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The method of fundamental solution for solving multidimensional inverse heat
conduction problems

Y.C. Hon1, T. Wei2

Abstract: We propose in this paper an effective mesh-
less and integration-free method for the numerical solu-
tion of multidimensional inverse heat conduction prob-
lems. Due to the use of fundamental solutions as basis
functions, the method leads to a global approximation
scheme in both the spatial and time domains. To tackle
the ill-conditioning problem of the resultant linear sys-
tem of equations, we apply the Tikhonov regularization
method based on the generalized cross-validation crite-
rion for choosing the regularization parameter to obtain
a stable approximation to the solution. The effectiveness
of the algorithm is illustrated by several numerical two-
and three-dimensional examples.

keyword: Inverse heat conduction problem, funda-
mental solution method, Tikhonov regularization

1 Introduction

A standard inverse heat conduction problem (IHCP) is
to compute the unknown temperature and heat flux at an
unreachable boundary from scattered temperature mea-
surements at reachable interior or boundary of the do-
main. In solving direct heat conduction problems, the
errors induced from boundary or interior measurements
are reduced due to the diffusive characteristic of heat
conduction process. These errors, however, are extrap-
olated and amplified due to the extremely ill-posedness
of the inverse heat conduction problems. In other words,
a small error in the measurement can induce enormous
error in computing the unknown solution at the unreach-
able boundary.

Several techniques have been proposed for solving a
one-dimensional IHCP [Beck, Blackwell, and Clair
(1985); Chantasiriwan (1999); Lesnic, Elliott, and Ing-
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ham (1996); Lesnic and Elliott (1999); Jonas and Louis
(2000); Shen (1999)]. Among the methods proposed for
higher dimensional IHCP, boundary element [Chantasiri-
wan (2001); Kurpisz and Nowak (1992)], finite differ-
ence [Guo and Murio (1991); Khalidy (1998)] and fi-
nite element [Hsu, Sun, Chen, and Gong (1992); Rein-
hardt (1991)] have been widely adopted for problems in
two-dimension. Besides, the sequential function spec-
ification method [Beck, Blackwell, and Clair (1985);
Chantasiriwan (2001)] and mollification method [Murio
(1993)] have also been used in solving the IHCP. There
is, however, still a need on numerical scheme for multi-
dimensional IHCP.

The traditional mesh-dependent finite difference and fi-
nite element methods require dense meshes, and hence
tedious computational time, to give a reasonable approx-
imation to the solution of IHCP and suffers from numer-
ical instability problem. The use of boundary element
method (BEM) reduces the computational time and stor-
age requirement but the problem of numerical stability
still persists. Since there is no need on domain discretiza-
tion in the BEM, the location of interior points, where the
temperature data are collected, can be chosen in a quite
arbitrary way [Chantasiriwan (2001)].

In this paper a new meshless computational method
is proposed to approximate the solution of a multidi-
mensional IHCP under arbitrary geometry. In recent
years, meshless methods, in particular the Meshless Lo-
cal Petrov-Galerkin(MLPG), have attracted great atten-
tion in the scientific community [Atluri and Shen (2002);
Atluri, Han, and Shen (2003); Atluri, Han, and Ra-
jendran (2004)]. A good reference on MLPG can be
found from the book of [Atluri (2004)]. The proposed
method uses the fundamental solution of the correspond-
ing heat equation to generate a basis for approximat-
ing the solution of the problem. Comparing with the
mesh-dependent methods like FEM and BEM, the pro-
posed method does not require any domain or bound-
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ary discretization. This meshless advantage makes the
method feasible to solve high dimensional IHCPs under
arbitrary geometry. Furthermore, unlike BEM which re-
quires an interpolation of the unknown function on the
boundary for complicated boundary integrations, the pro-
posed method gives a global numerical solution on the
entire time-spatial domain. The required surface temper-
ature and heat flux on the unreachable boundary can eas-
ily be computed without any extra quadratures. To tackle
the numerical instability in the resultant ill-conditioned
linear system, we use Tikhonov regularization technique
and the generalized cross-validation criterion [Hansen
(1992, 1994)] to obtain a stable numerical solution for
the multi-dimensional IHCP problem.

