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Computational Characterization and Evaluation of Deformation Behavior of
Spherulite of High Density Polyethylene in Mesoscale Domain

Y. Tomita1, M. Uchida1

Abstract: In this study, we clarified the micro- to
mesoscopic deformation behavior of a semicrystalline
polymer by employing a large-deformation finite element
homogenization method. The crystalline plasticity the-
ory with a penalty method for the inextensibility of the
chain direction and the nonaffine molecular chain net-
work theory were applied for the representation of the
deformation behavior of the crystalline and amorphous
phases, respectively, in the composite microstructure of
the semicrystalline polymer. The 3D structure of lamel-
lae in the spherulite of high-density polyethylene was
modeled, and the tensile and compressive deformation
behaviors were investigated. A series of computational
simulations clarified the difference in the degree of strain
hardening between tension and compression due to dif-
ferent directional chain orientations. In the spherulite,
localized deformation occurred depending on the initial
distribution of the lamella direction. Due to their in-
teraction with their surrounding, the individual material
points of the mesoscopic domain showed a conservative
response as compared with that of the unit cell, and a
nonuniform response depending on the location of a ma-
terial point is observed; these are typical mesoscopic re-
sponses of semicrystalline polymers.

keyword: Spherulite, HDPE, Multiscale Model,
Mesoscale Model, Homogenization Method, Nonaffine
Molecular Chain Network Theory, Crystalline Plasticity

1 Introduction

To enable the wide use of semicrystalline polymers as
structural materials, the characterization of their mechan-
ical behaviors is indispensable. Semicrystalline poly-
mers have a very complex hierarchical structure, and
their microstructure is that of a two-phase composite ma-
terial consisting of a crystalline lamella and an amor-
phous layer. In the crystalline phase, molecular chains
are oriented in a specific direction. And it has an inexten-
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sibility to the chain direction. Spherulite is formed with
a radial arrangement of broad thin lamellae, which grow
radially accompanied by twist [Lin and Argon (1994)].
Although the deformation mechanisms of the microstruc-
ture strongly depend on the directions of the molecular
chains and lamella interface, the macroscopic deforma-
tion behavior still exhibits initial isotropy [Bowden and
Young (1974)].

In accordance with the above characteristics of semicrys-
talline polymers, simplified models have been proposed
to reproduce experimental results [Lee, Parks and Ahzi
(1993), Van Dommelen, Parks, Boyce, Brekelmans and
Baaijens (2003)]. In these studies, interaction laws based
on the Taylor, Sachs and self-consistent models were em-
ployed to relate microscopic and macroscopic deforma-
tions. The initially isotropic response by modeling the
aggregation of randomly oriented composite microstruc-
tures is realized. However, these models cannot be used
in evaluating the interactions between adjacent compos-
ite phases that exhibit a largely scattered local rotation
and lamella deformation on the mesoscopic scale, as clar-
ified by AFM observation, depending on the initial orien-
tation and degree of deformation of lamellae due to the
applied deformation [Yashiro, Kanai and Tomita (2004)].
Therefore, these characteristic deformation behaviors on
the micro- to mesoscopic scales are essential in evalu-
ating the local deformation behavior of semicrystalline
polymers.

To this end, based on the experimental evidence, we gen-
erated a 2D mesoscopic structure using a Voronoi poly-
gon consisting of composite microstructures with dif-
ferent lamella interface directions [Tomita and Uchida
(2005)]. The constitutive equation at each material point
of the Voronoi polygon was assigned using the homoge-
nized constitutive equation of unit cell [Higa and Tomita
(1999), Okada, Fukui and Kumazawa (2004), Yang and
Becker (2004)]. The developed multiscale 2D model was
used to evaluate the interactions between the microstruc-
ture and the heterogeneous deformation behavior on the
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micro- to mesoscopic scales, and we clarified that the in-
teraction with the surrounding is very important in the
evaluation of the mesoscopic deformation behavior of
a semicrystalline polymer [Tomita and Uchida (2005)].
However, due to the restriction of the 2D model, the es-
sential 3D feature of the microstructure and its evolutions
are still unclear.

