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Predicting Wave Run-Up using Full ALE Finite Element Approach considering
Moving Boundary

Shahin Zohouri1, Moharram D. Pirooz2, and Asad Esmaeily3

Abstract: A numerical scheme is developed to predict
the wave run-up of an unsteady, incompressible viscous
flow with free surface by the author1. The method in-
volves a two dimensional finite element with moving
boundaries. The governing equations were the Navier-
Stokes equations for conservation of momentum and
mass for Newtonian fluids, continuity equation, and full
nonlinear kinematic free-surface equation. A mapping
algorithm was developed to solve highly deformed free
surface problems, common in wave propagation. This
algorithm transforms the run up model from the phys-
ical domain to a computational domain. A new Arbi-
trary Lagrangian-Eulerian (ALE) finite element model-
ing technique was used to model the fluid flow and pre-
dict the wave modification. Oscillation of the surface
profile near the vertical wall was corrected by using a nu-
merical procedure in the mapping function, and also by
employing moving boundary technique at the wall point
where run up happens. These oscillations are associated
with mapping process at the boundaries when a full ALE
finite element approach is used in both coordinate direc-
tions.

keyword: Wave run-up, finite element, free surface,
conformal mapping, ALE, moving boundary.

1 Introduction

The numerical solution of gravity free surface waves
has been developed in previous works using Lagrangian
and Eulerian fluid description. Arbitrary Lagrangian-
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Eulerian formulation, as a method developed in recent
years, employs three phases to trace fluid motion. In the
first phase, the free surface is upgraded by Lagrangian
description. In the second phase called “rezoning phase”,
the rezoned velocities and the new grids are specified
such that the distortion in fluid domain is reduced. In the
last phase, the convective terms reserved from the first
phase are calculated. To eliminate the rezoning phase
and reduce the computational time, a new method, as
discussed in this paper, is developed. This method is
based on a new Arbitrary Lagrangian-Eulerian descrip-
tion of the fluid domain in which, the nodal points are
displaced independent of the fluid motion, satisfying a set
of particular equations (transformation functions), with a
fixed computational grid. Nodal displacements in both
coordinate directions result in a full Arbitrary Eulerian-
Lagrangian approach.

The method discussed here, as a modified formulation of
the Arbitrary Lagrangian-Eulerian description, in which
rezoning is determined in advance, leads to a better treat-
ment of fluid interfaces with a lower computational time.

For the present study, the flow is assumed to be viscous
and incompressible. No artificial viscosity is introduced
in the kinematic free surface equations to damp out the
free surface oscillations in the region. The equations of
conservation of momentum and mass for incompressible
Newtonian fluids given by Navier-Stokes, and continuity
equation along with full nonlinear kinematic free surface
equation, are adopted as the governing equations. A par-
ticular mapping technique is used to transform the fluid
region and its boundaries into a regular geometry for a
convenient treatment of the moving free surface and ir-
regular bottom topography. This leads to transformation
of the governing equations and the boundary conditions
into more complicated equations. However, the trans-
formed equations can be effectively handled by a proper
analytical and numerical procedure. In the full Arbitrary
Lagrangian-Eulerian approach, mesh grids move in both
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directions of the domain, leading to oscillations at the run
up boundary. These oscillations are associated with the
mapping process. This paper addresses this problem by
using two different techniques. Validity and efficiency
of the proposed algorithms are examined for both cases
by comparing the results with the available numerical ap-
proaches to predict wave run-up over vertical wall.

The developed techniques could easily be extended to an-
alyze many other free surfaces problems such as run-up
over sloping beaches.

2 The Field of Related Research Works

Different algorithms have been employed to solve free
surface problems. A higher order theory is required to
address the nonlinearity effects of extra large free surface
displacements. Navier-Stokes equations are suitable for
a variety of problems in fluid mechanics including extra
large free surface displacements, and have been used in
different methods by researchers in this field.

