plot of the integrand in
Fig. 2c.

Figure 3 shows solutions of (9) for a variety of r and
t: Fig. 3a for the early evolution of a Gaussian water-
surface displacement (6), and Fig. 3b for its evolution
for later time. As expected for the linear non-dispersive
wave theory, the radiating waveform appears to become
self-similar as early as, say t > 5.
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Figure 3 : The evolution of radiating water-surface pro-
files by solving (9): a) t = 0.5, 0.75, 1.0, 1.5, 2.0, 5.0; b)
t = 1.0, 2.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0

Inspired by the forms in (10), we attempt to plot the wave
profiles in Fig. 4a as a function of r for each of t = 5, 10,
20, 50, and 100 with the ordinate of:

φ ([r2− t2]/4r) =
√

r/50 η(r, t). (11)

Figure 4a shows that the solution becomes self-similar
when t > 20, approximately. Also note that for large t,
it is anticipated that t ∼ r near the leading front, hence
it is more convenient to plot the solution η(r, t) with the
slightly different ordinate

ϕ([r2− t2]/4t) =
√

t/50 η(r, t), (12)

and again the solution becomes self-similar when t > 20,
as demonstrated in Fig. 4b. Henceforth we will use√

50/t ϕ([r2 − t2]/4t) as though it were the exact de-
scription of the fundamental solution, η, for t > 20.

To provide an analytic recipe, we further made a curve
fit to

√
50/t ϕ([r2−t2]/4t) by trial-and-error inspection;
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Figure 4 : Self-similar wave profile as t becomes large.
Plotted are at t = 5, 10, 20, 50, and 100: a) φ ([r2 −
t2]/4r) in (11); b) ϕ([r2− t2]/4t) in (12).

that is

ϕ(s) ≈ M (s)

= −0.0238
d
ds

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
2s2

)1/4
K1/4

(
2s2

)
e−2s2

for s > 0,

(
2s2

)1/4
{

K1/4
(
2s2

)
+π

√
2I1/4

(
2s2

)
}

e−2s2

for s < 0

(13)

where s = [r2−t2]/4t, I1/4 is the modified Bessel function
of order 1/4, and K1/4 is the second modified (or hyper-
bolic) Bessel function of order 1/4. Figure 5 provides a
comparison of ϕ(s) with M(s), which is seen to be indis-
tinguishable.

2.2 Radiation from a Strip

We now explore the wave field that is generated by the
water-surface displacement with the length L from the
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Figure 5 : Comparison of ϕ (s) and M (s). ϕ (s) was
plotted by setting r = 50. The both curves are indistin-
guishable.

position x = X (see Fig. 1), which can be expressed as:

η(x,y,0) =
1√
π

Z X+L

X
2e−[(x−x′)2+y2]dx′

= [er f (X +L−x)−er f (X −x)]e−y2
, (14)

and ηt(x,y, 0) = 0.

For the special case in which X + L → ∞ and X →−∞,
η(x,y,0) = 2e−y2

is the initial condition for the infinite
aspect ratio (one-dimensional) against which we wish to
compare the finite aspect ratio results. The solution for
the infinite aspect ratio is

η1−D (y, t) = e−(t−y)2

. (15)

With finite X and L, η (x,y,0) is an initial displacement
that is nearly uniform in x on the strip except in a small
(δx = O(1)) neighborhood of its ends.

When t > 20, the solution of (1) with these initial condi-
tions is

η(x,y, t)

∼= 1√
π

Z X+L

X
(50/t)1/2ϕ

(
y2 − t2

4t
+

x2 −x′2

4t

)
dx′

(16)

In particular, at x = 0 and y = Y,

η(0,Y, t) =
1√
π

Z X+L

X
(50/t)1/2ϕ

(
Y 2 − t2

4t
+

x′2

4t

)
dx′.

(17)

By changing the variable x’2/4t = ξ, (17) becomes

η (0, Y, t) =

√
50
π

Z (X+L)2/4t

X2/4t
ϕ

(
Y 2 − t2

4 t
+ ξ

)
dξ√

ξ

∼=
√

50
π

Z (Y 2−t2+(X+L)2)/4t

(Y 2−t2+X2)/4t

M (s)√
s − (Y2 − t2)/4t

ds.

(18)

It is an elementary numerical task to carry out this inte-
gration for any given combination of X , L, Y and t(see
the definition sketch in Fig. 1). More appropriate nota-
tion for η(0,Y, t) is

η(0,Y, t) = H(X ,L,Y ; t) (19)

3 Results

We examine the following three initial displacements: L
= 10, 20, and 40 as sketched in Fig. 6. The computed
waveforms for L = 20 along three different directions
(θ = 0, π/4, and π/2) from the end of the source (x = X)
are shown in Fig. 7. While the degradation of the wave
height occurs immediately in the direction parallel to the
major axis (θ = π/2), the wave height does not change
initially in the direction perpendicular to the major axis
(θ = 0). Note that the generated wave exhibits a two-
signed waveform: the leading positive Gaussian-shaped
wave followed by the negative wave. As the offset θ in-
creases, the interval between the leading positive wave
and the negative wave increases. In the case of θ = 0, the
leading positive wave and the subsequent negative wave
are separated near the source. While those two are sep-
arated, the maximum amplitude remains constant at η =
1/2. We will discuss this pulse-persistence characteris-
tic in details later. Also note that during the catching-
up phase of the negative wave to the leading positive
wave, the amplitude of the negative wave increases. On
the other hand, both positive and negative amplitudes de-
grade for the case of θ = π/4 and π/2.