In this paper, we generalize our 2D model to a 3D model
in order to represent the complex 3D structure of lamel-
lae in the spherulite and to consider all slip systems in the
crystalline phase that have a different resistance to slip
deformation [Lee, Parks and Ahzi (1993)]. Therefore,
we will first provide constitutive equations for individual
phases, namely, crystalline and amorphous phases. Then,
we will generate the 3D mesoscopic structure consist-
ing of twisted composite microstructures with different
lamella interface directions. The constitutive equation at
each material point of the microstructures is assigned us-
ing the homogenized constitutive equation of a unit cell.
Thus, we will evaluate the interaction between such mi-
crostructures and the heterogeneous deformation behav-
ior on the micro- to mesoscopic scales of high-density
polyethylene (HDPE) under uniform tension and com-
pression.

2 Constitutive Equation

Here, in order to describe the deformation behavior of
semicrystalline polymer, the crystalline plasticity theory
[Peirce, Asaro and Needleman (1983)] with the penalty
method to introduce inextensibility of the chain direc-
tion and the nonaffine molecular chain network theory
[Tomita, Adachi and Tanaka (1997)] are employed for
crystalline and amorphous phases, respectively. Here-
after, the indices ”C” and ”A” are used for the repre-
sentation of the quantities for crystalline and amorphous
phases, respectively.

The total strain rate di j is assumed to be decomposed into
the elastic strain rate de

i j and plastic strain rate dp
i j. With

Hooke’s law for the elastic strain rate de
i j, the constitutive

equation that relates the rate of Kirchhoff stress Ṡi j to
strain rate di j becomes

di j = de
i j +dp

i j, Ṡi j = De
i jkld

e
kl −Fi jkldkl,

Fi jkl =
1
2

(
σikδ jl +σil δ jk +σ jlδik +σ jkδil

)
,

where De
i jkl is the elastic stiffness tensor and σi j is the

Cauchy stress.

The plastic strain rate dp
i j in the crystalline phase is mod-

eled using the crystalline plasticity theory [Peirce, Asaro
and Needleman (1983)], with shear strain rate γ̇(α)

pC on the
αth slip system expressed by a power law [Hutchinson
(1976)], as

dp
i j = ∑

(α)
P(α)

i j γ̇(α)
pC , γ̇(α)

pC = γ̇0C
τ(α)

g(α)
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∣∣∣∣∣
1
m−1

(1)

where γ̇0C is the reference strain rate in the crystalline
phase, m is the strain rate sensitivity exponent, g(α) is

the resistance to slip, τ(α) = P(α)
i j σi j is the resolved shear

stress, P
(α)
i j = (s(α)

i m(α)
j +m(α)

i s(α)
j )/2 is the Schmidt ten-

sor, and s(α)
i and m(α)

i are unit vectors along the slip di-
rection and the slip plane normal, respectively. Here, the
penalty method is employed to approximately satisfy the
inextensibility of the chain direction. The corresponding
constitutive equation of the crystalline phase is expressed
as [Tomita and Uchida (2002,2005)]
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)
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where λ0 is the penalty constant which has a large value,
and physically, it represents the chain directional stiff-
ness. ci is the unit vector of chain direction.

Subsequently, the plastic strain rate dp
i j in the amorphous

phase is modeled using a nonaffine eight-chain model
[Tomita, Adachi and Tanaka (1997)], with plastic shear
strain rate γ̇pA [Argon (1973)], as

dp
i j =

γ̇pA√
2τ∗

σ̂′
i j, τ∗

(
σ̂′

i jσ̂
′
i j

) 1
2 , σ̂i j = σi j −Bi j,

γ̇pA = γ̇0A exp

[(
−As̃

T

){
1−

(
τ∗

s̃

) 5
6

}]
, (3)

where γ̇0A and A are constants, T is the absolute temper-
ature, τ∗ is the applied shear stress, s̃ = s0 + αp, s0 =
0.077µ/(1− ν) is the athermal shear strength [Boyce,
Parks and Argon (1988)], p is the pressure, and α is a
pressure-dependent coefficient. Furthermore, Bi j in Eq.
(4) is the back-stress tensor and the principal components
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bi are expressed, by employing the eight-chain model
[Arruda and Boyce (1993)], as

bi =
1
3

CR
√

N
V 2

i −λ2

λ
L−1

(
λ√
N

)
, (4)