Wellford and Ganaba [1981] analyzed free surface prob-
lems involving extra large free surface motions using
finite element techniques. They employed a spatially
fixed Eulerian mesh in conjunction with a moving La-
grangian free surface line. Fenton and Rienecker [1982]
have developed a Fourier method to address the interac-
tion of solitary waves with an impermeable wall, whereas
Kim et al. [1983] used the Boundary Integral Equa-
tion Method (BIEM) for the same problem. The asymp-
tote for the maximum run-up of solitary waves on plane
beaches has been derived by Synolakis [1987] using an
approximate theory, supported by a series of laboratory
experiments by Hall and Watts [1953], Camfield and
Street [1969] and Kishi and Saeki [1966].

Zelt [1986] parameterized the wave breaking with an arti-
ficial viscosity term in the momentum equation to damp-
out the oscillation of free surface right behind the bore.
Furthermore, Zelt [1991] investigated the run-up of non-
breaking and breaking solitary waves on plane imper-
meable beaches by using his Boussinesq wave model
and a Lagrangian finite element method. Ramaswamy
and Kawahara [1987] adopted an Arbitrary Lagrangian-
Eulerian description to solve free surface flow involving
large free surface motion using finite element techniques.
Grilli and Svendsen [1989] used a BIEM to solve fully
nonlinear solitary waves interacting with both plane, gen-
tle, and steep slopes. Solitary wave generation, propaga-

tion and Run-up are well described and forces for a verti-
cal wall case are also calculated in their method. Hayashi
et al. [1991] applied a finite element analysis on the
Lagrangian description, combined with a fractional step
method to solve unsteady incompressible viscous fluid
flow governed by Navier-Stokes equations. Although
their formulation was based on viscous fluid, the viscos-
ity was considered equal to zero in application to find the
wave run-up in a tank. Liu et al. [1994] employed the
staggered leap-frog method in solving the shallow water
equations and studied the large-scale tsunami propaga-
tion in ocean and inundation in coastal areas. Using the
same model, they also simulated the solitary wave run-
up on a circular island. Titov and Synolakis [1995] de-
veloped a finite difference model using Godunov method
(second-order approximation in space and first-order in
time) to simulate the same problem. No eddy viscosity
was considered in their model and the energy decay due
to turbulence was handled by numerical dissipation.

Zelt [1991], and Titov and Synolakis [1995] have shown
that the depth-averaged equations models cannot always
describe the evolution of breaking solitary waves as well
as they can calculate the maximum Run-up.

Dolatshahi and Wellford [1995] analyzed free surface
profile with a two dimensional Arbitrary Lagrangian-
Eulerian finite element method to predict wave breaking.
They computed the wave run-up over vertical wall by
employing Eulerian description in wave propagation di-
rection and Lagrangian description in vertical direction.
Oscillation of the free surface on the vertical wall due
to mesh movement in the x direction was a deficiency in
this method. Detailed characteristics of solitary waves
shoaling over plane slopes and those of solitary wave
breakers, like jet shape and wave height variation, were
studied subsequently by Grilli et al. [1997]. Titov and
Synolakis [1998] have extended their inviscid solution to
two dimensional topographies and solved several large-
scale problems. Maiti and Sen [1998] modeled a solitary
wave propagation and run-up on slope by using a higher-
order BIEM where a cubic-spline variation of the geom-
etry and boundary variables was assumed to ensure the
higher-order smoothness of the solution.

Zhou and Stansby [1998] extended an Arbitrary
Lagrangian-Eulerian model in the σ coordinate system
(ALE σ ) for shallow water flows, based on the unsteady
Reynolds-averaged Navier–Stokes equations. The stan-
dard k − ε turbulence model was used to calculate the
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Figure 1 : A definition sketch for a progressive wave in the physical domain.

eddy viscosity time.

L. Gaston and A. Camara [2000] presented a two-
dimensional Lagrangian-Eulerian finite element ap-
proach for non-steady state turbulent fluid flows with free
surfaces. Their model was based on a velocity-pressure
finite element Navier-Stokes solver, including an aug-
mented Lagrangian technique and an iterative resolution
of Uzawa type. Turbulent effects were taken into account
with the k− ε two-equation statistical model. Mesh was
updated using an arbitrary Lagrangian-Eulerian (ALE)
method for a proper description of the free surface evolu-
tion. Loa and Shaob [2002] developed an incompressible
Smoothed Particle Hydrodynamics (SPH) method with a
Large Eddy Simulation (LES) approach to simulate the
near-shore solitary wave mechanics. They solved the
incompressible Navier–Stokes equations in Lagrangian
form using a two step fractional method for a solitary
wave against a vertical wall and its run-up.

