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Two-Phase Flow Simulation by AMMoC, an Adaptive Meshfree Method of
Characteristics

Armin Iske1 and Martin Käser2

Abstract: Petroleum reservoir modelling requires ef-
fective multiscale methods for the numerical simulation
of two-phase flow in porous media. This paper proposes
the application of a novel meshfree particle method to
the Buckley-Leverett model. The utilized meshfree ad-
vection scheme, called AMMoC, is essentially a method
of characteristics, which combines an adaptive semi-
Lagrangian method with local meshfree interpolation by
polyharmonic splines. The method AMMoC is applied
to the five-spot problem, a well-established model prob-
lem in petroleum reservoir simulation. The numerical
results and subsequent numerical comparisons with two
leading commercial reservoir simulators, ECLIPSE and
FrontSim, show the good performance of our meshfree
advection scheme AMMoC.

1 Introduction

Petroleum reservoir simulators help oil companies to
make effective use of expensive data collected through
field measurements, data processing and interpretation.
In fact, reservoir simulators are among the very few tools
which are available for modelling various physical multi-
scale phenomena within hydrocarbon reservoirs. Hydro-
carbon exploration and production, in particular, requires
computational methods for the numerical simulation of
two-phase flow in porous media.

Two-phase flow modelling is concerning the displace-
ment of one fluid, say oil, by another, say water, within a
reservoir. This model problem may be characterized by
the injection of a wetting fluid (water) into the reservoir
at a particular location, displacing the non-wetting fluid
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(oil), which is being withdrawn at another location.

Due to the physical interaction between the two phases,
water and oil, this production process leads to a moving
shock front at the interface between the two phases. The
evolution of the shock front is of primary importance for
the production, where the goal is to withdraw as much oil
as possible before the breakthrough, when water arrives
at the production site.

However, the geometry of the moving shock front may be
very complicated, mainly due to varying flow velocities.
In order to model the propagation of the shock front ef-
fectively, numerical simulation of two-phase flow essen-
tially requires customized multiscale algorithms, which
manage to capture and resolve important local features
of the flow. To this end, adaptive numerical algorithms
are necessary in order to combine small computational
costs with high accuracy.

In our previous work [Behrens, Iske, and Käser (2002)],
a novel concept for the meshfree numerical simulation
of multiscale phenomena in transport processes is pro-
posed. The resulting particle-based advection scheme,
called AMMoC, is essentially a method of charac-
teristics, which combines an adaptive semi-Lagrangian
method with local meshfree interpolation by polyhar-
monic splines. This paper further supports the utility of
this meshfree concept. To this end, we propose the appli-
cation of the method AMMoC to numerical simulation
of two-phase flow in porous media.

The outline of this paper is as follows. Further discussion
on two-phase flow in petroleum reservoirs is provided in
the following Section 2, where in particular the mathe-
matical formulation of the flow problem is given. Basic
ingredients of our meshfree advection scheme AMMoC
are then explained in Section 3, where also some details
concerning its implementation are discussed and the re-
quired computational costs are analyzed. Numerical re-
sults are finally provided in Section 4, where AMMoC is
applied to the five-spot problem, a popular test case sce-
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nario in oil reservoir simulation. The good performance
of our method AMMoC is shown by numerical compar-
isons with two leading commercial reservoir simulators,
ECLIPSE and FrontSim.

2 Two-Phase Flow in Petroleum Reservoirs

Petroleum reservoirs contain hydrocarbons and other
chemicals trapped in the pores of a rock. Waterflooding
is one effective technique for the exploration and pro-
duction of hydrocarbons from petroleum reservoirs. This
technique involves drilling wells into the rocks, injectors
and producers. By the injection of water through the in-
jectors, hydrocarbons are then, due to the resulting pres-
sure, pushed into the rocks and forced to flow towards the
producers.

A somewhat simplified, but fairly realistic model prob-
lem for petroleum reservoir simulation is the Buckley-
Leverett model [Buckley and Leverett (1942)]. This stan-
dard model is concerning two-phase flow of two immis-
cible and incompressible fluids, say water and oil, within
a porous medium, where diffusive effects, such as cap-
illary pressure, are ignored and gravitational forces are
neglected.

In the following of this section, the governing equa-
tions of this particular two-phase flow model are intro-
duced, and some of their fundamental properties are re-
called. A more comprehensive discussion concerning
geophysical aspects, especially from the viewpoint of
petroleum reservoir simulation, can be found in the text-
books [Aziz and Settari (1979), Peaceman (1977), Schei-
degger (1974)].

