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A Virtual Crack Closure-Integral Method (VCCM) for Three-Dimensional Crack
Problems Using Linear Tetrahedral Finite Elements

H. Okada 1 and T. Kamibeppu 1

Abstract: In this paper, a three-dimensional VCCM
(Virtual Crack Closure-Integral Method) for evaluating
the energy release rate and the stress intensity factor is
presented. Many engineers and researchers believe that
hexahedral finite elements should be used to perform
three-dimensional fracture analyses. Previous VCCM
formulations assume the use of hexahedral finite ele-
ments. In present study, the authors have been devel-
oping a VCCM that works with tetrahedral finite ele-
ments. In the field of large-scale computation, the use
of tetrahedral finite elements has becoming very popu-
lar as high performance mesh generation programs be-
came available. Therefore, building a large and com-
plex analysis model with hexahedral finite elements is
a much more difficult task than with tetrahedral ele-
ments. The outcomes of present research would make
three-dimensional fracture mechanics analysis on com-
plex shaped solid/structure a tractable task to do. In this
paper, some preliminary results are presented.

keyword: Fracture Mechanics, Stress Intensity Factor,
Energy Release Rate, VCCM (Virtual Crack Closure-
Integral Method), FEM (Finite Element Method)

1 Introduction

Structural integrity analyses for infrastructures, power
plant structures/components, pressure vessels and pip-
ings, etc. are very important. In many cases, they are
carried out based on fracture mechanics analyses with
the stress intensity factors that are evaluated from the
results of finite element (FE) or of boundary element
(BE) analyses. Among them, the finite element method
(FEM) is especially popular as there are many com-
mercial program packages available. It is noted here
that though we assume to employ a conventional fi-
nite element method to the fracture mechanics problems,
researchers are/have been spending efforts to develop
new approaches such as MLPG (Meshless Local Petrov-
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Galerkin Method), SGBEM (Symmetric Galerkin BEM),
Finite Element Alternating Method, etc. that can com-
pletely/partly eliminates the needs for spatial discretiza-
tion (i.e., finite element meshes). Also, researches to
simplify model generation processes by using “element
overlay technique” was presented. The readers are re-
ferred to Han and Atluri (2004, 2003, 2002) and Okada,
Endoh and Kikuchi (2005).

Presently, there are several popular ways to evaluate
the stress intensity factors from the results of finite el-
ement analysis. They are displacement and stress meth-
ods, stiffness derivative method and other energetic ap-
proaches. In displacement and stress method, those
that are evaluated by the finite element calculation are
used to compute the stress intensity factors by assuming
their asymptotic distributions at the vicinity of the crack
tip/front. These methodologies have successfully been
applied to crack problems [see, for example, Chan, Tuba
and Wilson (1970) and Broek (1986)]. In energetic meth-
ods, the energy release rate is first evaluated and then
the stress intensity factor is computed. There are three
popular ways to evaluate the energy release rate. They
are: J-integral method [Rice (1968)], stiffness derivative
method [virtual crack extension (VCE); Parks (1974),
Hellen (1975)] and virtual crack closure-integral method
(VCCM) [Rybicki and Kanninen (1977) and Shivaku-
mar, Tan and Newman, Jr. (1988)]. VCE technique that
computes the energy difference when crack extends for a
small amount had evolved to be equivalent domain inte-
gral (EDI) method [deLorenzi (1982), deLorenzi (1985),
Li, Shih and Needleman (1985), and Nikishkov and
Atluri (1987)]. EDI has been adopted in many commer-
cial software. VCCM was proposed by Rybicki and Kan-
ninen (1977) for two-dimensional crack problem and was
later extended to three-dimensional cases by Shivakumar,
Tan and Newman, Jr. (1988). VCCM is very simple
and is able to split the energy release rate into its Mode
I, II and III contributions (for two-dimensional problem,
Mode I and II contributions) without any further compli-
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cations. Though it is assumed in this paper that material
of our interest be isotropic and homogeneous, stress in-
tensity factor/energy release rate computations for inter-
face crack/dissimilar materials have been reported [see,
for example, So, Lau and Ng. (2004), Xie, Waas, Shah-
wan, Schroeder and Boeman (2004)].