3 Governing Differential Equations Based on Full
ALE Approach

The surface motion and run-up for unsteady motion of
a surface wave under gravity is evaluated by solving
the governing equations using a Full Arbitrary Eulerian-
Lagrangian method. By introducing the following vari-
ables:

x = xd, y = yd, p = pρgd, u = u(gd)1/2

v = v(gd)1/2, t = t(
d
g
)1/2 (1)

The dimensionless form of the governing equations in the

Arbitrary Lagrangian-Eulerian description is:

∂u
∂t
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∂u
∂x

+
∂v
∂y

= 0 (4)

∂h
∂t

∣∣∣∣ξ,η +(u−wu)
∂h
∂x

−v = 0 (5)

where x (x) and y(y) are physical coordinate system, ξ
and η are reference coordinate system, u(u) and v(v) are
particle velocities in x and y directions, wu and wv are
mesh velocities in x and y directions, p (p) is pressure,
h (h) is position of the free surface relative to bed, t(t)
is time, d(d) is undisturbed water depth, g is gravity ac-
celeration, Re is Reynolds number and ρ is fluid mass
density. All the parameters in parentheses show the di-
mensionless value of their equivalent parameter.

The boundary conditions for the Arbitrary Lagrangian-
Eulerian formulation are identical to those for the Eule-
rian or Lagrangian methods. The boundary consists of
two types: the boundary on which velocity is given like
run-up wall and bed, and the free surface boundary on
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Figure 2 : A definition sketch showing computational domain

which the surface force is specified as traction force. The
second boundary appears as natural boundary conditions
in the discritised equations. The boundary conditions as-
sociated with Equations 2 to 5 can be expressed as:

u = û on s1 (6)

v = v̂ on s1 (7)

(−p+
2

Re
∂u
∂x

) ·nx +
1

Re
(

∂u
∂y

+
∂v
∂x

) ·ny = ĉx on s2 (8)

1
Re

(
∂u
∂y

+
∂v
∂x

) ·nx +(−p+
2

Re
∂v
∂y

) ·ny = ĉy on s2 (9)

Where the superscript caret ( ˆ ) denotes a function which
is given on the boundary and nx ,ny show the direction
cosines of the outward normal to the boundary with re-
spect to coordinates x and y.

4 Transformation Into Computational Domain.

The weak formulation of equations 2 to 5 is obtained by
multiplying the differential equations by suitable func-
tions and integrating over a domain V, which is bounded
by a surface S with a unit normal vectors in x and y di-
rections nx,ny.

Computing the propagation of free surface waves in-
volves computational boundaries that do not coincide
with coordinate lines in physical space. This requires
a complicated interpolation function (shape function) on
the local grid lines. Transformation of the wave prop-
agation model from the physical domain, (x, y, t) to a
computational domain, (ξ ,η, t) simplifies the problem
of highly deformed air / fluid interface that arises in the

analysis of wave propagation. The distorted region in
physical space is mapped into a rectangular region in the
generalized coordinate space, where the unknown inter-
face coincides with a coordinate line as shown in Fig. 2.

To perform finite element discretization, the variational
equations in the global physical coordinates is written in
terms of the generalized coordinates (ξ,η). This requires
the coordinate transformation of derivatives. Using the
relationships between the physical (x,y) and Computa-
tional (ξ,η) coordinates, the variational equations and
the boundary conditions can be written in terms of the
generalized coordinates as independent variables and dis-
cretization is performed in the generalized coordinate
system.