Let us first turn to the governing equation for the fluid
flow. Due to mass conservation, the flow for each of the
two individual phases is described by a time-dependent
hyperbolic conservation law. The two resulting mass bal-
ance equations are the mass conservation of water,

φ(x)
∂
∂t

uw(t,x)+∇ ·vw(t,x) = 0, (1)

and the mass conservation of oil,

φ(x)
∂
∂t

uo(t,x)+∇ ·vo(t,x) = 0. (2)

In both (1) and (2), the scalar field φ(x) denotes the
porosity of the medium, which determines the volume
accessible to fluid flow. Hence, for any homogeneous
medium, its porosity φ is constant.

Moreover, the time-dependent vector fields vw(t,x) in (1)
and vo(t,x) in (2) are the phase velocities, and uw(t,x) in
(1) and uo(t,x) in (2) are the saturations of water and
oil, respectively. The saturations, uw and uo, are the cor-
responding fractions of available volume, of water and
oil, in the pores of the medium. Therefore, we have
0 ≤ uw ≤ 1 and 0 ≤ uo ≤ 1, and moreover,

uw(t,x)+uo(t,x) = 1, (3)

since the medium is assumed to contain only two phases,
water and oil.

The two phase velocities, vw(t,x) in (1) and vo(t,x) in
(2), are determined by Darcy’s law

vw(t,x) = −K(x)
kw(uw)

µw
∇p(t,x), (4)

vo(t,x) = −K(x)
ko(uo)

µo
∇p(t,x), (5)

where p(t,x) is the reservoir pressure, K(x) is the per-
meability tensor of the porous medium, and kw(uw) in
(4) and ko(uo) in (5) are the relative permeabilities of the
corresponding phases. Moreover, the scalar parameters
µw in (4) and µo in (5) denote the fluids’ viscosities, so
that the ratios

Mw(uw) =
kw(uw)

µw
and Mo(uo) =

ko(uo)
µo

yield the phase mobilities. The total mobility is thus
given by M = Mw +Mo.

By combining the two fluids’ mass balance equations, (1)
and (2), with the relation (3), we obtain the incompress-
ibility relation

∇ · (vw(t,x)+vo(t,x)) = ∇ ·v(t,x) = 0,

which states that the total fluid velocity v(t,x) is
divergence-free.

Now the phase velocity of water can be expressed as

vw(t,x) = v(t,x) · fw(uw), (6)

where fw(uw) is the flux tensor, given by the ratio
fw(uw) = Mw(uw)/M(uw) between the phase mobility
Mw(uw) of water and the total mobility M.

A corresponding relation for the phase velocity vo of oil
can be established accordingly. But we wish to further
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simplify the notation. To this end, we let u ≡ uw, and so
uo = 1−u by (3), and we also let f (u) = fw(uw).

We remark that the fractional flow function f in (6) is
monotonically increasing and it satisfies 0 ≤ f (u)≤ 1 for
u∈ [0,1]. The following considerations rely on the Corey
model [Aziz and Settari (1979)], according to which the
relative permeabilities, kw and ko, are quadratic functions
of the form

kw(u) = u2, ko(uo) = (1−u)2.

This yields

M(u) =
u2

µw
+

(1−u)2

µo
,

for the total mobility and so in this case the fractional
flow function f in (6) is given by

f (u) =
u2

u2 +µ(1−u)2 , (7)

where we let µ = µw/µo for the ratio of the two fluids’
viscosities.

We summarize the discussion of this section as follows.

The Buckley-Leverett equation

∂u
∂t

+v ·∇ f (u) = 0, (8)

together with the incompressibility relation

∇ ·v(t,x) = 0, (9)

and Darcy’s law

v(t,x) = −K(x)M(u)∇p(t,x), (10)

describes the flow of two immiscible incompressible
fluids, water and oil, through a porous homogeneous
medium, φ ≡ 1, in the absence of capillary pressure and
gravitational effects (see also [Aziz and Settari (1979),
Peaceman (1977), Scheidegger (1974)] and the related
discussion in [Sethian, Chorin, and Concus (1983)]).

The solution u of (8),(9),(10) is the saturation of the wet-
ting fluid (water). Hence, the value u(t,x) is, at a time
t and at a point x, the fraction of available volume (in
the pores of the medium) filled with water, and so u = 1
means pure water, and u = 0 means pure oil.

We remark that the incompressibility relation (9) together
with Darcy’s law (10) forms an elliptic equation. The
Buckley-Leverett equation (8) is a hyperbolic equation,
which develops discontinuities in the solution u, corres-
ponding to a shock front at the interface between the two
phases.

3 Meshfree Flow Simulation

This section introduces a novel concept for meshfree flow
simulation, where special emphasis is placed on the par-
ticularities of the Buckley-Leverett model (8).