Figure 8 shows the effects of the source elongation, L =
10 – 60. For the case of L = 10 and in the direction θ =
0, the amplitude of the leading positive wave has already
degraded at r = 100, although for the cases of L > 20,
the maximum amplitude remains constant at 0.5, as if
the source is semi-infinitely long (X , ∞). This is because
the negative wave generated at the other end of the strip
has not reached the location x = X . In the direction of
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Figure 6 : Initial water-surface displacements of L = 10, 20, and 40
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Figure 7 : Evolution of water-surface profiles H(r, θ: t)
along the three different directions from the end of the
source strip of the length L = 20
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Figure 8 : The effects of the source elongation Lon tem-
poral water-surface variations at r = 100 in the direc-
tions normal (θ = 0) and parallel (θ = π/2) to the major
axis from the end of the source strip (X = 0).
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Figure 9 : The maximum water-surface elevations of the waves generated from the elongated source strip, L = 10,
20, and 40
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Figure 10 : Degradation of the maximum wave height
along the bisector perpendicular to the source strip; a) L
= 10, b) L = 20, c) L = 40. Note that the pulse persists
until Y1 = 25, and 100 in (b) and (c), as predicted in Fig.
11.

θ = π/2, the separation between the positive and the neg-
ative wave remains constant at L. The amplitude of the
leading wave is the same regardless the elongation L al-
though the trailing negative wave is smaller for the larger

L owing to its longer propagation distance from the other
end of the source. The mapping of the maximum water-
surface elevations in the x−y plane is shown in Fig. 9 for
L = 10, 20, and 40. Directivity of the elongated source
is evident. Note that the origin of x is now placed at the
mid point of the source. The degradation along y (per-
pendicular to the major axis of source elongation) at x=
0 (the center of the source) is plotted in Fig. 10 together
with the fitted curve of C/

√
r. As expect, the degrada-

tion of the wave height with distance becomes O (1/
√

r)
as r2 becomes large enough. More dramatic, however, is
the degradation of the wave height with increasing offset.
The values of C are found to be 3.60, 7.18, and 14.09 for
L = 10, 20, and 40, respectively. The value of C appears
to increase nearly linearly with L. Although not shown
in Fig. 9, the degradation of the wave height along the
x-axis at y = 0, i.e., along the major axis of the elonga-
tion, is found to be expressed with C = 0.48 regardless
the value of L; in this case, r is measured from the end
of the source strip. Note that, for the case of the single
Gaussian shaped blob expressed by (6), it is also found
that C = 0.48

Observing Figs. 9 and 10, an interesting question is: for
a given L and with x = X , what is the largest distance
Y at which the strength of the arriving pulse from the
finite source differs very little from the strength of the
pulse emanating from the source line extending from X
to +∞? Equation (17) states that the integral that gives
the value of η at any y and at time t = Y is the integral
of

√
50/t ϕ([y2 + x2 − t2]/4t) from x = X to L. We also

know that the same integrand, when integrated over X <

x < ∞ gives η = (1/2)η1−D at x = X . However, for small
y there is no significant contribution of that integrand to
the latter integral and therefore one can be certain that
the leading part of the wave from the source of length L
differs negligibly from the wave produced by the source
lying in (X , ∞). In particular, let Y1 be that yabove which,
at time t, the 1-D Gaussian from the ∞ source would be
confined. Then, it follows from the foregoing that the full
1-D Gaussian distribution of η arives at Y if Y 2

1 + L2 ≥
(Y1 + Q)2, where Q is the breadth of the Gaussian pulse.
The schematic diagram in Fig. 11 shows that the full
Gaussian pulse emanating from x = L reaches the tail of
the Gaussian wave at t = Y1 + Q at the location Y = Y1.
If we take Q = 4, that is 1.8 % of the wave height, which
we consider negligible, then we find Y1 ≤ L2

1/8.