For grid generation, considering proper correspondence
between points (x,y) in the irregular physical domain and
points (ξ,η) in the regular computational domain, the
following mapping can be established:

x =
3

∑
i=1

(ξ+hαi)Fi(η) (10)

y = η(1+h) (11)

Where αi are parameters used in mapping and the func-
tion Fi(η) is three-point interpolation function defined as:

F1(η) = 1−3η+2η2

F2(η) = 4η−4η2

F3(η) = −η+2η2 (12)

The three parameters αi, (i=1,2,3) should be specified,
in further steps. Detection of the instances where the
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wave profile is not uniquely defined requires evaluation
of the Jacobian of the transformation matrix. For a single
value mapping, the Jacobian of the transformation ma-
trix should be finite and nonzero. This transformation
is used in the modeling of wave propagation and run-up
both over sloping beaches, where the evolution occurs
over bathymetry topography, and over constant depth re-
gions.

4.1 Spatial Transformation Relationship

Since the transformation functions defined in Equations
10 and 11 must be capable of mapping a variety of wave
forms, a general mapping valid for all cases is not easy
to define. For example, in non breaking waves, αi can be
equal to zero. On the other hand αi play a significant role
in mapping breaking waves and also large surface defor-
mations. Several specific transformational functions are
as follows.

4.1.1 Eulerian description

To have an Eulerian description, where the physical co-
ordinate system coincide with the generalized coordinate
system, it is necessary to set α1 = α2= α3= 0.

4.1.2 Eulerian description in x direction and La-
grangian description in y direction

Eulerian Description in x direction and Lagrangian De-
scription in ydirection can be applied for non-breaking
waves. In this case, it is necessary to set α1 = α2 = α3=
0. The transformation is Lagrangian in y direction and
Eulerian in x direction and the problems associated with
this transformation should have single value profile. By
the way, this transformation can be used for spill break-
ing waves where breaking does not happen in the same
way as in the plunging breaking case.

4.1.3 Arbitrary Lagrangian-Eulerian Description

The Arbitrary Lagrangian-Eulerian algorithm is em-
ployed in modeling wave propagation both over sloping
beaches, where the evolution occurs over bathymetry to-
pography, and over constant depth regions. Although this
transformation is convenient for breaking waves, non-
breaking waves can also be treated using the same map-
ping. In Fig. 3 different types of α3 values are provided
and depending on the nature of the problem, some partic-
ular relationships between the undefined parameters α1,

α2 and α3 and the defined parameters ξ, t and h can be
obtained.

As shown in Fig. 3, three different categories can be con-
sidered as follows:

3

Length of physical 

domain

a

b3
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d3

Wave celerity 

V

Figure 3 : Different type of α3function

A. All of the αi values are considered to be constant (a).

B. The αi values are considered to be only a function of
ξ as (b and c).

C. The αi values are functions of ξ and t or their values
depend on h as (d).

Based on the nature and boundary conditions of the prob-
lem, one of the above three cases can be deployed.

4.2 Variational Equations in the Transformed Do-
main

Spatial discretization of partial differential equations in
the numerical model is based on a Galerkin finite ele-
ment method. This method is implemented using the
weighted residual variational method for solution within
each element. Using standard linear shape functions for a
rectangular element in natural coordinate system, the ve-
locity, pressure and correction potential fields within the
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element are interpolated in terms of their nodal values as
follows:

ui = ψ jui j, j = 1,4, [i = 1,2]
p = ψ j p j, j = 1,4

φ = ψ jφ j, j = 1,4

h = ψ jh j, j = 1,2 (13)

Where ψ j is the interpolation function and ui j ,φ j , p j and
h j represent the nodal values at the jth node of the ele-
ment. φ is a scalar which is referred to as the correction
potential base on the Fractional step method presented by
Hayashi and hatanaka (1991). By dividing the total time
t into a number of short time increments ∆t, the equations
of motion, continuity and kinematic boundary condition,
(Equations 2 to 5), can be discretized into:

Mab|J−1|n+1ũn+1
ib = Mab

∣∣J−1
∣∣n

ũn
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−xn+1
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1
∆t

Mab
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Hab

∣∣J−1
∣∣n+1

hn+1
b = Hab

∣∣J−1
∣∣n

hn
b +∆t(Hab

∣∣J−1
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u2b

−ξn
j,1Habb j(un+1
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Note that due to the complexity, the equations are written
in the mapped domain, using indicial notation. Change
of the indices is as:

{i = 1,2 [k = 1,2 (l = 1,2 “j = 1,2”)]}.