Generally speaking, meshfree methods provide very flex-
ible, robust and reliable discretization techniques for
multiscale simulation, which have recently gained much
attention in many different applications from computa-
tional sciences and engineering, as well as in numer-
ical analysis. Among a few others, prominent mesh-
free discretization techniques include the Meshless Local
Petrov-Galerkin (MLPG) Method, see the papers [Atluri,
Han, and Rajendran (2004), Atluri and Shen (2002), Lin
and Atluri (2001)] and the textbook [Atluri (2004)] of
Atluri for an up-to-date account and comprehensive treat-
ment of the method and its rich variety of applications.

The resulting particle-based meshfree advection scheme
of this paper, AMMoC, is essentially an Adaptive
Meshfree Method of Characteristics, which com-
bines the well-established semi-Lagrangian method
with local meshfree interpolation by polyharmonic
splines [Behrens and Iske (2002), Behrens, Iske, and
Pöhn (2001), Behrens, Iske, and Käser (2002)] and cus-
tomized adaption rules [Behrens, Iske, and Pöhn (2001)]
required for the effective refinement and coarsening of
flow particles. For further background on the method
of characteristics, we refer to the textbook [Gustafsson,
Kreiss, and Oliger (1995)]. Moreover, a comprehen-
sive overview over the semi-Lagrangian method is of-
fered in [Morton (1996), Section 7], and scattered data
interpolation by polyharmonic splines (and other radial
basis functions) is explained in the recent tutorial [Iske
(2002)].

This section first explains a standard stabilization tech-
nique for the Buckley-Leverett equation (8). This is done
in Subsection 3.1, where the relevant Cauchy problem for
the viscous Buckley-Leverett equation is formulated. In
order to give a short introduction to the basic ingredients
of our meshfree advection algorithm AMMoC, some se-
lected features of the meshfree method of characteristics
are then explained in Subsection 3.2. This is followed
by a short discussion on polyharmonic splines in Sub-
section 3.3. Some selected aspects concerning the imple-
mentation of AMMoC and the required computational
costs are finally analyzed in Subsection 3.4.

For deeper insight into the ingredients of AMMoC, es-
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pecially the implementation of the adaption rules and
other computational aspects, we refer to our previous pa-
pers [Behrens and Iske (2002), Behrens, Iske, and Pöhn
(2001), Behrens, Iske, and Käser (2002)] and the recent
research monograph [Iske (2004)].

3.1 Viscous Buckley-Leverett Equation

The Buckley-Leverett equation (8) is a time-dependent
hyperbolic equation, whose solution u develops disconti-
nuities, even for smooth initial data. Recall that the dis-
continuities of the saturation u are corresponding to the
shock front at the interface between the two phases.

In order to model the propagation of the shock front, we
consider the viscous Buckley-Leverett equation

∂u
∂t

+v ·∇ f (u) = ε ·∆u, (11)

on a computational domain Ω ⊂ R
d, d ≥ 1, and for a

compact time interval I = [0,T ], T > 0, where f is the
fractional flow function in (7), ε > 0 denotes a small dif-
fusion coefficient, and ∆ denotes the Laplace operator on
R

d.

We remark that this modification (11) of the Buckley-
Leverett equation (8) relies on a standard stabilization
technique, dating back to [Burgers (1948)]. The idea of
this stabilization is to transfer the hyperbolic equation (8)
to a parabolic equation (11), which has, unlike (8), at
any time t > 0, a smooth solution u, even for discontinu-
ous initial data. Moreover, the solution u of the Buckley-
Leverett equation (8) is approximated arbitrarily well by
the solution u≡ uε of the viscous Buckley-Leverett equa-
tion (11), provided that the diffusion coefficient ε is suf-
ficiently small.

We consider solving the viscous Buckley-Leverett equa-
tion (11), in combination with given initial conditions

u(0,x) = u0(x), for x ∈ Ω. (12)

To this end, we work with our above mentioned meshfree
advection scheme, AMMoC, whose basic ingredients are
discussed in the remainder of this section.

3.2 Meshfree Method of Characteristics

The discretization of the given Cauchy problem (11),
(12), suggested in [Behrens, Iske, and Käser (2002)],
works with a finite set Ξ⊂ Ω of nodes, each of which cor-
responds at a time t ∈ I to one fluid particle. According

to the basic concept of semi-Lagrangian advection, the
equation (11) is integrated along the trajectories of the
particles’ streamlines. Moreover, the node set Ξ is adap-
tively modified during the simulation, where the adaption
rules rely on a customized a posteriori error estimator,
which is introduced in [Behrens, Iske, and Pöhn (2001)].