where λ2 = (V2
1 +V 2

2 +V 2
3 )/3, Vi is the principal plastic

stretch, N is the average number of segments in a sin-
gle chain, CR = nkBT is a constant, n is the number of
chains per unit volume, kB is Boltzmann’s constant, and
L(x) = coth(x)− 1/x is the Langevin function. In the
nonaffine eight-chain model [Tomita, Adachi and Tanaka
(1997)], the change in the number of entangled points,
in other words, the average number of segments N, may
change depending on the distortion ξ which represents
the local deformation of a polymeric material. The sim-
plest expression of the number of entangled points is
N = N0 exp{c(1−ξ)} with ξ = 1 in the reference state,
and N0 is the number of segments in a single chain in the
reference state and c is a material constant.

3 Computational Model

As indicated, the spherulite in the semicrystalline poly-
mer is formed with a radial arrangement of broad
thin lamellae that grow radially accompanied by twist
[Lin and Argon (1994)]. To establish a multiscale
model of the spherulite in the semicrystalline poly-
mer, we employ the constitutive equations discussed in
the previous chapter and homogenization method for a
large-elastoviscoplastic-deformation behavior [Higa and
Tomita (1999), Tomita and Wei Lu (2002)]. Figure 1(a)
indicates the mesoscopic structure of the spherulite,
which is assumed to consist of mesoscopic elements
shown in Fig. 1(b) with the spatial repetition of the base
cell shown in Fig. 1(c). Assuming that the unit cell is suf-
ficiently smaller than the mesoscopic structure, the co-
ordinates xi for the mesoscopic structure and the local
coordinates yi for the cell are introduced. The central
region of spherulite shown in Fig. 1(a) is modeled using
isoparametric finite elements under symmetric boundary
conditions with respect to the coordinate achieving meso-
scopically homogeneous deformation.

A periodically stacking structure consisting of the crys-
talline and amorphous phases is given in all Gauss in-
tegration points of the mesoscopic finite elements, as
schematically illustrated in Fig. 1 (b). This stacking
structure can be produced by applying periodic condi-
tions in all yi directions for the unit cell shown in the

lower part of Fig. 1 (c). To construct the part of the
spherulite formed with a radial arrangement of broad thin
lamellae in which b-axis grows radially accompanied by
twist of lamella, we assign the orientation of the y2 di-
rection parallel to the b-axis in fig. 1 (c) for the unit cell
of a mesoscopic element on the basis of the location of
the element and relative angle with respect to the cen-
ter of the spherulite. On the other hand, depending on
the relative distance of the element and periodicity of the
spiral, we rotate the y1 and y3 coordinate directions, and
assign the lamella normal of the unit cell. The c-axis
in unit cell, schematically illustrated in fig. 1 (c), repre-
sents the chain direction, where inextensibility constraint
is enforced. The crystalline structure of HDPE exhibits
an orthorhombic structure that has four chain slip direc-
tions and four transverse slip directions perpendicular to
the chain directions. Furthermore, the plane {201} is the
boundary plane of the amorphous and crystalline phases
[Lee, Parks and Ahzi (1993)]; therefore, the direction dif-
ference of 30◦ is assigned in the lamella normal and ini-
tial chain directions (c-axis). The direction of a-axis is
normal to b- and c-axes. Then a mesoscopically uniaxial
tensile and compressive strain rate of E0 = 10−5/s was
applied.
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Figure 1 : Computational Model for Homogenization Meth-
ods. (a)Mesoscopic structure, (b)Lamella stacking structure,
(c)Microscopic structure

The material parameters are specified from references
[Lee, Parks and Ahzi (1993), Van Dommelen, Parks,
Boyce, Brekelmans and Baaijens (2003), Tomita, Adachi
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and Tanaka (1997)]. For the amorphous phase, EA/s0 =
23.7, As0/T = 3.64, α = 0.01, γ̇0A = 1.3×10−6/s, s0 =
4.4MPa, CR/s0 = 0.36,

√
N and c = 0.1, and for the crys-

talline phase, γ̇0C = 1×103/s, τ0 = 8.0MPa, 1/m = 9; the
components of anisotropic elastic modulus Dc

aaaa/τ0 =
0.88× 103, Dc

cccc/τ0 = 10.13× 103, Dc
aabb/τ0 = 0.48×

103, Dc
aacc/τ0 = 0.59× 103, Dc

abab/τ0 = 0.19× 103 and
Dc

acac/τ0 = 0.20 × 103 are employed at a temperature
T = 256K. Here, the subscripts a, b and c for anisotropic
elastic modulus correspond to the axes of the HDPE crys-
talline lattice shown in Fig. 1(c), respectively. The slip
system and normalized resistance of HDPE are shown in
Table 1 [Lee, Parks and Ahzi (1993)]. Furthermore, to
reproduce sufficient inextensibility and to carry out sta-
ble calculation, a penalty constant λ0 = 106 is employed.