When the extension of VCCM from two- to three-
dimensional formulation was carried out in Shivakumar,
Tan and Newman, Jr. (1988), a thickness was added to
the two-dimensional plane, making a three-dimensional
solid. This extension process implicitly assumed that
hexahedral finite elements be used to model a cracked
body. Also, rigorously speaking, the faces of finite el-
ements across the crack front must be the same seized
rectangles, as shown in Figs. 1 and 2. However, when the
crack front has some curvature, such a requirement can
not be satisfied. Fawas (1998) demonstrated that the en-
ergy release rate could be computed accurately if the area
of element faces across the crack front were the same
even though they are not rectangles. de Roeck, and Abdel
Wahab (1995) proposed a way to account the change of
element face areas across the crack front for linear hex-
ahedral element. Okada, Higashi, Kikuchi, Fukui and
Kumazawa (2005) proposed a general framework that
can allow the elements be skewed at and their faces are
not symmetrically arranged across the crack front. What
was proposed by Fawas (1998) is included in the frame-
work of Okada, Higashi, Kikuchi, Fukui and Kumazawa
(2005). This methodology can be applied to any types
of hexahedral finite elements (i.e., eight node, 20 node
serendipity, 27 node Lagrange, etc.) and was demon-
strated for 20 node serendipity element.

VCCMs so far assume the use of hexahedral finite el-
ement. Presently popular finite element mesh genera-
tion software is not able to automatically create a com-
plex shaped model with hexahedral finite elements. This
means that fracture analysis using VCCM would be al-
most prohibitive for complex shaped three-dimensional
structures and structural/mechanical components, since
the model generation processes need to be carried out
manually for some extent.

In this paper, we propose a VCCM for tetrahedral finite
elements, as an extension of Okada, Higashi, Kikuchi,
Fukui and Kumazawa (2005). A conventional VCCM is
first presented briefly and then a newly proposed one for
tetrahedral finite elements is presented. Hence, proposed
methodology is demonstrated in some simple example

Figure 1 : Virtual crack closure-integral method for lin-
ear hexahedral finite element.

problems, i.e. through crack in a flat panel and semi-
elliptical/circular embedded cracks. Though the formu-
lations are developed for linear tetrahedral finite element,
they can be extended to the case of quadratic element.

2 Brief review on VCCM for three-dimensional
crack problems

In this section, a brief review of three-dimensional
VCCM [Shivakumar, Tan and Newman, Jr. (1988)] is
presented. It is, in general, assumed that the finite ele-
ment mesh in the crack plane is arranged in an orthogonal
manner, as shown in Fig. 1. The sizes of mesh across the
crack front are the same. Energy release rate can be cal-
culated by following the crack closure-integral method of
Irwin (1958).

GTotal =
1

2∆wJ

Z
SJ

σ3i (x1)vi (∆−x1)dSJ (1)

where ∆ and wJ are the length and the width of element
perpendicular to and parallel to the crack front. J desig-
nates the segment number along the crack front. σ3i are
the cohesive stresses in the plane of crack ahead the crack
front. vi are the crack opening displacements, which are
the functions of distance from the crack front. SJ is the
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area of face of a finite element at the crack front segment
J. It is noted that x1 and x2coordinate directions are per-
pendicular and parallel to the crack front, and x3 axis is
normal to the plane of crack. The subscript “Total” refers
the total energy release rate.

When 8 node linear element (8 node hexahedral element)
is employed, the calculation of VCCM can be carried
out by using nodal forces PI

i and the differences vI
i of

displacements between upper and lower crack faces at
nodes.