One can repeat this argument when the question concerns
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Figure 11 : A schematic diagram for the pulse persis-
tence. The pulse emanating from X = L does not reach at
Y until t = Y +Q.The tail end of the Gaussian pulse indi-
cated by Q is already so small (1.8% of the wave height
if Q = 4) to be considered negligible
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Figure 12 : Degradation of the maximum wave height
in the direction perpendicular to and from the end of the
major axis of the source strip. The locations of pulse
persistent limit Y1, shown by the arrow, are Y1 = 25, 100,
and 400 for L = 10, 20, and 40, respectively

the arrival of the maximum wave height rather than the
full Gaussian. In that case a smaller value Q/2 is perti-
nent, i.e. Y1 ≤ L2

1/4. As for the direction of the perpen-
dicular bisector of the source (x = X +L/2), it is trivial to
show that the pulse persists for the order of Y1 ≤ L2

1/16
without significant diminution from the infinite-strip in-
ensity. In dimensional term, that distance is �2/16β. The
locations of Y1 for L = 10, 20, and 40 are 6.26, 25, and

100, respectively: Y1 for L = 10 is too short to be de-
tected in Fig.10. In the direction perpendicular to the
major axis from the end of source (x = X), the locations
of Y1 are shown in Fig. 12 together with the variations of
the maximum wave-height profiles.

4 Conclusions

Based on classical linear shallow-water-wave theory, a
convenient methodology is developed to compute the
wave propagation across a region of finite depth from an
elongated tsunami source with large but finite aspect ra-
tio. A similar problem was previously solved by Kajiura
(1970) for uniform and linear source displacements, but
the complexity of his integrals disallowed detailed anal-
yses for quantitative physical interpretation, in particu-
lar for large t. Apart from Kajiura (1970), we utilize
the solution algorithm for general initial-valued problem
of 2-D axisymmetric waves. Using that algorithm with
the initial displacement of Gaussian shape, a convenient
form of the self-similar solution is derived, which yields
a very accurate representation except in the region very
close to the source. Using this solution as a Green’s func-
tion, tsunami propagation from an elongated source is
solved by integration.

Interesting, but not surprising in view of the structure of
the solution ϕ, is the development of a two signed wave-
form. The degradation in wave height enhances with
increasing offset of the propagation direction from the
line perpendicular to the major axis of source elongation.
This is a well-known characteristic of the directivity. The
asymptotic behavior of the degradation rate is O (1/

√
r)

as expected. Near the source, however, the pulse persists
without significant diminution from the infinitely long
source intensity. Along the propagation perpendicular to
the major axis, the pulse-persistent distances were found
to be L2

1/16 and L2
1/4 from the mid point and the end of

the source strip, respectively. Note that the wave height
in the pulse-persistent region from the mid point is twice
the wave height emanating from the end of the source
strip. For a large distance where the wave height decays
proportional to 1/

√
r, the propagation from the mid point

of the source strip behaves as if the source is the axisym-
metric Gaussian with the enhanced amplitude by 0.74L.
On the other hand, the wave height decreases immedi-
ately in the direction parallel to the major axis regardless
of the length of the source strip, L; in fact the degrada-
tion is the same as that from the equivalent axisymmetric
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Gaussian source.

The sea-floor displacement that caused the December 26,
2004 Sumatran tsunami was roughly 800 km long and
150 km wide (e.g. Ammon, et al., 2005). If 90% of
the volumetric displacement is confined within the 150
km breadth, then it is reasonable to take the character-
istic source breadth scale β = 45 km for the Gaussian
shaped source represented by (14). This tsunami surface
profile was measured by the Jason-1 laser altimetry satel-
lite (e.g. Hirata et al., 2005; Gower, 2005). The altime-
try data show that the maximum elevation of the leading
wave was approximately 0.75 m at the location (Latitude
4 ˚ S, Longitude 84 ˚ E). This location is about 1600 km
away from the epicenter, and in the direction normal to
the ruptured fault, crossing the southern end. This cir-
cumstance is equivalent to L ≈ 17.8, Y ≈ 35.5, X ≈ 0,
and θ = 0 (see Fig. 1). Based on our analysis, the pulse
persists until Y < L2/4, or 3,600 km from the source,
which is well beyond the location of the measurement
(1,600 km). Since the persistent pulse from the end of
the source (X = 0) has one-half the amplitude of that at
the mid point, and the initial static displacement of the
surface is twice the amplitude of the persistent pulse em-
anating from the mid point, we can infer that the initial
vertical displacement by the earthquake is approximately
3 m, which is in good agreement with the estimate made
with the seismic signals by Ammon, et al. (2005). It must
be cautioned that our forgoing computation assumes that
an equal amount of wave energy be propagated in the
opposite direction, i.e., toward Thailand and Myanmar.
Regardless, our model provides a simple tool for a quan-
titative estimation of tsunami propagation from a finite
source.

5 Remarks

The basic mathematics described in this paper was pre-
sented by the late Professor George Carrier in 1990 at
the 2nd UJNR Tsunami Workshop, Honolulu. The work-
shop was supported by a National Science Foundation
grant through Dr. Cliff Astill’s program. Dr. Astill at-
tended the workshop and since then, he encouraged Car-
rier working on tsunami by supporting his research and
including him in a collaborative tsunami research team.
Dr. Astill’s vision and support made fundamental ad-
vances in tsunami research. In this paper, Carrier’s orig-
inal work presented at the workshop was corrected, re-
vised, and improved by adding interpretations, figures,

and examples.
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