Table 1 : Slip system and normalized resistances g(α)/τ0

of HDPE [Lee, Parks and Ahzi (1993)]
chain slip

(100)[001] (010)[001] {110}[001]
1.0 2.5 2.5

transverse slip
(100)[010] (010)[100] {110}〈110〉

1.66 2.5 2.2

For the representation of stress state and deformation, we
introduce equivalent stress and strain rate for a material
point in mesoscopic domain as ε̇2

eq = 2di jdi j/3, σ2
eq =

3σ′
i jσ′

i j/2, for the unit cell without interaction with sur-
roundings as Ė2

eq = 2ĖiĖi/3, Σ2
eq = 3Σ′

iΣ′
i/2 and for an av-

erage value of the mesoscopic domain as Ė
2
eq = 2ĖiĖi/3,

Σ2
eq = 3Σ′

iΣ
′
i/2. Here, Ėi and Σ′

i are the homogenized
strain rate and deviatoric part of stress Σi over a unit
cell and Ėi and Σi are the average strain rate and devi-
atoric part of stress over a mesoscopic domain, respec-
tively. Similarly, σm = σii/3, Σm = (Σ1 +Σ2 +Σ3)/3 and
Σm = (Σ1 + Σ2 + Σ3)/3 represent the mean stress for a
material point, a unit cell and that of the mesoscopic do-
main, respectively.

4 Results and Discussion

Initially, we will clarify the deformation behavior of the
mesoscopic domain. An initial isotropy of the model was
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Figure 2 : Isotropy of Mesoscopic Response.
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Figure 5 : Effect of Volume Fraction of Crystalline Phase on Stress-Strain Relations. (a) Tension, (b) Compression

examined. Figure 2 shows avarage true stress - true strain
relations for x2- and x3-directional tension of mesoscopic
domain of Fig. 1(a). Regardless of the tension direc-
tions, the responses were almost identical; therefore, the
isotropic response of the mesoscopic scale in the small to
large strain range has been essentially assured.

Figure 3 shows the relationship between the average
values of x3-directional true stress-strain relations for
the tension and compression of the mesoscopic domain
shown in Fig. 1(a). The nonlinear behavior prior to meso-
scopic yielding is attributable to different magnitudes of
resolved shear stress in the slip direction, which causes
yielding at different stages of deformation. Under ten-
sion, strain hardening is shown in the later stage of de-
formation because of the orientation hardening of the
molecular chain in the crystalline and amorphous phases
to the stretch direction, which is parallel to the loading
direction. However, under compression, the stretch di-
rection is orthogonal to the loading direction. Therefore,
orientation hardening does not markedly contribute to the
increase in loading directional stress as compared with
that in the tension case, which results in moderate hard-
ening even in the later stage of deformation.

Figure 4 shows a comparison of the average values
of x3-directional stress-strain relations evaluated by 2D
[Tomita and Uchida (2005)] and 3D simulations with the
crystallinity v fC = 0.5. To directly compare the 3D and

2D results, the x1-directional displacement of the mate-
rial points on the side surface with x1 = const. was set to
be zero and shear free conditions were also enforced on
the same surface of the 3D case shown in Fig. 1(a). The
mesoscopic structure of the 2D semicrystalline polymer
was modeled using a Voronoi polygon consisting of com-
posite microstructures with different lamella interface di-
rections [Tomita and Uchida (2005)], whereas, that of
the 3D semicrystalline polymer was modeled using a mi-
crostructure with continuously grown lamella distribu-
tion in the spherulite. Therefore, the disorderliness of the
microstructure of the 3D model is partially restricted, and
the resistance to deformation on the mesoscopic scale of
the 3D model is higher than that of the 2D model.