GTotal =
1

2∆wJ

2

∑
I=1

CIvI
i P

I
i (2)

where superscript I (=1,2) refers the nodal points on the
plane of crack, as depicted in Fig. 2. Nodal forces PI

i
are calculated as consistent nodal force vector (see, for
example, Bathe (1996), for the calculation of consistent
nodal force vector). Constants CI are given by:

C1 =
wJ

wJ +wJ−1 ,C2 =
wJ

wJ+1 +wJ (3)

For mixed mode problems, the total energy release rate
GTotal can be split into its components GI , GII and GIII

due to mode I, II and II crack loadings, as:

GI =
1

2∆wJ

2

∑
I=1

CIvI
3PI

3,

GII =
1

2∆wJ

2

∑
I=1

CIvI
1PI

1,

GIII =
1

2∆wJ

2

∑
I=1

CIvI
2PI

2 (4)

Thus, their corresponding stress intensity factors are
evaluated, by:

KI =
√

E ′GI , KII =
√

E ′GII, KIII =
√

2µGIII (5)

Here, E ′ = E when a plane stress condition is assumed
and E ′ = E

/(
1−ν2

)
for the case of plane strain condi-

tion. E and ν are the Young’s modulus and Poisson’s
ratio of the material. µ is the shear modulus.

Discussions given above imply that the finite elements at
the crack front must be hexahedral or their degenerated
wedge-type elements. The faces of the elements across
the crack front must be symmetrically arranged rectan-
gles, as depicted in Fig. 2. The use of tetrahedral finite
elements whose faces are triangles is not considered.

Figure 2 : The rectangular arrangement of element faces
for energy release rate computation by VCCM with hex-
ahedral finite elements.

Figure 3 : Arrangement of element faces of tetrahedral
finite elements for the computation of energy release rate
using proposed VCCM with tetrahedral finite elements.

3 VCCM for three-dimensional crack problems us-
ing tetrahedral finite elements

3.1 Crack closure-integral and energy release rate

In this section, we consider the use of tetrahedral finite
elements to three-dimensional crack problems with ar-
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Figure 4 : A face of tetrahedral finite element for VCCM
computation.

bitrary curved crack front and the evaluation of energy
release rates by using the virtual crack closure-integral
method (VCCM). We pose several assumptions on fi-
nite element discretization at the crack front. They are
(i) the faces of tetrahedral elements exist on the extended
plane of the crack and (ii) the widths (∆) of element faces
across the crack front are the same, as shown in Fig. 3.
The energy release rates are then computed from energy
that is required when a triangle shaped area is opened. In
the followings, discussions on the mode I energy release
rate are given. The same can be carried out for mode II
and III and total energy release rate computations.

First, we compute the energy spent to open a face of a
tetrahedral finite element, as shown in Fig. 4, by assum-
ing the asymptotic solutions of the crack opening dis-
placement v3 and the normal stress σ33 in x3 direction.
They are written to be:

v3 (r) =
4KI

E ′

√
2r
π

, σ33 (r) =
KI√
2πr

(6)

where KI is the mode I stress intensity factor and r is the
distance measured from the crack front on the crack face
and its extended plane. Amount of energy δW that is
required to open the area S, can be defined by extending
the concept of crack closure-integral approach of Irvin
(1958).

δW =
Z

S

1
2

v3 (∆− r)σ33 (r)dS (7)

Integral of Eq. 7 can be written by using the distance r,
as:

δW =
Z ∆

0

1
2

v3 (∆− r)σ33 (r)
(

1− r
∆

)
wdr (8)

where ∆ and w are the sizes of the element face perpen-
dicular to and parallel to the crack front as shown in Fig.
4. Eq. 8 can be rewritten by using the asymptotic expres-
sions [Eq. 6] for the crack opening displacement and the
stress.

δW =
Z ∆

0

2KI

E ′

√
2(∆− r)

π
KI√
2πr

(
1− r

∆

)
wdr (9)

We then compute the integral.

δW =
Z ∆

0

2KI

E ′

√
2(∆− r)

π
KI√
2πr

(
1− r

∆

)
wdr

=
2wK2

I

πE ′

Z ∆

0

{√
∆− r

r
− 1

∆
√

r (∆− r)

}
dr

=
3
4

∆wK2
I

E ′ (10)

Here, the area S of the triangular region is:

S =
∆w
2

(11)

Therefore, we have:

δW =
3
2

SK2
I

E ′ (12)

Since the relationship between the energy release rate GI

and the stress intensity factor KI is given by GI = K2
I

/
E ′,

we can express the energy release rate, as:

GI =
K2

I

E ′ =
2δW
3S

(13)

3.2 Computation for crack closure integral using the
results of finite element analysis

In the finite element computation, energy δW that is re-
leased when the crack is opened for the area S can be
expressed in terms of nodal forces PI

3, as:

δW =
1
2

2

∑
I=1

vI
3PI

3 (14)

where PI
3 are the nodal forces arising from the cohesive

stress on the area S and vI
3 are the respective nodal dis-

placements, as shown in Fig. 5.