Starting point of our meshfree advection scheme is the
Lagrangian form

du
dt

= ε ·∆u,

of (11), where du
dt = ∂u

∂t +v ·∇ f (u) is the material deriva-
tive. This leads us to the discretization

u(t +τ,ξ)−u(t,x)
τ

= ε ·∆u(t,x), (13)

where x ≡ x(ξ) is the upstream point, corresponding to
the node ξ ∈ Ξ. The upstream point x of ξ can be viewed
as the position of a particle at time t, which by traversing
along its trajectory, arrives at ξ at time t +τ, where τ > 0
denotes the time step size. Adopting some standard nota-
tion from dynamical systems [Deuflhard and Bornemann
(2002)], we express the upstream point x of ξ as

x = Φt,t+τξ, (14)

where Φt,t+τ : Ω→ Ω denotes the continuous evolution of
the (backward) flow of the ordinary differential equation
(ODE)

ẋ =
dx
dt

= a(t,x), (15)

with a = ∂ f (u)
∂u being the advection velocity.

Note that the exact location of x is usually unknown.
Therefore, in order to compute an approximation x̃ ≈ x
numerically, we work with a specific discrete evolution
Ψt,t+τ of the flow, corresponding to the continuous evo-
lution Φt,t+τ in (14). The operator Ψt,t+τ is given by
any suitable numerical method for solving the above
ODE (15), which allows us to express the resulting ap-
proximation x̃ of x as

x̃ = Ψt,t+τξ.

For the sake of brevity, we refrain from expanding details
concerning the employed ODE solver of our preference,
but rather refer to our previous paper [Behrens, Iske, and
Käser (2002)].
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Having computed x̃ = Ψt,t+τξ, the desired approximation
of u(t +τ,ξ) in (13) would thus be given by

u(t +τ,ξ) = u(t, x̃)+τ · ε∆u(t, x̃), for ξ ∈ Ξ. (16)

In order to determine the unknown function values
u(t, x̃), ∆u(t, x̃) in the right hand side of (16), we work
with local interpolation by using polyharmonic splines.
Some selected details concerning the relevant back-
ground of this particular interpolation scheme are briefly
discussed in the following Subsection 3.3. For the mo-
ment be it sufficient to say that, on any given upstream
point approximation x̃, we determine a neighbouring set
N ⊂ Ξ of current nodes around x̃, all of whose values
u(t,ν), ν ∈ N , are known. Then, we compute a polyhar-
monic spline interpolant s satisfying

s(ν) = u(t,ν), for all ν ∈ N , (17)

before we replace (16) by

u(t +τ,ξ) = s(x̃)+τ · ε∆s(x̃), for ξ ∈ Ξ.

Altogether, the advection step t → t + τ is accomplished
as follows.

Algorithm 1 (Method of Characteristics).

INPUT: Time step τ, nodes Ξ, values {u(t,ξ)}ξ∈Ξ.

FOR each ξ ∈ Ξ DO

(a) Compute the upstream point approximation x̃ =
Ψt,t+τξ;

(b) Determine s(x̃)≈ u(t, x̃) by local interpolation, i.e.,
solve (17);

(c) Advect by letting u(t +τ,ξ) = s(x̃)+τ · ε∆s(x̃).

OUTPUT: The values u(t + τ,ξ), for all ξ ∈ Ξ, at time
t +τ.

3.3 Polyharmonic Spline Interpolation

In order to solve the local interpolation problem (17), we
prefer to work with polyharmonic splines, which are pop-
ular tools for multivariate interpolation from scattered
data. In this particular interpolation scheme, the inter-
polant s in (17) has the form

s = ∑
ν∈N

cν ·φd,k(‖ ·−ν‖)+ p, p ∈ P d
k , (18)

where ‖ · ‖ denotes the Euclidean norm on R
d, and the

polyharmonic spline φd,k is given by

φd,k(r) =

{
r2k−d log(r), for d even,

r2k−d, for d odd,

with 2k > d. Moreover, P d
k denotes the linear space of

all d-variate polynomials of order at most k. We remark
that the interpolation problem (17) has under constraints

∑
ν∈N

cν p(ν) = 0, for all p ∈ P d
k ,

a unique solution, provided that the points in N are P d
k -

unisolvent, i.e., for p ∈ P d
k ,

p(ν) = 0 for all ν ∈ N =⇒ p ≡ 0.