In the recent rapid development of meshless computa-
tional schemes, the radial basis function (RBF) has been
successfully developed as an efficient meshless scheme
for solving various kinds of partial differential equations
(PDEs). Most of the problems are still confined to di-
rect problems [Hon and Mao (1999); Hon, Cheung, Mao,
and Kansa (1999); Hon, Lu, Xue, and Zhou (1999); Hon
and Chen (2003); Kansa and Hon (2000)]. In [Hon
and Wu (2000)], Hon and Wu first applied the mesh-
less RBF to solve a Cauchy problem for Laplace equa-
tion, which is a severely ill-posed problem. In [Hon
and Wei (2002)], Hon and Wei combined the meshless
RBF with the method of fundamental solution (MFS)
to successfully solve an one-dimensional inverse heat
conduction problem. This approach can be interpreted
as an extension of the MFS for treating elliptic prob-
lems, for examples, the Laplace equation [Bogomonlny
(1985); Mathon and Johnston (1977)], the biharmonic
equations [Karageorghis and Fairweather (1987)], elas-
tostatics problems [Poullikkas, Karageorghis, and Geor-
giou (2002)], and wave scattering problems [Kondapalli,
Shippy, and Fairweather, (1992a, 1992b]. The MFS was
also applied to solve nonhomogeneous linear and nonlin-
ear Poisson equations [Balakrishnan and Ramachandran
(1999, 2000, 2001); Golberg (1995); Partridge and Sen-
sale (2002)]. More details of the MFS can be found in the
review papers of [Fairweather and Karageorghis (1998)]
and [Golberg and Chen (1998)]. It is noted here that most
of these research works focus on well-posed problems in
which the Dirichlet or Neumann data are given on the
whole boundary. In the IHCP problem, the boundary
conditions are usually complicated and incomplete. We
expect that the combination of the meshless RBF and the

MFS will extend its application to solve higher dimen-
sional inverse problems under irregular geometry.

In [Frankel and Keyhani (1997)], Frankel et al. gave an
unified treatment for the IHCP by using the Chebyshev
polynomials as basis functions. The use of fundamen-
tal solution as the basis functions in this paper provides
a global approximation to the solution in both the spa-
tial and time variables. Since IHCP problem is severely
ill-posed and its solution is extremely sensitive to any
perturbation of given data, enormous error will be ac-
cumulated from using any finite difference scheme for
discretizing the time variable [Cho, Golberg, Muleshkov,
and Li]. The proposed method has a definite advantage
over most of the existing numerical methods in solving
these kinds of time-dependent inverse problems. The
use of Laplace transform for the time variable will re-
duce this time discretization error but result in solving a
Cauchy problem for inhomogeneous modified Helmholtz
equation with an extra parameter in the resulting equa-
tion [Cho, Golberg, Muleshkov, and Li]. For a slightly
larger parameter, the Laplace transform method fails to
give a stable and accurate approximation. In fact, it is
even more difficult to solve a Cauchy problem for modi-
fied Helmholtz than solving the original IHCP. For large
scale problems, an efficient numerical method for treat-
ing the ill-conditioning discrete problem is still needed
for improvement. The recently developed iterative al-
gorithms based on Lanczos bidiagonalization will be a
consideration for future work.

2 Methodology

Let Ω be a simply connected domain in Rd, d = 2,3 and
Γ1, Γ2, Γ3 be three parts of the boundary ∂Ω. Suppose
that Γ1 ∪Γ2 ∪Γ3 = ∂Ω, Γ1 or Γ2 can be empty set. The
IHCP to be investigated in this paper is to determine the
temperature and heat flux on boundary Γ3 from given
Dirichlet data on Γ1, Neumann data on Γ2 and scattered
measurement data at some interior points.

Consider the following heat equation:

ut(x, t) = a2∆u(x, t), x ∈ Ω, t ∈ (0, tmax), (1)

under the initial condition

u(x,0) = ϕ(x), x ∈ Ω, (2)

and the boundary conditions

u(x, t) = f (x, t), x ∈ Γ1, t ∈ (0, tmax], (3)
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and

∂u
∂ν

(x, t) = g(x, t), x ∈ Γ2, t ∈ (0, tmax], (4)

where ν is the outer unit normal with respect to Γ2.