Figure 5 indicates the effect of the volume fraction of the
crystalline phase on the average value of x3-directional
stress-strain relations, and the hardening rates of the
mesoscopic domain under (a) tension and (b) compres-
sion. The effect of crystallinity on the stress-strain rela-
tions in high-strain regions is predominant in the tension
case. Hardening rates are very sensitive to the volume
fraction of the crystalline phase under tension, which are
intensified by enhancing crystallization. While orienta-
tion hardening in a high-strain region under tension is
reinforced by enhancing crystallization, the stress-strain
relations under compression are almost parallel, because
orientation hardening in the crystalline phase does not
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markedly contribute to the increase in loading directional
stress as mentioned above. This stress-strain behavior is
the homogenized behavior of individual material points
exhibiting quite different responses depending on the di-
rection of the lamella interface and the interaction of the
material points with their surrounding.

To clarify the deformation behavior of the semicrys-
talline polymer in detail, we evaluate local deformation.
Figure 6 indicates the equivalent strain rate ε̇eq distri-
butions at (1)-(5) in the stress-strain relations shown in
Fig. 3(a). The magnitude of the strain rate is normalized
by the average value of the mesoscopic domain Ė0. As
can be seen in the Fig. 6(1), localized deformation, which
depends on the initial lamella structure, occurs prior to
mesoscopic yielding. Due to orientation hardening in the
amorphous and crystalline phases, and the rotation of the
lamella interface direction, the nonuniform deformation
accompanied by the onset and propagation of localized
deformations in a specific region in the spherulite is ob-
served. These are essential results observed in all cases
and attributable to the interaction between the surround-
ing and the direction of the lamella interface.

Figure 7 indicates the pole figures of the chain directions
under (a) tension and (b) compression at stages (1) and
(5) indicated in Fig. 3(a). All points are shown in fig-
ures (A). Randomly distributed points in the pole fig-
ure of the chain direction at stage (1) move toward the
principal stretch direction with the deformation and form
locally clustering regions. The principal slip system is
either the chain slip system or transverse slip system,
which depends on the Schmidt factor and resistance to
slip on each slip plane. To clarify the effects of the chain
slip and transverse slip on the deformation behavior, we
separate all the points in the pole figures (A) into (B);
left- and right-hand sides in (B) indicate the cases where
the principal slip system in the crystalline phase is one
of the chain slip systems and one of transverse slip sys-
tems, respectively. The slip directions of the chain slip
are identical, while those of the transverse slip are differ-
ent; therefore, as depicted in (B) at stage (1), the points
at which the chain slip system is the principal slip sys-
tem highly concentrate near the loading direction, while
the points at which the transverse slip is the principal slip
system scatter in the entire region. With the progress of
deformation to stage (5), the chain directions, in which
the chain slip system drives the plastic deformation of the
crystalline phase, particularly rotate toward the stretch

direction. Therefore, the chain directions of the principal
slip system mainly distribute near the loading direction
in stage (1) easily orient to the loading direction, which
results in early orientation hardening. On the other hand,
orientation hardening is markedly delayed in the com-
pression case, where the loading direction is perpendicu-
lar to the principal stretch direction.

When the chain direction completely orients to the
stretch direction, the degree of the stiffness in crystalline
phase markedly increases due to the inextensibility of the
chain direction. Therefore, the deformation of lamellae
with a hardened crystalline phase is mainly absorbed in
the amorphous phase. As a result, the chain direction in
the crystalline phase is slightly misaligned with respect
to the principal direction.

Figure 8 indicates the equivalent stress σeq - strain εeq

relations for the material points in mesoscopic domain,
equivalent stress Σeq - strain Eeq relations for unit
cells without interaction with surroundings, and average
equivalent stress Σeq - strain Eeq relations for the meso-
scopic domain. To avoid the complexity of the figure, the
stress-strain relations for material points selected in the
gray region shown in the inset were displayed. We con-
firmed that the stress-strain relations for material points
generally fall within the range of the scatter of those
shown in the figure. This trend is the same as that of
mean stress-strain relations. The stress-strain relations
of individual material points exhibit very different re-
sponses. Several material points with specific lamella in-
terface directions show very significant hardening. An
interesting observation is the existence of material points
with very large strains and stresses, which are three times
well over the average values for the mesoscopic domain.
Due to their interaction with their surrounding, individ-
ual material points in the mesoscopic domain show a re-
pressed response as compared with the unit cell model,
which is typical of the mesoscopic scale. The extremely
unique deformation behavior exhibiting softening and
hardening observed in the 2D model [Tomita and Uchida
(2005)] disappears in the material points of the meso-
scopic domain, which is attributable to the relaxation of
the constraint of lamella rotation in the 3D model as com-
pared with the 2D model.