The stability and the approximation order of local poly-
harmonic spline interpolation has recently been analyzed
in [Iske (2003)]. One of the key observation in [Iske
(2003)] is that the Lagrange basis (λν(x))ν∈N , and thus
the Lebesgue constant

Λ(U,N ) = max
x∈U

∑
ν∈N

∣∣λν(x)
∣∣, for N ⊂ U ⊂ Ω,

of the interpolation scheme is invariant under uniform
scalings. This in turn leads to a stable algorithm for
solving (17). Moreover, it shows that the approximation
order of local polyharmonic spline interpolation around
any x̃ is k, i.e., for any point x̃+h(x− x̃) ∈U , h > 0, and
a fixed local neighbourhood U of x̃ we have

|sh(x̃+h(x− x̃))−u(t, x̃+h(x− x̃))|= O(hk), h → 0,

for u(t, ·)∈Ck,

where sh denotes the unique polyharmonic spline inter-
polant satisfying

sh(x̃+h(ν− x̃)) = u(t, x̃+h(ν− x̃)), for all ν ∈ N .

For further details on local polyharmonic spline interpo-
lation, we refer to [Iske (2003)].

Polyharmonic spline interpolation is also used in order
to adaptively modify the current node set Ξ ≡ Ξ(t) after
each advection step of Algorithm 1, yielding a modified
node set Ξ ≡Ξ(t +τ). To this end, we work with an error
indicator, which assigns to each current node ξ ∈ Ξ(t) a
significance value

η(ξ) = |sN \ξ−u(t,ξ)|, for ξ ∈ Ξ, (19)
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where sN \ξ denotes the polyharmonic spline interpolant
which interpolates the values u(t,ν), ν ∈ N , at a set
N ⊂ Ξ \ ξ of current nodes in the neighbourhood of ξ.
The error indicator η : Ξ → R thus evaluates the local
approximation quality around the nodes in Ξ(t). The
modification of Ξ(t) is then accomplished by the removal
of nodes with small significances, coarsening, whereas
in the neighbourhood of nodes with large significances
new nodes are inserted, refinement. For further details
concerning the implementation of these adaption rules,
see [Behrens, Iske, and Pöhn (2001)].

3.4 Implementation and Computational Complexity

In this subsection, we discuss some selected aspects con-
cerning the implementation of the proposed advection
scheme AMMoC, and we consider analyzing its com-
putational complexity. To this end, let us first determine
the computational costs required for the performance of
one advection step, Algorithm 1, where the current node
set Ξ, of size N = |Ξ|, is fixed. In the following, we
analyze the computational costs required for each of the
steps (a)–(c) in Algorithm 1 per node ξ ∈ Ξ.

First, note that the assignment in step (c) costs O(1) oper-
ations. As regards the performance of step (a), recall that
the computation of the upstream point approximation x̃
relies on a specific ODE solver. In our implementation
of AMMoC, we employ a recursion of the form

βk+1 = τ ·a(t +τ/2,ξ−βk/2)

in order to obtain after merely a few iterations a suffi-
ciently accurate linear approximation β ∈ R

d to the tra-
jectory arriving at ξ. This complies with the recommen-
dations in [Morton (1996), equation (7.66a)] and yields
by x̃ = ξ− β a sufficiently accurate upstream point ap-
proximation in constant time, i.e., at O(1) operations.

The performance of step (b) requires solving a local
interpolation problem of the form (17) by a polyhar-
monic spline (18). This is accomplished by solving a
linear equation system of small size, (n + q)-by-(n + q),
where n = |N | is the number of neighbouring nodes and
q =

(k−1+d
d

)
is the dimension of the polynomial space P d

k ,
see [Iske (2002)] for details. We use a direct method for
solving this small linear system, which requires O(n3)
operations, where n � N. In our numerical example in
Subsection 4.2, for instance, we have n ≤ 15 during the
entire simulation, whereas the number N of current nodes
is in the range 250 ≤ N ≤ 6000, see Figure 1.
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Figure 1 : Five-spot problem. Number of nodes during
the simulation by our meshfree advection scheme AM-
MoC.

Now let us turn to the computational costs required for
the adaptive modification of the nodes. Recall that after
each advection step, by Algorithm 1, the current node set
Ξ is modified. This is done by using the adaption rules
proposed in our previous paper [Behrens, Iske, and Pöhn
(2001)]. To be more precise, the modification of Ξ relies
on the a posteriori error estimator η : Ξ → [0,∞), intro-
duced in the previous Subsection 3.3, which first assigns
a significance value η(ξ) in (19) to each node ξ ∈ Ξ. This
basically requires computing the polyharmonic spline in-
terpolant sN \ξ in (19). Like in step (b) of Algorithm 1,
this is accomplished by solving a linear equation system
of small size (n + q)-by-(n+ q), which costs only O(n3)
operations.