Let {xi}M
i=1 ⊂ Ω be a set of locations with noisy mea-

sured data h̃(k)
i of exact temperature u(xi, t

(k)
i ) = h(k)

i ,

i = 1,2, · · · ,M, k = 1,2, · · · , Ii where t(k)
i ∈ (0, tmax] are

discrete times. The absolute error between the noisy
measurement and exact data is assumed to be bounded,
i.e. |h̃(k)

i −h(k)
i | ≤ δ for all measurement points at all mea-

sured times. Here, the constant δ is called the noisy level
of input data.

The IHCP is now formulated as: Reconstruct u|Γ3 and
∂u
∂ν |Γ3 from (1)–(4) and the scattered noisy measurements

h̃
(k)
i , i = 1,2, · · · ,M, k = 1,2, · · · , Ii.

Remark 2.1 Most of the existing numerical methods
for solving the IHCP problem require a continuous time
measurement u(xi, t) = hi(t), which is not realistic in real
life.

The fundamental solution of (1) is given by

F(x, t) =
1

(4πa2t)
d
2

e−
|x|2
4a2t H(t), (5)

where H(t) is the Heaviside function. Assuming that T >
tmax is a constant, the following function

φ(x, t) = F(x, t +T ) (6)

is a general solution of (1) in the solution domain Ω×
[0, tmax].
We denote the measurement points to be
{(x j, t j)}m

j=1,m = ∑M
i=1 Ii so that a point at the same

location but with different time is treated as two distinct
points. The corresponding measured noisy data and ex-
act data are denoted by h̃ j and h j. The collocation points
are then chosen as {(x j, t j)}m+n

j=m+1 on the initial region

Ω × {0}, {(x j, t j)}m+n+p
j=m+n+1 on surface Γ1 × (0, tmax]

and {(x j, t j)}m+n+p+q
j=m+n+p+1 on surface Γ2 × (0, tmax]. Here,

n, p,q denote the total number of collocation points for
the initial condition (2), Dirichlet boundary condition (3)
and Neumann boundary condition (4) respectively. The
only requirement on the collocation points are pairwisely
distinct in the (d +1)-dimensional space (x, t).

Following the idea of the MFS, an approximation ũ to the
solution of the IHCP under the conditions (2)-(4) with the
noisy measurements h̃ j can be expressed by the following
linear combination:

ũ(x, t) =
n+m+p+q

∑
j=1

λ̃ jφ(x−x j, t− t j), (7)

where φ(x, t) is given by (6) and λ̃ j are unknown coeffi-
cients to be determined.

For this choice of basis function φ, the approximate so-
lution ũ automatically satisfies the original heat equation
(1). Using the initial condition (2) and collocating at the
boundary conditions (3) and (4), we then obtain the fol-
lowing system of linear equations for the unknown coef-
ficients λ̃ j:

Aλ̃ = b̃, (8)

where

A =
(

φ(xi −x j, ti − t j)
∂φ
∂ν (xk −x j, tk − t j)

)
(9)

and

b̃ =

⎛⎜⎜⎝
h̃i

ϕ(xi, ti)
f (xi, ti)
g(xk, tk)

⎞⎟⎟⎠ (10)

where i = 1,2, · · · , (m + n + p), k = (m + n + p +
1), · · · , (m + n + p + q), j = 1,2, · · · , (n + m + p + q) re-
spectively.

The solvability of the system (8) depends on the non-
singularity of the matrix A, which is still an open research
problem. It is not surprise that the resultant matrix A is
extremely ill-conditioned due to the ill-posed nature of
the IHCP. The following sections shows that the use of
regularization technique can produce a stable and accu-
rate solution for the unknown solution λ̃ of the matrix
equation (8), and hence the solution for the IHCP is ob-
tained.

3 Regularization Techniques

The ill-conditionedness of the coefficient matrix A indi-
cates that the numerical result is sensitive to the noise of
right hand side b̃ and the number of collocation points. In
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fact, the condition number of the matrix A increases dra-
matically with respect to the total number of collocation
points. The singular value decomposition (SVD) usually
works well for direct problem [Ramachandran (2002)]
but still fails to provide a stable and accurate solution to
the system (8). A number of regularization methods have
been developed for solving this kind of ill-conditioning
problem [Hansen (1992)]. In our computation we apply
the Tikhonov regularization technique [Tikhonov and Ar-
senin (1977)] based on SVD with the generalized cross-
validation criterion for choosing a good regularization
parameter to solve the matrix equation (8).

