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Optimized Bearing and Interlayer Friction in Multiwalled Carbon Nanotubes

Wanlin Guo1 ,2 and Huajian Gao2

Abstract: A systematic investigation is performed on
energy dissipation related interaction force associated
with interlayer motion of sliding, rotation and telescop-
ing between any two possible neighboring carbon nan-
otubes. In particular, we analyze the interlayer corruga-
tion energy and sliding, rotation and telescoping resis-
tance force associated with the Lennard-Jones potential
as well as a registry-dependent graphitic potential. It is
found that the interlayer resistance associated with both
of these potentials can vary with the morphology, length
and diameter of the two tubes. Energy dissipation re-
lated fluctuation of the resistant force can be as low as
10−18N/atom between the most optimistic tube pairs, but
can be as large as 10−11N/atom in the widely investigated
zigzag/zigzag orientations. In most cases, the fluctuation
of interlayer sliding resistance force increases with the
tube length in a commensurate pair of tubes, but can re-
main unchanged in an incommensurate pair. These find-
ings may be significant for the design of nanotube-based
devices.

keyword: Friction, energy dissipation, molecular me-
chanics, commensuration, multi-walled carbon nan-
otube.

1 Introduction

The ultra-low interlayer corrugation and friction force
in multiwalled carbon nanotubes (MWCNTs) have
been shown both theoretically [Kolmogorov and
Crespi (2000); Damnjanovic, Milosevic, Vukovic and
Sredanovic (1999); Hirano, Shinjo, Kaneko and Murata
(1997)] and experimentally [Yu, Yakobson and Ruoff
(2000); Cumings and Zettl (2000)]. Combining this
property and other exceptional mechanical [Robertson,
Brenner and Mintmire (1992); Treacy, Ebbesen and
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Gibson (1996); Wong, Sheehan and Lieber (1997); Yu,
Lourie, Dyer, Moloni, Kelly and Ruoff (2000); Collins,
Arnold and Avouris (2001)] and electronic properties
[Dai, Wong and Lieber (1996); Guo and Guo (2003);
Tans, Verschueren and Dekker (1998); Martel, Schmidt,
Shea, Hertel and Avouris (1998); Collins, Arnold and
Avouris (2001)], MWCNTs have been identified as
the top candidates for nano-electromechanical systems
[Postma, Teepen, Yao, Grifoni and Dekker (2001);
Rueckes, Kim, Joselevich, Tseng, Cheung and Lieber
(2000); de Heer, Bacsa, Chatelain, Gerfin, Humphrey-
Baker, Forro and Ugarte (1995); Forro, L. (1995); Zheng
and Jiang (2002)]. Many such properties, including
the interlayer friction, are strongly dependent on the
structural anisotropy of MWCNTs [Dai (2002); Roche,
Triozon, Rubio and Mayou (2001); Hamada, Sawada,
Oshiyama (1992); Odom, Huang, Kim and Lieber
(1998); Shyu and Lin (2000)] and need to be more
thoroughly investigated.

Recently, Cumings and Zettl (2000) demonstrated that
the cyclic interlayer sliding is wear-free; the force to
extract a core tube out of an outer housing tube is
constant; the friction force is estimated to be lower
than 10−14N/atom, interlayer sliding takes place be-
tween the same two nanotube shells which apparently
offer the least resistance to interlayer motion; and there
is no multiple telescoping (i.e. simultaneous sliding
among different layers). This self-selection and self-
optimization property of MWCNTs is very intriguing
and could have great potential for applications in nano-
electromechanical devices.

The interaction between two layers of MWCNTs is dom-
inated by the long range van der Waals force. Significant
effort has been made to understand van der Waals interac-
tion between two graphite layers or CNT shells [Tanaka,
Aoki, Ago, Yamare and Okahara (1997); Benedict,
Chopra, Cohen, Zettl, Louie and Crespi (1998); Paulson,
Helser, Nardelli, Taylor II, Falvo, Superfine and Wash-
burn (2000); Brenner, Shenderova, Areshkin, Schall and
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Frankland (2002); Shen and Atluri (2004)]. However, it
is still very difficult to model van der Waals forces by
quantum mechanics [Girifalco and Hodak (2002)], and
most studies of interlayer interaction have been based
on the Lennard-Jones (L-J) potential. Kolmogorov and
Crespi (2000) (K-C) proposed a new registry dependent
two body graphitic potential to model the effects of the
tube morphology and atom number on sliding interlayer
corrugation. It was shown that for a variety of axially
incommensurate tube pairs, the interlayer sliding corru-
gation can be extremely low.

Using static continuous models on excess van der Waals
interlayer interaction energy of MWCNTs, Zheng and
collaborators [Zheng and Jiang (2002); Zheng, Liu and
Jiang (2002)] have proposed the possibility to create
nanoosillators of operating frequency up to several giga-
hertz. Recent molecular dynamical simulations demon-
strate that sustained oscillations are possible in these de-
vices [Legoas, Coluci, Braga, Coura, Dantas and Gal-
vao (2003)]. However, to create a physical set up of
these devices the resistant force to the motion and energy
dissipation rate have to be considered [Guo, Guo, Gao,
Zheng and Zhong (2003); Rivera, McCabe and Cum-
mings (2003)]. The energy dissipation related interlayer
resistance force may play a key role in many other nan-
odevices such as nanobearings, nanoswitches and con-
stant force nanosprings as well.