Moreover, according to the adaption rules in [Behrens,
Iske, and Pöhn (2001)], either operation, the coarsening
or the refinement of a node, can be accomplished in con-
stant time, i.e., at O(1) operations. Therefore, the per-
formance of both one advection step by Algorithm 1 and
the subsequent node adaption requires at most O(N · n3)
operations, where N = |Ξ| and n � N denotes the (max-
imum) size of neighbouring nodes.

Recall that in our particular application the adaptive mod-
ification of the nodes is done in order to effectively cap-
ture the evolution of the shock front and other local fea-
tures of the flow. In all of our numerical experiments
we found that the current number N = |Ξ| of nodes in Ξ
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Figure 2 : Five-spot problem. Comparison between ECLIPSE, FrontSim, and our meshfree advection scheme
AMMoC. The saturation profiles are, at time t = t1260, compared along the half diagonal from the center o = (0,0)
to the corner point (0.5,0.5). The values on the axis of abscissae correspond to the distance d from o.

is about proportional to the length of the current shock
front. Since the geometry of the moving shock front
may be very complicated, it is very hard, if not impos-
sible, to predict the required size N ≡ N(t) of the node
set Ξ ≡ Ξ(t), t ∈ I, a priori.

Nevertheless, under the assumption that the number of
nodes is bounded above by Nmax, i.e., |Ξ(t)| ≤ Nmax at
any time t ∈ I, the entire simulation requires at most
O(Nmax · S · n3) operations in total, where S denotes the
number of time steps. In the numerical example of Sub-
section 4.2, we found Nmax = 6000 (a posteriori), and we
let S = 2100, and n = 15 (a priori).

4 Numerical Results and Comparisons

In order to illustrate the good performance of our adap-
tive meshfree advection scheme, AMMoC, we consider
using one popular test case scenario from hydrocar-
bon reservoir modelling, termed the five-spot problem,
where AMMoC is shown to be competitive with two
leading commercial reservoir simulators, ECLIPSE and
FrontSim of Schlumberger.

4.1 The Five-Spot Problem

The following variant of the five-spot problem in two di-
mensions, d = 2, may be summarized as follows. The
computational domain Ω = [−0.5,0.5]2 is corresponding
to a bounded reservoir, where we normalize, for the sake
of simplicity, the permeability K of the homogeneous
porous medium, so that K(x) ≡ 1.

Initially, the pores of the reservoir are saturated with non-
wetting fluid (oil, u≡ 0), before wetting fluid (water, u ≡
1) is injected through one injection well, placed at the
center o = (0,0) of Ω. During the simulation, the non-
wetting fluid (oil) is displaced by the wetting fluid (water)
towards the four corner points

C = {(−0.5,−0.5), (−0.5,0.5),(0.5,−0.5),(0.5,0.5)}

of the square domain Ω.

The five-spot problem requires solving the equations
(8),(9),(10) on Ω, in combination with the initial condi-
tion

u0(x) =

{
1 for ‖x−o‖ ≤ R,

0 otherwise,
(20)
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where we let R = 0.02 for the radius of the injection well
at the center o ∈ Ω.

Our aim, however, is to merely solve the Cauchy problem
(8),(20) for the Buckley-Leverett equation. This is be-
cause we wish to evaluate the performance of our mesh-
free advection method AMMoC as an adaptive satura-
tion solver on unstructured particle sets. Therefore, we
decided to work with the following simplifications of the
five-spot model problem.

Firstly, following along the lines of Albright [Albright,
Concus, and Proskurowski (1979)], we assume unit mo-
bility, M ≡ 1. Secondly, we work with a stationary pres-
sure field, p(x)≡ p(·,x), given by

p(x) = ∑
c∈C

log(‖x−c‖)− log(‖x−o‖),

for all x ∈ Ω, t ∈ I,

which yields the stationary velocity field

v = −∇ · p, (21)

due to Darcy’s law (10), and with the assumption M ≡ 1.
It is easy to see that the velocity field v is in this case
divergence-free, i.e., v in (21) satisfies the incompress-
ibility relation (9). Figure 3 shows the contour lines of
the pressure field p together with the streamlines of the
velocity field v, resulting from Darcy’s law (10).

Note that by these two simplifications, the elliptic equa-
tions (9),(10) uncouple from the Buckley-Leverett equa-
tion (8). This allows us to neglect the pressure equa-
tion (10), so that we restrict ourselves to solving the flow
equation (8).

Let us make a few comments in order to support the two
simplifications taken above. First note that the pressure
field p in (21) has singularities at the corners and at the
center of the domain Ω, so that the pressure in the vicinity
of the injection well at o is arbitrarily high, whereas the
pressure around the production wells, placed at the four
corner points in C , is arbitrarily small.