Here, ∑n
ξi

and Φn+1
s are boundary integrals, created in

the weak formulations of governing equations, ξi is the
reference coordinate system (ξ1 = ξ and ξ2 = η direc-
tion),

∣∣J−1
∣∣ is the Jacobian inverse of transformation ma-

trix and the following definitions are for the consistent
mass matrix obtained from analytical integration used to
write the above equations.

Ma =
∫
V

ψldv, Mab =
∫
V

ψaψbdv,

MaJb j =
∫
V

ψa,Jψb, jdv, Ma jb =
∫
V

ψa, jψbdv,

Mab j =
∫
V

ψaψb, jdv (19)

Mabb j =
∫
V

ψaψbψb, jdv, Hab =
∫
V

ψaψbds,

Hab j =
∫
V

ψaψb, jds, Habb j =
∫
V

ψaψbψb, jds,

It should be noted that all of the derivations are with re-
spect to ξi.
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Figure 4 : Oscillations at the vertical wall in physical domain.

4.3 Deficiency on the boundary

In the full Arbitrary Lagrangian-Eulerian approach,
nodal points move in both directions in physical domain,
so there must be important notice on solid boundaries like
vertical wall to avoid oscillations near the vertical bound-
ary (Fig. 4). Dolatshahi and Wellford [1995] considered
α1equal to zero and α2as:

α2 =
α3h

2(1+h)
(20)

Hence for predicting wave run up over vertical wall, they
assumed α3 equal to zero and employed fix Eulerian de-
scription in wave propogation direction and Lagrangian
computation for free surface line in vertical direction.

In their approach, since there was no mesh movement in
the x direction, the right side boundary in computational
domain coincided with the vertical wall in physical do-
main without any oscillations.

The deficiency in their method was free surface oscilla-
tions at the boundaries with a non-zero α3(Fig. 4).

These oscillations are due to improper mapping on the
vertical wall. Considering Equation 10 and the value of
F1(η) = F2(η)=0 and F3(η)=1 on the surface, the physi-
cal displacement in x direction on the surface at the wall
point is computed as:

x(wall) = ξ(wall)+α3.h (21)

The physical domain is mapped into a rectangular do-
main, whereas the last physical node, ”x (wall)”, that is

related to the last computational node ξ (wall), will be
out of physical domain and the value of offset is equal to
(α3.h), as illustrated in Fig. 5. To control oscillations, a
moving boundary technique is introduced.
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Figure 5 : Boundary offset (Zoom Box 1)

4.4 Moving Boundary and Numerical Techniques

Two approaches are considered to address the aforesaid
deficiency on the boundary. In the first approach, an effi-
cient equation is introduced for α3on the surface which is
zero on the boundary to control oscillation. In the second
approach, the nodal movements at the bottom are equal
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to the nodal movements on the surface, and by using a
moving boundary technique; the nodes in the physical
domain coincide with the nodes in computational domain
at the wall point.

4.4.1 Fifth order polynomial technique

Oscillations at the boundary can be controlled by elimi-
nating the physical node offset at the boundary as is il-
lustrated in Fig. 5. Except the bottom node at the bound-
ary, all the nodal points move out of the physical do-
main. The reason for this movement is due to Full Arbi-
trary Lagrangian-Eulerian approach that creates an offset
equal to:

o f f set =
3

∑
i=1

(hαi)Fi (η) (22)

To coinside physical and computational boundary at the
wall, a fifth order polynomial function is used for α3 to
delete offsetes on the boundary. The values of αi and
their derivatives are considered zero at the intersection
of common blocks. This assumption makes it possible
to have different definitions for αi at different segments
and keep the values of α2 and α3 equal to zero at certain
arbitrary points such as boundary points.

α3 =
b

ε3l5(1−ε)3 [2(ξ−ξ0)5(2ε−1)

+ l(ξ−ξ0)4(4−5ε−5ε2)
+2l2(ξ−ξ0)3(−1−ε+5ε2)
+ l3εβ(ξ−ξ0)2(3−5ε)] (23)

α2 = cα3 0 < C < 0.5 (24)

Definitions of b, ε, l and ξ0 are illustrated in Fig. 6 Pa-
rameter C is a constant coefficient and it’s value is ob-
tained by trial and error to stabilize the problem.