In this paper, we conduct a systematic investigation of
the resistance forces associated with interlayer motion
in MWCNTs using both the L-J potential and K-C po-
tential. Energy corrugation and the resistance forces as-
sociated with interlayer motion including sliding, rotat-
ing and telescoping between an arbitrarily chosen pair of
neighboring tube shells are found to be closely depen-
dent on the commensuration of the tube pair. A thorough
comparison of the two interlayer potentials is presented
and size effects are also analyzed.

2 Background

Following the notation of White, Robertson and Mint-
mire (1993), each SWCNT is indexed by a pair of in-
tegers (n, m) which define the circumferential direction
in graphitic lattice coordinates. For symmetry, we take
n≥m in this study. The SWCNT radius is given by

R =
√

3a0

2π
n
√

1+x+x2 (1)

where x = m/n and a0 is the length of the C-C bond
which is taken as 1.42Å. With this definition, x=0 denotes
an zigzag and x=1 an armchair SWCNT, and 0 < x < 1
covers all possible orientation. We consider the cases x ∼=
0, 0.2, 0.4, 0.6, 0.8 and 1.0 in this investigation.

Assuming interlayer sliding within a MWCNT only oc-
curs between two layers with least resistance force [Cum-
ings and Zettl (2000)], we will focus on a two-walled bi-
tube system. Subscript “o” denotes the outer shell and
“c” the inner core tube. We use xo/xc to describe the
bi-tube system. For example, the armchair/armchair sys-
tem is 1/1, zigzag/zigzag is 0/0 and zigzag/armchair is
0/1. The ends of all tubes are open without any terminal
group.

For given inner tube radius Rc and fractional index x,
the index (nc, mc) can be determined from the best ap-
proximation to Rc and x. The interlayer distance ∆R =
Ro −Rc in a MWCNT is reported to be about 3.4Å and
may change in the range from 3.354Å to 3.6Å in bulk
graphite. The index (no, mo) is determined from the con-
ditions Ro ≈ Rc+3.4Å and 3.35 Å < ∆R < 3.75Å. If there
are multiple choices, then one in the range ∆R ∈ [3.35,
3.40] and one in the range ∆R ∈ [3.40, 3.75] will be se-
lected. In most of the calculation, Rc

∼=20Å is selected
according to Cumings and Zettl’s experiment.

The interlayer potential are described in the appendix and
the total interlayer interaction energy is

Epot =
Nc

∑
i=1

No

∑
j=1

V(ri j) (2)

where i denotes an atom in the inner shell and j an atom
in the outer shell, Nc and No being the numbers of atoms
of the inner and outer shells, respectively. The radius of
cut-off for energy calculation is set for 5 times of the C-C
bond length.

For rigid tubes, the interlayer sliding and rotational resis-
tance forces can be calculated by

Fslid = −∂Epot

∂ξ
; Frot = − 1

Rc

∂Epot

∂θ
(3)

Where ξ is the relative sliding displacement and θ the rel-
ative angular displacement between the inner and outer
shells.
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3 Interlayer corrugation and resistance force

3.1 Sliding of a short outer shell along a long inner
tube

Consider a short outer tube sliding along the axial di-
rection of a long inner tube. The tube lengths are taken
to be Lo ≈ 36Å and Lc ≈ 86Å. The variation of inter-
layer potential energy as a function of the sliding dis-
placement is plotted in Fig. 1 for the armchair/armchair
(1/1), zigzag/zigzag (0/0) and zigzag/armchair (0/1) bi-
tube systems with Rc

∼= 20Å.
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Figure 1 : Variation of interlayer potential energy with
sliding displacement in a bi-tube system.

We define the interlayer corrugation as the maximal vari-
ation in the total interlayer potential energy as the outer
tube slides over a whole unit cell of the inner tube or ro-
tates over a whole circle with respect to the inner tube.
It can be seen from Fig. 1 that the K-C corrugation is
much more sensitive to xo/xc than the L-J corrugation.
The main reason may be that the L-J potential is only de-
pendent on the inter-atom distance, while the K-C poten-
tial depends not only on the inter-atom distance, but also
on the interlayer space as well as the transverse separa-
tion. The sliding corrugation is lowest in the 0/1 system
and highest in the 0/0 system. The L-J potential shows
the effect of registry dependent corrugation, although this
effect is weaker than that associated with the K-C po-
tential. The average value of the L-J interlayer potential
energy is sensitive to the interlayer distance. In compari-
son, the K-C potential energy changes only slightly with

the interlayer distance. When ∆R is too small, the L-J
interlayer potential energy even becomes positive so that
the system is unstable, but the K-C energy still remains
close to that of ∆R ≈3.4 Å.