Therefore, the resulting particle flow exhibits high ve-
locities near the five wells but small velocities between
the wells. This complies with the actual physical be-
haviour corresponding to the five-spot model problem,
where moreover the variation of pressure has rather small
effects on the saturation.

Let us moreover remark that even in sophisticated, full
reservoir simulators, such as in ECLIPSE and FrontSim,

the pressure (and thus the velocity) are, unlike the satu-
ration, updated rather infrequently. In other words, long
time steps are made between updates of the pressure,
whereas many smaller time steps update the saturation
between the pressure updates.

That the above taken simplifications for the five-spot
problem are quite reasonable is further supported by nu-
merical comparisons (in Subsection 4.3) with two com-
mercial reservoir simulators, ECLIPSE and FrontSim,
each of which solves the coupled set of equations
(8),(9),(10).

4.2 Meshfree Simulation by AMMoC

According to the discussion in Section 3, we apply
our meshfree advection scheme AMMoC to the Cauchy
problem (11),(20) for the viscous Buckley-Leverett equa-
tion, rather than for the hyperbolic flow equation (8). Re-
call that this is in order to model the propagation of the
shock front, which is of primary importance in the rele-
vant application. Therefore, the accurate approximation
of the shock front requires particular care. This is in AM-
MoC mainly accomplished by the adaptive modification
of the nodes during the simulation.

Now let us turn straight to our numerical results, pro-
vided by our meshfree advection scheme AMMoC. In
our simulation, we decided to select a constant time step
size τ = 5 ·10−5, and the simulation comprises 2100 time
steps, so that I = [0,2100τ]. Moreover, we let ε = 0.015
for the diffusion coefficient in (11), and we selected the
value µ = 0.5 for the viscosity ratio of water and oil, ap-
pearing in the fractional flow function (7).

Figure 4 shows the water saturation u during the sim-
ulation at six different times, t = t0, t = t420, t = t840,
t = t1260, t = t1680, and t = t2100, where u is evaluated at
a fixed cartesian mesh comprising 100×100 rectangular
cells. The corresponding color code for the water satura-
tion is shown at the right margin of Figure 4, respectively.

Note that the shock front, at the interface between the
non-wetting fluid (oil, u ≡ 0) and the wetting fluid (wa-
ter, u ≡ 1), is moving from the center towards the four
corner points of the computational domain Ω. This way,
the non-wetting fluid (oil) is effectively displaced by the
wetting fluid (water) into the four production wells, as
expected.

Just before the breakthrough, when the shock front ar-
rives at the production wells, an increased velocity can be



Two-Phase Flow Simulation by AMMoC 141

−0.5 0 0.5
−0.5

0

0.5

x
1

x
2

−0.5 0
0

0.5

x
1

x
2

(a) (b)

−0.5 0 0.5
−0.5

0

0.5

x
1

x
2

−0.5 0
0

0.5

x
1

x
2

(c) (d)

−0.5 0 0.5
−0.5

0

0.5

x
1

x
2

−0.5 0
0

0.5

x
1

x
2

(e) (f)

Figure 3 : Five-spot problem. (a) Contours of the pressure field, (c) streamlines of the velocity field, and (e) velocity
vectors in Ω = [−0.5,0.5]2. The corresponding plots of these data in the top left quarter [−0.5,0]× [0,0.5] are shown
in (b), (d), and (f).
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Figure 4 : Five-spot problem. Solution obtained by AMMoC. The color plots indicate the water saturation u during
the simulation at six different times, (a) t = t0, (b) t = t420, (c) t = t840, (d) t = t1260, (e) t = t1680, and (f) t = t2100.
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observed around the four production wells, see the tran-
sition between the time step t = t1680, Figure 4 (e) and
t = t2100, Figure 4 (f). This sucking effect is due to the
singularities of the pressure field p at the corners in C .

The distribution of the nodes, corresponding to the six
different times, t = t0, t = t420, t = t840, t = t1260, t = t1680,
and t = t2100, is shown in Figure 5. Due to the adaptive
distribution of the nodes, the shock front propagation of
the solution u is captured very well. This helps to re-
duce the required computational costs while maintaining
the accuracy, due to a higher resolution around the shock
front. The effective distribution of the nodes around the
shock supports the utility of the adaption rules, proposed
in our previous paper [Behrens, Iske, and Pöhn (2001)],
yet once more.

We found that the number of nodes in Ξ is roughly pro-
portional to the length of the shock front. This is con-
firmed by the graph in Figure 1, where the number of
nodes is plotted as a function of time.