One of the great advantages of this approach is to control
mesh movement by changing the value of coefficient b
as illustrated in Fig. 6. For different value of coefficient
b and fix number of elements, the results of run-up for a
solitary wave with a normalized amplitude H=0.2, when
the wave climbs up to the maximum height, are presented
in Tab 1.

Respectively, Tab. 1 shows the results of run-up for a
range of values for α3 from zero to 4. Comparing the re-
sult with the exact analytical solution presented by Laiton

l

b

o
e

Figure 6 : definition of parameters in α3 function.

Table 1 : Comparison of the run-up for solitary wave
with a normalized amplitude H=0.2 when the wave
climbs up the right wall to the maximum height apply-
ing different b value.

Normalized Amplitude H =0.2 
grid 160*8 , t =.025

Run-up B

1.42739 0 

1.42352 0.1 

1.42022 0.2

1.41722 0.3 

1.41343 0.4 

1.39608 1 

1.36149 3 

1.35015 4 

[1960] where the height of run-up value is 0.4200, it can
be observed the best result is obtained when α3is equal to
the wave height. For better judgment about the efficiency
and effectiveness of Full Arbitrary Lagrangian-Eulerian
algorithm, the results of mesh refinement in Dolatshahi
and Wellford [1995] algorithm which is Eulerian in x and
Lagrangian in y direction are presented in Tab. 2.

Tab. 2 shows that mesh refinement does not lead to a
better convergence to the exact analytical result presented
by Laiton [1960]. In Tab. 3 results of analytical solution
and Dolatshahi & Wellford approach are compared with
the present algorithm.
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Table 2 : Mesh refinement and comparison of the maxi-
mum run-up for a solitary wave with normalized ampli-
tude of H=0.2 .

Mesh Refinement 
Grid Properties 

Grid
Dimension

Number Of 
Elements

Maximum
Run-Up 

140*7 980 0.44800

160*8 1280 0.44780

180*9 1620 0.44800

200*10 2000 0.44780

220*11 2420 0.44799

240*12 2880 0.44796

4.4.2 Equal movement and moving boundary

One of the advantages of Full Arbitrary Lagrangian-
Eulerian scheme is mesh movement in any direction
which gives the ability of modeling high deformations.
In this method, nodal points can move in both coordi-
nate directions by introducing appropriate mapping func-
tions as defined in equations 10 and 11. Oscillations at
the boundary resulted from the offsets of physical nodal
points at the boundary that do not coincide on the com-
putational domain is shown in Fig. 5. Another ap-
proach to eliminate oscillations is to force equal move-
ments for all of the nodes on the boundary. By using
moving boundary technique, physical boundary will co-
incide with the computational boundary. In this approach
assuming α1 =α2 =α3 = v, will make the nodal points on
the boundary to move and create an offset equal to:

Boundary offset= v.h = α3.h (25)

Where h is the run-up height and v is a constant coeffi-
cient, which controls the boundary offset. The value of v
is proportional to wave height and obtained by trial and
error to stabilize the problem (Fig.3-b).

To have a result close to the analytical solution for a soli-
tary wave with wave height equal to 0.2, the optimum
value of 0.018 for vis obtained by trial and error as in
Tab. 4.

In moving boundary technique, the width of the elements
at the boundary decreases gradually proportional to the
boundary offset. So, at each time step, the mass matrix
will change due to the changes in the dimensions of the
element attached to the boundary. The offset increases in

each time step due to the height of run-up on the vertical
wall. By introducing equation10, x(wall ) is computed
as:

x (wall) = ξ(wall)-( Boundary offset) + α3.h= ξ(wall)

Hence the physical boundary will coincide with compu-
tational boundary, and the oscillations are controlled. Re-
sults of these two techniques are compared with the pre-
vious results and the analytical solution in Tab. 5.