The interlayer sliding resistance force is more sensitive to
the registry between the outer and inner tubes, as shown
by Fig. 2. Both K-C and L-J potentials show that the
fluctuation of resistance force has a discrepancy of two
orders in magnitude among the 1/1, 0/1 and 0/0 bi-tube
systems. The force fluctuation may lead directly to en-
ergy dissipation so that it is an important index for in-
terlayer friction. The force fluctuation in the 0/1 bi-tube
system is the lowest, with magnitude of 0.01 and 0.31
pN/atom for the L-J and K-C potentials, respectively. In
contrast, the force fluctuation in the 0/0 bi-tube system is
the highest, reaching as high as 2.8 and 14 pN/atom for
the L-J and K-C potentials, respectively. As an example
of the intermediate cases, the force fluctuation in the 1/1
system is calculated to be 0.2 and 8.1 pN/atom for the L-J
and K-C potentials, respectively. The smallest interlayer
force fluctuation is similar to that estimated by Cumings
and Zettl (2000).

From Fig. 3 and comparison of Fig. 3 with Fig. 2,
it can be found that the sliding corrugation and resis-
tance force per atom in the 1/1 and 0/0 systems varies
slightly with the tube radius but are independent of the
tube length. The maximum of resistance force of the L-J
potential is fL−J ≈ 2.4 pN/atom for (18,0)/(9,0) and 0.16
pN/atom for (10,10)/(5,5), and that of the K-C potential
is fK−C ≈13 pN/atom for (18,0)/(9,0) and 2 pN/atom for
(10,10)/(5,5) tube systems.

In the 0/1 tube system, however, the corrugation and
resistance force are dependent on both the tube radius
and tube length. The maximum resistance force of a
(18,0)/(5,5) system is plotted in Fig. 4. It is seen that
both fK−C and fL−J change with the number of atoms,
although fL−J is nearly two orders of magnitude lower
than fK−C. In our range of investigation, the forces de-
crease with the number of atoms in the outer shell.

3.2 Interlayer rotating resistance

The rotation corrugation and fluctuation of resistance
force in 1/1, 0/0 and 0/1 bi-tube systems are extremely
low, on the order of 10−17 ∼10−18 N/atom, by both L-J
and K-C potentials. In 1/1 and 0/0 systems, the max-
imum resistance force per atom is independent of the
number of atoms and there is a slight dependence in the
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Figure 2 : Interlayer sliding resistance force associated with (a) the K-C potential and (b) the L-J potential.
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Figure 3 : Tube length effects on the interlayer sliding resistance force from both K-C and L-J potentials in (a) 1/1
and (b) 0/0 systems with Rc

∼=3.39Å.

0/1 system. These systems are the smoothest rotational
bearings. In systems with arbitrary xo/xc, fluctuation of
the rotational resistance can be several orders of magni-
tude higher and also depends on the size of the system.
Typical result is shown in Fig. 5.

The results of sliding and rotating resistance forces for
bi-tube systems with Rc ≈ 20Å are listed in Tab. 1. In the
cases of sliding, the number of atoms is about 2000 in the
outer shell, and 4000 in the inner shell. The results are
obtained by sliding the outer tube along the middle por-
tion of the inner tube. In the case of rotation, Lo ≈ Lc ≈
33∼36Å. The maximum sliding resistance forces of the
1/1 and 0/0 systems are one to two orders of magnitude
higher than those of the other systems. When the L-J po-
tential is used, the maximum sliding resistance is highest

in the 0/0 systems, about 3×10−12 N/atom, and is sec-
ond highest in the 1/1 system, about 2×10−13 N/atom,
and lowest in few cases at about 0.8 ∼ 2×10−17 N/atom,
and in the rest systems it is in the range of 10−15 ∼10−13

N/atom; the maximum rotating resistance is about 10−17

N/atom in the 1/1, 0/1 and 0/0 systems and in the range of
0.4×10−16 ∼ 0.9×10−13 N/atom for the rest cases. The
K-C potential leads to higher resistance forces in most of
the situations except the 1/1, 0/0 and 0.4/0 systems, in
which cases the maximum resistance is less than about
0.5 pN/atom. In many cases, both potentials lead to max-
imum resistance force on the order of 10−14 N/atom, and
in some special cases, the force can be as low as 10−18

N/atom. These results provide a guide to understand the
variation of resistance forces against interlayer motion in
CNTs.
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Table 1 : Interlayer sliding and rotating resistance forces in double walled CNTs.