Denote N = n+m+ p+q. The SVD of the N×N matrix
A is a decomposition of the form:

A = WΣV ′ =
N

∑
i=1

wiσiv
′
i (11)

where W = (w1,w2, · · · ,wN) and V = (v1,v2, · · · ,vN) sat-
isfying W ′W = V ′V = IN . Here, the superscript ′ repre-
sents the transpose of a matrix. It is known that Σ =
diag(σ1,σ2, · · · ,σN) has non-negative diagonal elements
satisfying:

σ1 ≥ ·· ·σN ≥ 0. (12)

The values σi are called the singular values of A and the
vectors wi and vi are called the left and right singular
vectors of A respectively.

For the matrix A arising from the discretization of the
MFS, the singular values decay rapidly to zero and the ra-
tio between the largest and the smallest nonzero singular
values is often huge. Thus the linear system (8) is a dis-
crete ill-posed problem in the sense defined in Hansen’s
paper [Hansen (1992)].

Based on the singular value decomposition, it is easy to
know that the solution for the linear equations (8) is given
by

λ̃ =
N

∑
i=1

w′
ib̃

σi
vi. (13)

The corresponding solution with exact data is

λ =
N

∑
i=1

w′
ib

σi
vi (14)

where b is calculated by (10) from the exact data h j.

The difference between these two solutions is then given
by

λ̃−λ =
N

∑
i=1

w′
ie

σi
vi, (15)

where e = b̃− b, ‖e‖ ≤ δ. The terms in the difference
with small values of σi will be large since the noisy level
is generally greater than the smallest nonzero singular
value. This is the reason why the following Tikhonov
regularization method is proposed.

The Tikhonov regularized solution λ̃α for equation (8) is
defined to be the solution to the following least square
problem:

min
λ̃

{‖Aλ̃− b̃‖2 +α2‖̃λ‖2}, (16)

where ‖ · ‖ denotes the usual Euclidean norm and α is
called the regularization parameter. The Tikhonov regu-
larized solution based on SVD can the be expressed as:

λ̃α =
N

∑
i=1

fi
w′

ib̃
σi

vi, (17)

where fi = σ2
i /(σ2

i + α2) are called the filter factors,

i = 1,2, · · · ,N. The difference between λ̃α and λ is then
given by

λ̃α −λ =
N

∑
i=1

( fi −1)
w′

ib
σi

vi +
N

∑
i=1

fi
w′

ie
σi

vi. (18)

The norm of this error vector is

‖̃λα −λ‖ =

(
N

∑
i=1

(
( fi −1)

w′
ib

σi

)2

+
(

fi
w′

ie
σi

)2
)1/2

.

(19)

Hence, the approximate solution ũα with noisy measure-
ment for the IHCP is given by

ũα(x, t) =
N

∑
j=1

(̃λα) jφ(x−x j, t− t j), (20)

where (̃λα) j is the j-th entry of vector λ̃α.
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Let uN = ∑N
j=1 λ jφ(x−x j, t− t j) be an approximate solu-

tion with exact data given in the IHCP. An error estima-
tion is then given as follow:

|ũα−uN‖L2(D) ≤

‖̃λα −λ‖
N

∑
j=1

‖φ(x−x j, t − t j)‖L2(D), (21)

where D = Ω× (0, tmax) and the value ‖̃λα −λ‖ is given
by formula (22). The determination of a suitable value
for the regularization parameter α is crucial and is still
under intensive research [Tikhonov and Arsenin (1977)].
In this paper, we use the generalized cross-validation cri-
terion to choose a good regularization parameter.

The Generalized Cross-validation (GCV) [Hansen
(1992)] is a strategy that give a good regularization pa-
rameter by minimizing the following GCV function

G(α) =
‖Aλ̃α − b̃‖2

(trace(IN −AAI))2 , α > 0 (22)

where AI is a matrix which produces the regularized so-
lution when multiplied with b̃, i.e., λ̃α = AIb̃ . In the
Tikhonov regularization method, the denominator of (22)
is simply trace(IN −AAI) = N −∑N

i=1 fi.

In our computation, the Matlab code developed by
[Hansen (1994)] was used to obtain the optimal choice
of regularization parameter α∗ for solving the discrete ill-
conditioned system (8). The corresponding approximate
solution for the problem (1)–(4) with noisy measurement
data is then given by

ũα∗(x, t) =
N

∑
j=1

(̃λα∗) jφ(x−x j, t− t j). (23)

The temperature and heat flux at surface Γ3 can also be
calculated respectively.