To assess the accuracy of the present approach, the max-
imum run-up of the solitary waves with different ampli-
tudes is computed. Results are compared with the ex-
periment, marker-and-cell (MAC) method done by Chan
and Street [1970], analytical solution presented by La-
ton [1960], the I-SPH computation done by Lo and Shao
[2002],

Fourier analysis done by Fenton [1982] and finally re-
sults by Maiti and sen [1999].

For H/d =0.1 to 0.3 results obtained by the present
method show a good agreement with experimental and
analytical results. It is also in good agreement with re-
sults by Maiti [1999] for all the wave height ranges. This
agreement could be due to using Navier Stokes equa-
tions and full nonlinear free surface boundary in both ap-
proaches, while for H/dabove 0.3, the present results are
slightly smaller in magnitude than experimental data and
Fenton [1982] who used the Fourier method. Analytical
solution by Laiton’s [1960] underestimates experimental
results when H/d is greater than 0.4. This difference re-
sults from the nonlinearity effect which is ignored in the
analytical solution. For H/d greater than 0.4, the I-SPH
method used by Lo and Shao [2002] overestimates the
experimental results.

5 Conclusion

The Full Arbitrary Lagrangian Eulerian method with a
mapping technique was developted to solve free surface
wave propagation and run-up over vertical wall. One of
the advantages of this method is controlling the mesh
movement in any direction which makes it possible to
model high deformations. Calculating the exact analyti-
cal result for wave run-up is also possible in this method
by changing a controlling coefficient to find the best
transformation shape with the selected mapping func-
tions. This coefficient gives the calibration capability to
the model for a wide range of free surface problems. No
smoothing or artificial viscosity is needed to control os-
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Table 3 : Comparing the results of present algorithm with previous works.

Comparing Approaches 

Algorithm
Time
Step

Iteration 
Number Of 
Elements

Maximum Run 
Up

Eulerian in x & Lagrangian in y 
direction(Dolatshahi & Wellford[1995]) 

0.025 388 1280 ( 160 * 8  ) 0.44780 

Full arbitrary  Lagrangian_Eulerian in both 
direction with fifth order polynomial 
(present approach) 

0.025 386 1280 ( 160 * 8  ) 0.42022 

Analytical solution(Laiton [1960])   ------ ------ 0.42000 
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Figure 7 : Comparison of the run-up for a solitary wave with different normalized amplitudes at the time when the
wave climbs on the right wall up to the maximum height by different approaches.

cillations of run-up on boundary which are eliminated by
a moving boundary and fifth order mapping.

In a previous Arbitrary Lagrangian-Eulerian method pre-
sented by Dolatshahi and Wellford [1995], there was no
convergence to exact analytical result but in the Full Ar-
bitrary Lagrangian-Eulerian model, convergence is sat-
isfactory. The model is validated against the analytical
and experimental results. The model can be employed in

Table 4 : Comparison of the run-up for a solitary wave
on the right wall with a normalized amplitude H=0.2 ap-
plying different value for v.

V Maximum Run-Up 

0.01 0.4281

0.017 0.4218

0.018 0.4203

0.02 0.4163
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Table 5 : Comparison of the run-up for a solitary wave with a normalized amplitude H=0.2 at the time when the
wave climbs on the right wall up to the maximum height.

Normalized amplitude    H=0.2 

Algorithm Number of elements L
Time
step

Run-
up

Dolatshahi 1280 20 0.025 0.4478

Hayashi 2048 16 0.01 0.4486

Ramaswamy 2048 16 0.02 0.4480

Grilli ---- 20 ---- 0.4250

Fifth order polynomial technique 1280 20  0.025 0.4202

Equal movement with moving boundary 1280 20  0.025 0.4203

Analytical solution (Laton) ---- 
---
-

---- 0.4200

any geometry, under complicated boundary conditions,
and with arbitrary bathymetry, without any additional
computational effort. The method is tested on a free
unsteady wave of finite amplitude and is found to give
excellent agreement with independent calculations based
on the other existing theories. Finally, it is recommended
to solve free surface problems with new techniques like
mesh less methods and considering turbulent effects with
k-ε equations to compare the results with other previous
results.
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