Inner tube                       outer tube          R∆                     fL-J (pN/atom)                 fK-C (pN/atom) 

xc     (nc, mc)                   xo    (no, mo)         (Å)                 sliding   rotating              sliding     rotating 

0.000  (51,   0)         0.000  (60,   0)    3.5230    2.936 ~0.00003 14.158 ~0.000007 

                                0.185  (54, 10)    3.3790    0.072      0.0004 0.232      0.004  

 (Rc=19.9636)         0.204  (54, 11)    3.6239    0.003       0.027  0.140      0.007 

          0.396  (48, 19)    3.4478    0.056       0.011   0.420      0.760 

          0.581  (43, 25)    3.3560    0.061       0.025   0.242      0.043 

                 0.605  (43, 26)    3.6628    0.019       0.020   0.100      0.033 

          0.816  (38, 31)    3.4675              0.041        0.010   0.170       0.013 

                   1.029  (34, 35)    3.4282              0.030        0.010   0.260       0.015 

0.196  (46,   9)         0.000  (60,   0)    3.4847        ~0.000008       0.010 0.009       0.086 

          0.204  (54, 11)    3.5856              0.005        0.041 0.110       0.110 

(Rc=20.0020)         0.396  (48, 19)    3.4095              0.032         0.071 0.100       0.084 

          0.605  (43, 26)    3.6245              0.018       0.017 0.080      0.051 

          0.816  (38, 31)    3.4291    0.010       0.071 0.094      0.130 

          1.029  (34, 35)    3.3899    0.011       0.034 0.075      0.148 

          1.000  (35, 35)    3.7280    0.0003      0.003 0.0004      0.016 

0.390  (41, 16)         0.017  (59,   1)    3.3605    0.029       0.089 0.070      0.212 

          0.000  (60,   0)    3.5537        ~0.000008       0.006 0.028      0.025 

(Rc=19.9329)         0.185  (54, 10)    3.4097    0.015       0.051 0.086      0.160 

          0.396  (48, 19)    3.4786    0.006       0.080 0.055      0.114 

          0.581  (43, 25)    3.3868    0.014        0.181 0.088      0.100 
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(Table 1 continue) 

           0.605  (43, 26)    3.6936    0.003       0.018 0.017      0.033 

          0.816  (38, 31)    3.4982    0.014       0.046 0.090      0.128 

          1.029  (34, 35)    3.4589    0.011       0.036 0.055      0.120 

0.611  (36, 22)         0.017  (59,   1)    3.4413    0.019       0.058 0.056      0.115 

          0.208  (53, 11)    3.3491    0.092       0.111 0.251      0.114 

(Rc= 19.8520)         0.185  (54, 10)    3.4906    0.035       0.054 0.047      0.103 

          0.396  (48, 19)    3.5595    0.009       0.025 0.103      0.073 

          0.619  (42, 26)    3.4117    0.032       0.128 0.270      0.270 

          0.816  (38, 31)    3.5791    0.005       0.026 0.026      0.040 

          1.029  (34, 35)    3.5398    0.021       0.049 0.070      0.092 

0.844  (32, 27)         0.000  (60,  0)     3.4617         ~0.00002       0.002 0.004      0.031 

          0.204  (54, 11)    3.5626        ~0.000008      0.114 0.117      0.144 

(Rc=20.0249)         0.396  (48, 19)    3.3865    0.014       0.067 0.407      0.179 

          0.417  (48, 20)    3.6695    0.002       0.004 0.040      0.052 

          0.605  (43, 26)    3.6015    0.005       0.025 0.050      0.121 

          0.816  (38, 31)    3.4062    0.009       0.038 0.207      0.178 

          1.029  (34, 35)    3.3669    0.040       0.087 0.159      0.154 

          1.000  (35, 35)    3.7051        ~0.000008       0.013 0.016      0.017 

1.000  (29, 29)         0.000  (59,   0)    3.4332    0.008   ~0.00001 0.310 ~0.000002 

          0.208  (53, 11)    3.5391    0.005       0.017 0.026      0.030 

(Rc=19.6620)         0.404  (47, 19)    3.3734    0.010       0.057 0.114      0.030 

          0.396  (48, 19)    3.7495    0.005       0.025 0.145      0.028 

          0.619  (42, 26)    3.6017    0.001       0.011 0.035      0.048 
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(Table 1 continue)         

0.789  (38, 30)    3.4431    0.001       0.005 0.039      0.026 

          1.000  (34, 34)    3.3900    0.190   ~0.00004            8.100  ~0.00001 

          1.029  (34, 35)    3.7298    0.0002       0.007 0.004      0.010 
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Figure 4 : The maximum sliding resistance force as a
function of the number of atoms in the (18,0)/(5,5) bi-
tube system.
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Figure 5 : Typical rotation resistance curve of an incom-
mensurate tube system.
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Figure 6 : Typical variation of telescoping interlayer re-
sistance to intertube displacement.

3.3 Telescoping resistance

An important mode of interlayer sliding is to telescope
the inner tube from the outer tube. In such a situation,
the number of atoms in the overlap section changes with
the relative motion of the two tubes. The characteristics
of this kind of telescoping resistance are quite different
from the resistance to slide a short tube on a long tube. A
typical variation of the telescoping interlayer resistance
with respect to intertube displacement is shown in Fig.
6. In the initial stage, the force increases with telescop-
ing length, ξ. When ξ is greater than about 0.5nm, the
average resistance force ( f ) tends to a steady-state value
depending on xo/xc. This is mainly because of the rela-
tive positions of the fours ends of the two shells and the
built up of finite-range effects in the potentials. In the
steady-state stage, the resistance force changes periodi-
cally around the average value with a maximum ampli-
tude ∆ f . In most cases, ∆ f is nearly constant and is small
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in comparison to f . Both ∆ f and f is strongly dependent
on xo/xc. Therefore, f and ∆ f play a role in the interlayer
resistance.