4 Numerical Examples

For numerical verification, we assume that the heat con-
duction coefficient a = 1 and tmax = 1 for all the follow-
ing examples. In the cases when the input data contain
noises, we use the function rand given in Matlab to gen-
erate the noisy data h̃i = hi +δ rand(i) where hi is the ex-
act data and rand(i) is a random number in [−1,1]. The
magnitude δ indicates the noisy level of the measurement
data.

To test the accuracy of the approximate solution, we
compute the Root Mean Square Error (RMSE) by

E(u) =

√
1
Nt

Nt

∑
i=1

((ũα∗)i −ui)2, (24)

at sufficiently total Nt number of testing points in the do-
main Γ3 × [0,1] where (ũα∗)i and ui are respectively the
approximate and exact temperature at a test point. The
RMSE for the heat flux E( ∂u

∂ν ) is also similarly defined.

Consider the following three examples: Two-
dimensional IHCPs:

Example 1: The exact solution of (1) is given by

u(x1,x2, t) = 2t +
1
2
(x2

1 +x2
2). (25)

Example 2: The exact solution of (1) is given by

u(x1,x2, t) = e−4t(cos(2x1)+cos(2x2)). (26)

Both examples are computed for the following three
configurations:

Case 1: Let
Ω = { (x1,x2) | 0 < x1 < 1, 0 < x2 < 1},
Γ1 = { (x1,x2) | x1 = 1, 0 < x2 < 1},
Γ2 = { (x1,x2) | 0 < x1 < 1, x2 = 1},
Γ3 = ∂Ω\{Γ1 ∪Γ2}.

Case 2: Let
Ω = { (x1,x2) | x2

1 +x2
2 < 1},

Γ1 = /0,
Γ2 = { (x1,x2) | x2

1 +x2
2 = 1, x1 > 0 }.

Γ3 = ∂Ω\{Γ1 ∪Γ2}.

Case 3: Let Ω be the same as Case 1, Γ1 = Γ2 = /0,
Γ3 = ∂Ω\{Γ1 ∪Γ2}.

Locations of the internal measurements and collocation
points over Ω for the three cases are shown in Figure 1.

The boundary data f (x, t), g(x, t) and initial temperature
ϕ(x, t) are obtained from the given exact solutions. The
values of temperature at measurement points will be used
by the exact and noisy data respectively. Numerical re-
sults are obtained by taking the constant T = 1.8 for
Example 1 and T = 1.6 for Example 2 in all different
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Figure 1 : Distribution of measurement points and collocation points. Here, star represents collocation point match-
ing Dirichlet data, square represents collocation point matching Neumann data, dot represents collocation point
matching initial data, and circle represents point with sensor for internal measurement.

cases. The total numbers of various collocation points
and measurement points are n = 36, m = 100, p = 55,
q = 50 in Case 1 for Examples 1-2. In this situation the
total number of points and testing points are N = 241
and Nt = 882. For Case 2, the total numbers are n = 96,
m = 85, p = 0, q = 85, N = 266, Nt = 693 and for Case
3, n = 36, m = 30, p = 0, q = 0, N = 66, Nt = 1764
respectively.

Numerical results by using only SVD for the solution
(14) and uN are presented in Table 1. The computed
RMSEs from the experiments show that even for exact
input data the direct method cannot produce an accept-
able solution to this kind of ill-conditioned linear sys-
tems. In fact, the condition numbers in Case 1 and Case
2 lie between 1033-1035 which are too large to obtain an

Table 1 : RMSEs in domain Γ3 × [0,1] with exact data.
No regularization technique.

Example 1 Example 2

Case 1
E(u)=5.9122 E(u)= 0.4909

E( ∂u
∂ν )=2.2155 E( ∂u

∂ν )=0.2325

Case 2
E(u)= 2.2742 E(u)=7.9616

E( ∂u
∂ν )=0.5040 E( ∂u

∂ν )= 1.7736

Case 3
E(u)=0.0102 E(u)= 0.0011

E( ∂u
∂ν )= 0.0543 E( ∂u

∂ν )=0.0063
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Table 2 : RMSEs in domain Γ3 × [0,1] with exact data
by using Tikhonov regularization technique with GCV
parameter α∗.