When a finite element program computes the nodal re-
action forces PI

3, they are computed based on element



Three-Dimensional Crack Problems 233

Figure 5 : The reaction forces P
I
3 due to the cohesive

stress on area S and their respective nodal opening dis-
placements vI

3.

stresses. Therefore, they are not the same as P
I
3 that are

used in Eq. 14. Nodal reaction forces PI
3 that are com-

puted by using ordinary finite element procedures con-
tain the contributions of the cohesive forces on the neigh-
boring element faces. We thus partition PI

3 appropriately

and PI
3 are written to be:

P
I
3 = C

I
PI

3 (15)

We call C
I

to be partitioning constants in this paper. For
example, as shown in Fig. 6, node A at the crack front be-
longs to three different element faces. To appropriately
partition the nodal reaction forces, we define the repre-
sentative weights W SI−1, W SI−1−1 and W SI−2−2 of finite
element faces SI−2, SI−1 and SI . Here, the superscript
such as SI − 1 indicates the weight associated with the
1st node of the I-th element face that is shown in Fig. 6.
The weights are computed with assuming the asymptotic
distribution (∝ 1

/√
x1) of cohesive stress at the vicinity

of the crack front. Thus, we compute the weights by the
following equations.

W SI−1 =
Z

SI

N1√
x1

dSI =
16SI

15
√

xI
1

(16)

W SI−1−1 =
Z

SI−1

N1√
x1

dSI−1 =
16SI−1

15

(√
xI−1

1 +
√

xI
1

) (17)

W SI−2−1 =
Z

SI−2

N2√
x1

dSI−2 =
16SI−2

15
√

xI−1
1

(18)

where shape functions associated with the respective ele-
ment faces associated with the node A are shown by sym-
bols such as N1. xI−1

1 and xI
1 are the coordinate values of

the nodes, as depicted in Fig. 6.

Figure 6 : Computation of partitioning constants for the
VCCM computation using tetrahedral finite elements.

Figure 7 : A through crack in a tension panel.

Constants C
I

are defined, as:

C
1 =

W SI−1

W SI−1 +W SI−1−1 +W SI−2−2
,

C
2 =

W SI−2

W SI−2 +W SI+1−1 +W SI+2−1
(19)

When the node A belongs to only one element face, re-
spective partitioning constant C

I
is one.
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(a) Overall view. 

 
(b) Vicinity of crack tip. 

Figure 8 : Finite element discretization for the tension
panel of Fig. 7.

Thus, the energy release rate can be computed, by:

GI =
1

3S

2

∑
I=1

C
I
PI

3vI
3 (20)

Mode II and III energy release rates can be evaluated in
the same manner. Hence, the stress intensity factors can
be computed by using Eq. 5.

4 Numerical demonstrations

4.1 Through crack in a flat panel

First, the problem of a through crack in a flat panel is
presented. The configurations of the panel, crack and
boundary conditions are depicted in Fig. 7. Finite el-
ement model is shown in Fig. 8. There are a total of
580879 elements and 115219 nodes. The size of crack
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Figure 9 : Normalized stress intensity factors that were
evaluated by proposed VCCM for tetrahedral finite ele-
ments and by VCCM with 20 node hexahedral elements.

front element is 1/1000 of the total length of the crack.
The Young’s modulus and Poisson’s ratio are set to be
210 GPa and 0.3.