4.3 Comparison with ECLIPSE and FrontSim

Let us compare the results of our simulation by AM-
MoC with two different commercial reservoir simu-
lators, ECLIPSE and FrontSim. Both ECLIPSE and
FrontSim are products of Schlumberger Oil Field Ser-
vices. We remark that ECLIPSE and FrontSim are re-
garded as the industry standard in reservoir simulation.

ECLIPSE is reservoir simulation software, which works
with first order finite differences. In contrast, the
multi-phase simulator FrontSim is based on a streamline
method [Bratvedt, Bratvedt, Buchholz, Holden, Holden,
and Risebro (1989)], which solves the Buckley-Leverett
equation along pre-calculated streamlines of the flow par-
ticles. Each of these two simulators solves the coupled
system of equations (8),(9),(10). In particular, unlike in
our model simplification, the pressure field p is updated
during the simulation.

The latter requires, due to Darcy’s law (10), the mainte-
nance of the total velocity v, which also appears in the
flow equation (8). However, our simplifications taken
in the previous subsection, are quite reasonable for the
special case of the five-sport problem. In particular, the
variation of the pressure field can be neglected. This is
supported by the following numerical results, where our
advection scheme AMMoC is compared with ECLIPSE
and FrontSim.

Figure 6 shows the water saturation obtained from
the simulator ECLIPSE at six different times, whereas
the corresponding results obtained by the simulator
FrontSim are displayed in Figure 7. The evolution of the
saturation u, obtained by either of these two simulators,
especially the location and the propagation of the shock
front, is comparable with that obtained by our method
AMMoC, whose results are shown in Figure 4.

For the purpose of further comparison, let us regard
the water saturation u at time t = t1260, for each of the
three different simulation methods, AMMoC, ECLIPSE,
and FrontSim, see Figures 4(d), 6(d), and 7(d). Fig-
ure 2 shows the three different profiles of the saturation
u(t1260, ·) across the half diagonal of Ω, drawn from the
center o = (0,0) to the corner point (0.5,0.5). For bet-
ter orientation, the dotted line in Figure 2 shows the ex-
pected height of the shock front, which can be computed
analytically by Welge’s tangent method [Welge (1952)].

Note that the three different methods lead to similar sat-
uration profiles. Moreover, each method captures the
expected height of the shock front very well. When
it comes to accurately resolving the shock front, the
method FrontSim is the best, followed by our meshfree
scheme AMMoC and lastly ECLIPSE. This is not very
surprising insofar as FrontSim relies on front tracking,
a technique which is well-known for its small numerical
diffusion.

Since the method ECLIPSE is only of first order,
ECLIPSE is inferior to both AMMoC and FrontSim,
due to enhanced numerical diffusion around the shock
front. Our meshfree advection scheme AMMoC, of sec-
ond order, reduces (compared with ECLIPSE) the numer-
ical diffusion, mainly due to the effective adaptive node
distribution. Moreover, the saturation profile obtained
by our meshfree method AMMoC is fairly close that of
FrontSim, see Figure 2.

In conclusion, we feel that our meshfree method AM-
MoC is, as regards its performance concerning the five-
spot problem, quite competitive with both ECLIPSE and
FrontSim, since it produces only small amount of numer-
ical diffusion and tracks the shock front very well.

Let us finally remark that neither ECLIPSE nor FrontSim
is accessible to us. The presented results by ECLIPSE
and FrontSim, each based on hardware optimized For-
tran codes, were obtained at Schlumberger Stavanger Re-
search. In contrast, the numerical simulation by AM-
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Figure 5 : Five-spot problem. Adaptive node distribution during the simulation by AMMoC at six different times,
(a) t = t0, (b) t = t420, (c) t = t840, (d) t = t1260, (e) t = t1680, and (f) t = t2100.
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Figure 6 : Five-spot problem. Solution obtained by ECLIPSE. The color plots indicate the water saturation u during
the simulation at six different times, (a) t = t0, (b) t = t420, (c) t = t840, (d) t = t1260, (e) t = t1680, and (f) t = t2100.



146 Copyright c© 2005 Tech Science Press CMES, vol.7, no.2, pp.133-148, 2005

(a) (b)

(c) (d)

(e) (f)

Figure 7 : Five-spot problem. Solution obtained by FrontSim. The color plots indicate the water saturation u during
the simulation at six different times, (a) t = t0, (b) t = t420, (c) t = t840, (d) t = t1260, (e) t = t1680, and (f) t = t2100.
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MoC was performed by using MATLAB 6 Release 13
on inferior hardware, namely on a PC (model: IBM
236623G) with processor type Intel Pentium(R) 4
1600MHz. Therefore, we refrained from providing the
required CPU times for the simulation by the three dif-
ferent methods, since any such comparison can only be
unfair on our method AMMoC.
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