Here, we will discuss the mean stress, which is the key
parameter for evaluating the possibility of the onset of
the formation of defects such as cavitations and crazings.
Figure 9 indicates the average mean stress in amorphous
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phase σmA - equivalent strain εeq relations for individ-
ual material points of the mesoscopic domain and mean
stress in amorphous phase ΣmA - equivalent strain Eeq

relations for the unit cell. A very scattered distribution
including negative mean stresses depending on the loca-
tion of material points can be seen. The mean stress in
the mesoscopic domain is suppressed as compared with
the unit cell case, which shows a tendency similar to that
observed in the stress-strain relations in Fig. 8. The dis-
persion of mean stress in the amorphous phase and equiv-
alent strain relations for individual material points in the

3D case is smaller than that in the 2D case [Tomita and
Uchida (2005)], which may be attributable to the easiness
of the rotation of lamellae in the 3D case, whereas it is
limited in a plane in the 2D case. From these results, the
local deformations behaviors in the spherulite strongly
depend on the initial lamella direction, the constraint of
lamella rotation and interaction of material points with
their surrounding. Therefore, these suggest the impor-
tance of the 3D mesoscopic model in evaluating the local
stress and strain that are indispensable for predicting the
strength of semicrystalline polymers.
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The AFM observation of the rotation of lamellae in the
mesoscopic scale of HDPE under tension indicates that
the material points essentially rotate in accordance with
the rotation of the mesoscopic scale with a very large
fluctuation as indicated in Figure 10 [Yashiro, Kanai and
Tomita, (2004)]. The present computational simulation
is not necessarily the model of the HDPE employed in
the experimental study, however, similar tendencies of
the local deformation behavior of the lamellae with dif-
ferent directions were observed, which may suggest the
validity of the present results.

5 Conclusion

A new 3D multiscale model relating the micro- to meso-
scopic deformation behaviors of semicrystalline poly-
mers has been developed by employing a homogeniza-
tion method, and the characteristic deformation behavior
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Figure 10 : Rotation of Lamellae in the Mesoscopic Do-
main. θini, θde f are the directions of lamella in initial and
deformed states, respectively.

has been clarified. The main results obtained are as fol-
lows.

1. The average responses of the present mesoscopic-
scale model of semicrystalline polymers are almost
identical, regardless of the tension direction, in
small to large deformation ranges that ensure the
isotropy and validity of the present model.

2. The volume fraction of the crystalline phase signif-
icantly affects the average elasticity modulus and
yielding stress; however, subsequent hardening un-
der compression is markedly suppressed where the
chain direction rotates toward the normal direction
to compression.

3. The interaction with the surrounding and orienta-
tion hardening of individual material points result
in the onset and propagation of mesoscopic nonuni-
form deformation in the mesoscopic domain.

4. The disorderliness of the microstructure of the 3D
model is partially restricted; therefore, the resis-
tance to deformation on the mesoscopic scale of the
3D model is higher than that of 2D model. The frac-
tuation in the local responses in mesoscopic domain
is restrained due to the easiness of lamella rotation
in 3D model.
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5. Equivalent stresses of individual material points in
the mesoscopic domain are more conserved than
those of unit cells, which is closely associated with
the interaction of the material points with their sur-
rounding. Due to the easiness of lamella rotation
in 3D model, the anomalous response observed in
the unit cells of the 2D model is not seen in the
3D model. The magnitude of mean stress exhibits
large scattering as compared with that of equivalent
stress.

6. The above-mentioned characteristic features of the
deformation behaviors of semicrystalline polymers
in the mesoscopic domain and material points, par-
ticularly the difference between the two scales, are
significant, which should be considered in the eval-
uation of the strength of semicrystalline polymers.
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