In Fig. 9, comparisons between the stress intensity fac-
tors of two-dimensional analytical solution and those
computed by the three-dimensional VCCMs using hexa-
hedral and tetrahedral finite elements, are presented. All
the data in Fig. 9 is normalized by two-dimensional
analytical solution [see, for example, Murakami et al.
(1987)]. That is why two-dimensional analytical solu-
tion is unity in Fig. 9. The solution of hexahedral fi-
nite elements is taken from the author’s previous work
[Okada, Higashi, Kikuchi, Fukui and Kumazawa (2005)]
and is used as a reference solution. In Okada, Higashi,
Kikuchi, Fukui and Kumazawa (2005), 20 node hexahe-
dral element is employed and the size of element at the
crack front is 8/1000 of total crack length. In the compu-
tation of stress intensity factor, the plane strain condition
is assumed except for at the surface of the panel. It is, in-
deed, the common practice as done in Fawaz (1998) also.
Both the results based on tetrahedral and hexahedral fi-
nite elements have maximum values at the mid-surface
of the panel. The trends are very similar to each other.
However, the one that is computed based on tetrahedral
finite elements have a larger value than that based on hex-
ahedral finite elements. The difference is about 4%.

4.2 Embedded elliptical/ circular crack problem

The problems of embedded elliptical/circular cracks are
solved and the results are compared with the analytical



Three-Dimensional Crack Problems 235

(a) Overall view of the block, crack configuration and BCs. 

 

(b) Definition of angle φ. 

Figure 10 : The problem of embedded elliptical/circular
crack.

solutions of those in an infinite elastic body. In Fig. 10,
the problem configuration is depicted. In Fig. 11, a typi-
cal finite element model is shown. There are a total of
413112 elements and 72091 nodes. Young’s modulus
and Poisson’s ratio are set to be 210 GPa and 0.3, re-
spectively. The plane strain condition is assumed when
the stress intensity factor is computed from the energy
release rate.

In Fig. 12, the results of present analyses are compared
with the analytical solutions. In the figures, the solu-
tions are normalized by Q(a/c)

√
πa where Q(a/c) is the

shape factor [see, for example, Murakami et al. (1987)].
Q(a/c) is given by:

Q
(a

c

)
=

√Z π/2

0

[
1−k2 sin2 θ

]1/2 dθ ≈ 1+1.464
(a

c

)1.65

k =
(

1− a2

c2

) 1
2

(c ≥ a) ,

k =
(

1− c2

a2

) 1
2

(c < a) (21)

For all the cases that are presented in Fig. 12, the stress

 

(a) Overall view. 

 

 

(b) A close-up of crack front. 

 
(c) A view of plane of crack. 

Figure 11 : A typical finite element mesh discretization
for the problem of embedded elliptical/circular crack (as-
pect ratio a/c = 0.4).

intensity factor that was computed by the present ap-
proach has oscillatory behavior for all the aspect ratios.
We then approximated the variations of the stress inten-
sity factor by the third-order polynomial. Thus, as seen
in the figures, the polynomial approximations and the
analytical solutions are very close. The differences are
within 2%.
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(a) Aspect ratio a/c= 0.2.                  (b) Aspect ratio a/c= 0.4 
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(c) Aspect ratio a/c= 0.6.                 (d) Aspect ratio a/c = 1.0. 
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(e) Aspect ratio a/c = 2.0. 

Figure 12 : Variations of normalized stress intensity factor for the problems of embedded elliptical/circular cracks
computed by proposed VCCM for tetrahedral finite elements.
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5 Concluding remarks

In this paper, some preliminary results of stress in-
tensity factor/energy release rate calculations by using
VCCM with linear tetrahedral finite element are pre-
sented. The results indicate that the accuracy of present
approach is not satisfactory compared with those com-
puted by VCCM with twenty-node hexahedral finite ele-
ments [see, for example, Okada, Higashi, Kikuchi, Fukui
and Kumazawa (2005)]. This means that the method is
still premature and that it requires many improvements.
In the engineering practices, the use of quadratic tetrahe-
dron is a very popular way to compromise the accuracy
and efficiency of analysis. Therefore, the most impor-
tant improvement that the authors should try is to extend
present formulation to the case of quadratic tetrahedral
element.

Though we still need to make many improvements, the
outcomes of present course of study so far indicate a pos-
sibility that tetrahedral finite elements could replace hex-
ahedral elements in fracture mechanics analysis.
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