Example 1 Example 2

Case 1
α∗= 3.6411e-14 α∗=4.2389e-14

E(u)= 9.2406e-5 E(u)= 1.7062e-5

E( ∂u
∂ν )=2.5043e-4 E( ∂u

∂ν )= 6.1320e-5

Case 2
α∗=3.4730e-14 α∗= 3.9698e-14

E(u)=4.2827e-4 E(u)= 1.9647e-5

E( ∂u
∂ν )= 0.0012 E( ∂u

∂ν )=6.0150e-5

Case 3
α∗= 1.6529e-14 α∗= 3.9698e-14

E(u)= 3.5346e-4 E(u)=0.0021

E( ∂u
∂ν )=0.0021 E( ∂u

∂ν )=0.0124

accurate solution without the use of any regularization.
For Case 3, the condition number 4.5 ·1019 in Example 1
and 7.9 · 1018 in Example 2 are much smaller and hence
the RMSEs in Case 3 looks better. The numerical re-
sults given in Table 1 indicate that the IHCP is a severely
ill-posed problem. The discretization by using the MFS
also leads to a highly ill-conditioned discrete problem.
The use of the regularization technique as shown in the
following numerical results will give a stable and much
more accurate approximation to the solution of the IHCP.

Table 2 gives the RMSEs on the temperature and heat
flux in domain Γ3 × [0,1] with exact data by using
Tikhonov regularization method with GCV choice for the
regularization parameter α∗. It can be observed from Ta-
ble 2 that the RMSEs have much been reduced compared
to Table 1. It is remarked here that the GCV method
works well in searching the crucial regularization param-
eter.

Numerical results for the three cases with noisy data
(noisy level δ = 0.01 in all cases) are shown in Table
3. It can be observed that the regularization method with
GCV technique provides an acceptable approximation to
the solution of the IHCP whilst the direct method com-
pletely fails. The problem to choose an optimal regular-
ization parameter is still an open question to researchers.

Table 3 : RMSEs in domain Γ3× [0,1] with noisy data
(δ = 0.01) by using Tikhonov regularization with GCV
parameter α∗.∗

Example 1 Example 2

Case 1
α∗=5.4088e-8 α∗=1.4704e-6

E(u)= 0.0048 E(u)= 0.0049

E( ∂u
∂ν )=0.0140 E( ∂u

∂ν )=0.0134

Case 2
α∗=6.7604e-9 α∗=4.2725e-7

E(u)=0.0108 E(u)=0.0043

E( ∂u
∂ν )= 0.0294 E( ∂u

∂ν )= 0.0115

Case 3
α∗=4.6697e-8 α∗= 1.6930e-8

E(u)= 0.0057 E(u)=0.0150

E( ∂u
∂ν )= 0.0229 E( ∂u

∂ν )=0.0506

It is noted here that the setting for Case 3 comes from a
real-life problem produced by a steel company. In fact,
the solution for the IHCP may not unique but our com-
putational results demonstrate that the proposed method
is flexible enough to give a reasonable approximation to
the solution of the IHCP under insufficient information.

The relationship between the RMSEs and the value of
constant T for Examples 1-2 under Case 1 with noisy
data (δ = 0.01) is displayed in Figure 2. Here, the reg-
ularization parameter α∗ is obtained again by using the
GCV method. It is shown that the numerical results are
quite stable to the value of the parameter T . It is, how-
ever, observed from Figure 2 that the RMSEs decrease
with respect to the increasing value of T in Example 1
but increase in Example 2. This interesting behavior is
one of the focuses of our future research works.

To further extend the application of the proposed
method, we investigate the following sample problem
given in [Chantasiriwan (2001)]:

Example 3: Let
Ω be defined as in Case 1.
Γ1 = /0,
Γ2 = { (x1,x2) | x1 = 1, 0 < x2 < 1}∪ { (x1,x2) | x2 =
1, 0 < x1 < 1},
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Example 2 for case 1. σ=0.01

Figure 2 : RMSEs of temperature and heat flux on Γ3 × [0,1] with respect to parameter T.
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Figure 3 : Distribution of measurement and collocation
points. Square represents point with Neumann data, dot
represents collocation point for initial temperature, and
circle represents point with sensor.