3.3.1 Size effects

As shown in Tab. 2 where we have chosen L = Lc ≈ Lo,
the average telescoping force in the steady-state stage is
independent of tube length, but the fluctuation depends
not only on x0/xc, but also on the tube length L. Typical
results for the 1/1 and 0/0 systems are shown in Fig. 7.
In the 1/1 system, ∆ fL−J is nearly in linear proportion
to the number of atoms, or ∆ fL−J /Nc is nearly constant.
In the 0/0 system, however, ∆ fL−J /Nc is an increasing
function of length. For example, ∆ fL−J /Nc = 6.84, 7.08
and 7.87 pN/atom for the (18,0) / (9,0) system with L =
4.3, 8.6 and 17.8nm, respectively. It can also be seen that
∆ fL−J decreases with increasing telescoping distance, or
decreasing number of overlapping atoms in both 0/0 and
1/1 systems. In comparison, the ∆ fK−C in these systems
is much greater than f K−C and is generally too large to
be shown in the same figure with fL−J .

In the 0/1 system, the fluctuations of resistance forces
∆ fL−J and ∆ fK−C are independent of the tube length but
they increase with the tube radius as shown by Fig. 8 and
are much smaller than the corresponding values in the
1/1 and 0/0 systems. When the tube length increases, the
force fluctuation per atom will decrease. For example,
for (18,0)/(5,5) systems with tube lengths of 5, 20 and
100nm, ∆ fL−J/Nc=0.016, 0.0039 and 0.00078 pN/atom,
and ∆ fK−C/Nc=0.26, 0.066 and 0.013 pN/atom respec-
tively. Therefore, the 0/1 system is the smoothest pair of
tubes to telescope. The average telescoping force does
not change with tube length, but changes with tube ra-
dius.

Further study on the size effect in more general cases
shows that for xc=xo, both ∆ fL−J and ∆ fK−C increase
with tube length and are nearly proportional to the num-
ber of atoms. For axial incommensurate systems with
xc �= xo, ∆ fL−J and ∆ fK−C do not change with tube length
and the resistance per atom decreases with increasing
tube length and can be extremely low for long tube sys-
tems. Fig. 9 shows the results for xo/xc other than 0/1.
Our studies also show that the fluctuation of resistance
force depends on the tube radius, as illustrated in the last
three rows of Tab. 2. In most cases, the force fluctuation
increases with increasing tube radius. However, changes
in tube radius usually induce only moderate variation in

the fluctuation of resistance forces without altering their
order of magnitude.

In Tab. 3, the telescoping forces for bi-tube systems
with xo and xc

∼=0, 0.2, 0.4, 0.6, 0.8 and 1.0 are listed
for Rc ≈2nm. The tube combinations are chosen to
have interlayer gap nearest to 0.34nm while greater than
0.339nm for the required xo/xc. The length of the tube
is about 3.4nm with No

∼= 2000 and Nc
∼= 1600, and

the forces are divided by No in the table. The average
f and fluctuation range ∆ f of the telescoping force is
taken from the steady-state stage. Here, ∆ f is the differ-
ence between the maximum and minimum values over
the whole steady-state stage and fmax = f +∆ f/2 stands
for the maximum telescoping resistance and ∆ f is closely
related to the interlayer friction force.

We find that for given xc, the L-J interlayer telescoping
force f L−J is the lowest when the interlayer gap ∆R is
nearest to 0.34nm (as shown by underline), which hap-
pens at xo

∼= xc when xc ≥ 0.6. However, ∆ fL−J in such
a tube pair is not the lowest. In contrast, ∆ fL−J is largest
at xo = xc=1 and 0, and ∆ fK−C is largest for all xo = xc

except for xc
∼=0.4. The K-C potential is not sensitive to

∆R and the smallest f K−C has no significant relation with
xo/xc or ∆R. This phenomenon may implicate that the L-
J potential can provide rather reasonable prediction de-
pendency of the interaction upon the interlayer distance.
As both potentials are empirical ones, more subtle details
need further study.

Except for the cases of xo = xc=1 and 0, ∆ fL−J

varies in the range between 8×10−14N/atom and
3.2×10−16N/atom; ∆ fK−C varies in a much smaller range
of 1.5 to 80×10−14N/atom. In the case with ∆R is not
smaller than but close to 0.34nm for a given xc, ∆ fL−J

only changes from 0.72 to 1.75 ×10−14N/atom. For the
lowest f K−C under fixed xc, ∆ fK−C is limited to 1.1 to
10.9 ×10−14N/atom. If we define the static telescoping
friction force by ft = ∆ f/2, it can be concluded that, at
least for the size used in Tab. 3, the friction force is on the
order of 0.36∼5×10−14N/atom in the optimized cases.

3.3.2 Mixed telescoping and rotating

Mixed telescoping and rotation can be characterized by
the factor β = Rcθ̇/ξ̇. For the 0/0 and 1/1 systems, change
of β has only very slight effect on the telescoping force
fL−J, but has strong effect on rotating force fL−J. The
effect of β on the force fK−C is very significant for both
rotation and telescoping. For the 0/1 system, however,
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Figure 7 : Variation of telescoping resistance forces in commensurate (a) 1/1 and (b) 0/0 systems.
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Figure 8 : The length independent fluctuation of telescoping force in 0/1 systems with (a) small and (b) large radii.
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Figure 9 : The effect of tube length on the telescoping force in incommensurate tube systems: (a) 0.625/0 and (b)
1/0.182 systems.
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Table 2 : Effects of nanotube sizes on the telescoping interlayer resistance force.

Tube system         Nc          Lc f L-J       ∆ fL-J    ∆ fL-J/Nc f K-C ∆ fK-C ∆ fK-C/Nc

R∆ (nm)                      (nm)      (pN)       (pN)    (pN/atom)     (pN)       (pN)      (pN/atom)   

    300     3.751         208         0.69                         3550       11.90 

 (10,10)/(5,5)    600     7.440       656       391         0.65         1250        5010         8.40 

   0.3390   900   11.129        587         0.65                         8450         9.40 

    360     4.296      2451         6.84                       17739       49.30 

 (18,0)/(9,0)   720     8.556     1156     5114         7.08           900      37037       51.40 

  0.3523  1440   17.755    11349         7.87                       75634       52.50 

    300     3.751                       0.04                                          0.73 

 (18,0)/(5,5)    600     7.440     1442         13         0.02           772          218         0.36 

  0.3656    900   11.129                       0.01                                          0.24 

    600      3.751                                      0.13                                        14.70 

(26,0)/(10,10)  1200     7.440     1071         81         0.07           202            88         0.07 

  0.3398  1800   11.129                       0.04                                          0.05 

(59,0)/(29,29)  1740     3.751     3364       171         0.10           478          190         0.11 

  0.3433  3480     7.440                       0.05                                          0.06 

the telescoping force fL−J and rotating force fL−J are in-
dependent of β.

4 Intralayer deformation effects

It has already been shown1 that, since the in-plane mod-
ulus is much higher comparing to the weak interlayer
interaction, the effect of deformation is only moderate
and will not change the general trends obtained above.
Fig. 10 shows the comparison between results from rigid
tubes and results of quasi-static MD. In the quasi-static
MD simulation, the Tersoff-Brenner potential is used and
the core tube is telescoped out of the outer tube step by

step just like in the above theoretical analysis, but the
tube system is relaxed at the beginning and at every step
in the simulation. The discrepancy caused by the defor-
mation of tubes is relatively small in both of the tube sys-
tem shown in Fig. 10.

5 Molecular dynamics simulations

Molecular dynamics (MD) simulations are performed on
the (10,10)/(5,5), (18,0)/(5,5) and (18,0)/(9,0) oscillating
systems with length L ≈3.4nm. The inner core tube is
telescoped out to about 1/4L and the system is relaxed to
its minimum energy state with the outer shell being fixed
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Table 3 : Interlayer telescoping resistance force in double walled CNTs.

     Inner tube                    outer tube         R∆                   fL-J (pN/atom)                 fK-C (pN/atom)  

    xc      (nc, mc)                xo    (no, mo)        (Å)               ∆ fL-J JLf −                ∆ fK-C       CKf −

0.000  (51,   0)         0.000  (60,   0)    3.5230a    1.988     0.997               6.793    1.335 

                                0.204  (54, 11)    3.6239    0.014     1.171  0.063    0.703 b

 (Rc=19.9636)         0.396  (48, 19)    3.4478    0.028     0.747    0.767    0.938 

          0.605  (43, 26)    3.6628    0.027     1.202    0.015    1.512 

          0.816  (38, 31)    3.4675              0.019      0.817   0.070     0.915 

                   1.029  (34, 35)    3.4282              0.018      0.670 b   0.188     0.975 

0.196  (46,   9)         0.000  (60,   0)    3.4847              0.027     0.907  0.124     0.905 

          0.204  (54, 11)    3.5856 a            0.005      1.1100 0.189     0.733 

(Rc=20.0020)         0.396  (48, 19)    3.4095              0.015       0.586 b 0.104     1.019 

          0.605  (43, 26)    3.6245              0.009     1.171  0.058         0.694 

          0.816  (38, 31)    3.4291    0.006     0.672  0.073    0.981 

          1.029  (34, 35)    3.3899    0.001     1.295  0.011    0.615 b

0.390  (41, 16)         0.000  (60,   0)    3.5537    0.021     1.077  0.091    0.819 

          0.185  (54, 10)    3.4097    0.014     0.606 b 0.075    1.053 

(Rc=19.9329)         0.396  (48, 19)    3.4786 a    0.010     0.843  0.061    0.885 