Γ3 = ∂Ω\{Γ1 ∪Γ2}.
The locations of measurement points are shown in Figure
3. The temperature distribution is given by

u(x1,x2, t) (27)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(x1,x2, t),
f or t ≤ 0.5,

U(x1,x2, t)−2U(x1,x2, t−0.5),
f or 0.5 < t ≤ 1.0,

U(x1,x2, t)−2U(x1,x2, t−0.5)
+U(x1,x2, t−1.0),
f or t > 1.0,

where

U(x1,x2, t) =

1.5t2 + t(0.5x2
1 −x1 +x2

2 −2x2 +1)
−4∑∞

j=1
1

( jπ)4 (0.5cos( jπx1)+cos( jπx2))(1−e− j2π2t).

The exact temperature data at the sensor locations are
given by u(x1,x2, t) and the noisy data are randomly
generated as before. In this computation, we take n =
121,m = 189, p = 0,q = 189,N = 499,Nt = 882. The
plots of temperature and heat flux with respect to time
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Figure 4 : Plots of temperature and heat flux versus time
at points (0,0), (1,0),(0,1). Solid line represents the ex-
act value and dotted-line represents the computed value.

at points (0,0), (1,0), (0,1) are displayed in Figure 4 in
which T = 1.2 and δ = 0.01, α∗ = 2.0594e−9. As shown
in Figure 4, although the basis functions generated by the
MFS are sufficient smooth over the solution domain and



128 Copyright c© 2005 Tech Science Press CMES, vol.7, no.2, pp.119-132, 2005

the solution to Example 3 does not have a continuous
second order time derivative, the computed temperature
match the exact data excellently. The computed heat flux
looks less accurate but is also comparable to the results
given in paper [Chantasiriwan (2001)]. It is also noted
that the measurement points in this example are far away
from the unspecified boundary whereas these points are
close to the boundary in [Chantasiriwan (2001)].

Finally, we consider the following three-dimensional
IHCP:

Example 4: Let
Ω = { (x1,x2,x3) | 0 < xi < 1, i = 1,2,3},
Γ1 = { (x1,x2,x3) | 0 < x1 < 1, 0 < x2 < 1, x3 = 1},
Γ2 = { (x1,x2,x3) | 0 < x1 < 1, 0 < x2 < 1, x3 = 0},
Γ3 = ∂Ω\{Γ1 ∪Γ2}.
The locations of measurement points and collocation
points in the domain Ω are shown in Figure 5. In this
computation, we take n = 245,m = 250, p = 180,q =
180,N = 855,Nt = 5324.
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Figure 5 : Locations of measurement and collocation
points. Star represents measurement point with Dirich-
let data, square represents measurement point with Neu-
mann data, and circle represents point with sensor.

The exact solution for Example 4 is given by

u(x1,x2,x3, t)
= e(−4t)(cos(2x1)+cos(2x2)+cos(2x3)). (28)

In the computation, the value of the parameter T is 2.3
and the noisy level is set to be δ = 0.01. The errors
between the exact solution and the approximate solution
for the temperature and heat flux on boundary Γ3 at time
t = 1 are shown in Figure 6 and Figure 7 respectively in
which α∗ = 6.1961e−9. Note that the L2 norm of u and
∂u
∂ν over Γ3 × [0,1] are about 0.62 and 0.52 respectively.
Their relative errors are approximately double the values
given in Figures 6 and Figure 7. These small relative er-
rors show that the proposed scheme is effective for solv-
ing the three-dimensional inverse heat conduction prob-
lem of which very little numerical result has been given
so far.

5 Conclusions

The universal approach for solving time-dependent prob-
lems involves a time-marching procedure, i.e., advanc-
ing each time step and solving the remained problem in
the spatial domain. The approach proposed in this paper
gives a global approximate solution in both time and spa-
tial domain. Numerical results indicate that the method
of fundamental solution the MFS combined with the reg-
ularization technique provides an efficient and accurate
approximation to this highly ill-posed inverse heat con-
duction. The use of the generalized cross validation crite-
rion for a suitable regularization parameter stabilizes the
resultant ill-conditioned system but still needed to be fur-
ther investigated for optimal convergence. The proposed
approach is potentially valuable to solve the inverse prob-
lems in multidimensional space but for large-scale prob-
lems, other iterative algorithms based on Lanczos bidiag-
onalization may be more suitable. This will be our future
work.
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Figure 6 : Surface plots of errors to temperature on boundary Γ3.
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