          0.605  (43, 26)    3.6936    0.002     1.229  0.030    0.628 b

          0.816  (38, 31)    3.4982    0.007     0.899  0.060    0.852 

          1.029  (34, 35)    3.4589    0.004     0.778  0.092    0.921 

0.611  (36, 22)         0.017  (59,   1)    3.4413    0.010     0.711  0.062    0.951 

          0.185  (54, 10)    3.4906    0.007     0.913  0.144    0.902     

(Rc= 19.8520)         0.396  (48, 19)    3.5595    0.004     1.043  0.043    0.760 
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(Table 3 continue)           

0.619  (42, 26)    3.4117 a    0.015     0.612 b 0.298    1.039 

          0.816  (38, 31)    3.5791    0.001     1.080  0.019    0.740 b

          1.029  (34, 35)    3.5398    0.007     1.002  0.042    0.797 

0.844  (32, 27)         0.000  (60,  0)     3.4617    0.018     0.824  0.080    0.971 

          0.204  (54, 11)    3.5626    0.008     1.061  0.107    0.770 

(Rc=20.0249)         0.417  (48, 20)    3.6695    0.003     1.263  0.039    0.679 

          0.605  (43, 26)    3.6015    0.003     1.130  0.032    0.721 

          0.816  (38, 31)    3.4062 a    0.007     0.570 b 0.355    1.026 

          1.000  (35, 35)    3.7051     0.001     1.268  0.023    0.646 b

1.000  (29, 29)         0.000  (59,   0)    3.4332    0.037     0.712  0.417    1.006 

          0.208  (53, 11)    3.5391    0.002     0.992  0.022    0.786 

(Rc=19.6620)         0.396  (48, 19)    3.7495    0.003     1.263  0.109    0.575 b

          0.619  (42, 26)    3.6017    0.0003    1.157  0.092    0.740 

          0.789  (38, 30)    3.4431    0.0006     0.740  0.029    0.977 

          1.000  (34, 34)    3.3900 a    0.356     0.509b              15.945    1.123  

a  for xo ≅ xc.      
b  for the smallest telescoping force.       No ≅ 2000,    Nc ≅ 1600.

by two atoms at one end and one atom at another end to
remove the rigid movement of the outer tube. Both in-
ner and outer tubes are free-open ended. Then the core is
released and begins to oscillate with respect to the outer
shell driven by the van der Waals force of the interlayer
L-J interaction. This is simulated using molecular dy-
namics at an initial temperature of 8K with constant total
energy control. The intra-shell atomic interactions are
modeled by the standard AMBER molecular force field.
The time step is 1fs in the simulation which is much
smaller than the period of oscillation (about 10ps) and
the simulating duration is up to order of nanoseconds to
show the clear trend for comparison. The details of the
simulations are the same as in [Guo, Guo, Gao, Zheng

and Zhong (2003)].

Once the core is released, it will retract into the outer
shell under the interlayer interaction and the potential
energy will decrease while the kinetic energy increases.
When the core is completely retracted into the outer shell,
the interlayer potential energy decreases to its minimum
value but the core has accelerated to its maximum speed.
Under the action of inert force, the core moves out of the
outer shell in the opposite end, forming a nano-oscillator
[Zheng and Jiang (2002)]. The fluctuation of the inter-
layer resistance causes energy dissipation so that the os-
cillating amplitude decreases with time [Guo, Guo, Gao,
Zheng and Zhong (2003); Rivera, McCabe and Cum-
mings (2003)]. This oscillator system is used to demon-
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Figure 10 : The influence of tube deformation on the
interlayer telescoping force in both 0/0 and 0/1 systems.
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Figure 11 : Dissipation rate of potential energy in the
0/1, 1/1 and 0/0 bi-tube oscillators. The amplitude of the
potential energy is normalized by its value A0 at begin-
ning of oscillating, which is about 70kcal/mol in the MD
simulations.

strate the orientation dependent fluctuation of interlayer
resistance forces calculated in this paper. The results
plotted in Fig. 11 show that the rate of energy dissipa-
tion rate is much slower in the (18,0)/(5,5) system than
in the (10,10)/(5,5) system, and the dissipation rate in the
(18,0)/(9,0) system is the highest, where the amplitude
of the potential energy is normalized by its value A0 at
the beginning of oscillation. In the present simulations,

A0 is about 69 to 73kcal/mol. The energy dissipation
rate of the three system are 1.7%, 12% and 26%A0 per
nanosecond. The predicted durations of sustained oscil-
lation from the figure are about 58, 8 and 4ns for the three
cases. The effective dynamic interlayer friction forces as
defined in [Guo, Guo, Gao, Zheng and Zhong (2003)] for
the three cases are 0.085, 0.400 and 0.612pN/atom re-
spectively. In comparison, the static force fluctuations of
the systems are about 0.04, 0.07 and 7.0 pN/atom. There-
fore the general trend of registration dependence of the
interlayer friction is the same from both molecular stat-
ics and dynamics, but the static force fluctuation is not
in proportional to the dynamic friction force. Both static
and dynamic results show that the 0/1 system is smoother
than the 1/1 system and the 0/0 system is the toughest. In
the constant total energy control systems, losses in me-
chanical potential and kinetic energies change into ther-
mal energy and cause rise in temperature. The 0/1 and
1/1 systems have increments of about 1.2K and 6K in
the 3ns simulation respectively, while the increment in
the 0/0 system in 1ns is as high as 6.6K. Extended re-
search on effects of many other factors, such as defects,
size and terminal conditions of the tubes systems on the
energy dissipation will be studied in a separate paper.

6 Conclusions

Systematic investigations of sliding, rotation and tele-
scoping interlayer interaction between any two possi-
ble neighboring carbon nanotubes are performed in the
present work theoretically. The interlayer corrugation en-
ergy and the details of the variation of the interlayer re-
sistance force for sliding, rotation, telescoping and cou-
pled telescoping and rotation between any possible bi-
tube systems are analyzed by assuming that the inter-
layer interaction is characterized by either the classi-
cal Lennard-Jones (L-J) potential or a registry-dependent
graphitic potential (K-C potential). It is found that the
energy dissipation related fluctuation of interlayer inter-
action forces can vary significantly with the morphology,
length and diameter of the two tubes. The dependence
of the force fluctuation upon the registry and size of the
bi-tube systems are quite different in the three modes of
interlayer motion. For a short outer shell sliding along a
long inner tube core, the maximum interlayer resistance
force of an axially commensurate system is independent
of the length of the outer tube and can be one to two or-
ders of magnitude higher than those of the other systems.
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When the L-J potential is used, the maximum fluctua-
tion of the sliding force are in the range of 10−17 ∼10−12

N/atom, while the K-C potential predicts a much higher
fluctuation. The rotation corrugation and force fluctua-
tion in systems with any combination of zigzag and/or
armchair tubes are extremely low, usually on the order
of 10−17 ∼10−18 N/atom, according to both L-J and K-
C potentials. These systems are the smoothest rotational
bearings. In comparison, fluctuation of the rotational re-
sistance in systems with arbitrary registry can be several
orders of magnitude higher and depend strongly on the
size of the system.

In case of telescoping a core tube out of an outer shell
in commensurate systems, the fluctuations of the inter-
layer forces given by both L-J and K-C potentials in-
crease with the tube length and are nearly proportional to
the number of atoms. For axial incommensurate systems,
the force fluctuation given by both potentials is found to
be independent of the tube length and vary in the range
of 8×10−14N/atom to 3.2×10−16N/atom for the L-J po-
tential and in the range of 1.5 to 80×10−14N/atom for
the K-C potential. This means that the force fluctuation
per atom in an incommensurate system decreases with in-
creasing tube length and the telescoping friction force per
atom can be reduced by increasing the tube length. The
rotational motion has only slight influence on the fluc-
tuation of telescoping force in a commensurate system,
but can have significant effect in most incommensurate
systems. We find that in a zigzag/armchair system, the
fluctuations of both telescoping force and rotating force
are independent of the mode mixity ratio so that mixed
telescoping and rotating motion is most favorable to oc-
cur in this system.

The L-J potential is registry sensitive and in many cases
it yields similar tendency as the K-C potential, but it is
much simpler and easier to use.
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Appendix

In this study, the interlayer interaction has been modeled
with the 12-6 Lennard-Jones potential

VLJ(ri j) = 4ε
[(

σ
ri j

)12−
(

σ
ri j

)6
]

(A1)
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Figure A1: The variables in KC and LJ potential (a) for planar graphite bi-layers; (b) for bi-walled carbon nanotubes.

and the registry-dependent two-body graphitic potential
developed by Kolmogorov and Crespi1:

VKC(ri j) = −
(

d
ri j

)6
+e−λ1(ri j−r0)

+e−λ2(zi j−z0)e−(ρi j/δ)2 6
∑

n=0
C2n (ρi j/δ)2n

(A2)

Where z is the interlayer space and ρ is the transverse
separation. The constants for carbon nanotubes are as
follows:

ε = 0.3496kJ/mol, σ=3.851Å.

C0=11.964, C2=6.78, C4=-18.418, C6=9.836, C8=-
1.8938, C10=-0.6391, C12=0.08652.

d=4.68Å, r0=4.00Å, z0=3.44Å,δ =0.568Å, λ1=4.19Å,
λ2 =3.444Å.

In situation of atoms in planar graphite bi-layers, as
shown by Fig.A1 (a), the LJ potential only considers the
distance ri j between the two atoms i and j, while in the
KC potential, except ri j the layer gap zi j, the transverse
separation ρi j are included as variables as well to “reflect
the registry-dependence” in two-body graphitic systems.

For atoms on two planar layers, ρi j =
√

r2
i j − z2

i j.

When applied the KC potential to a bi-walled nanotube
system as shown by Fig.A1 (b), the definition of the
transverse separation ρi j becomes confusion and we use

ρi j =
√

r2
i j − z2

i j approximately in this study.


