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A Radial Basis Function Collocation Approach in Computational Fluid Dynamics

B. Šarler1

Abstract: This paper explores the application of the
mesh-free radial basis function collocation method for
solution of heat transfer and fluid flow problems. The
solution procedure is represented for a Poisson reformu-
lated general transport equation in terms of a-symmetric,
symmetric and modified (double consideration of the
boundary nodes) collocation approaches. In continua-
tion, specifics of a primitive variable solution procedure
for the coupled mass, momentum, and energy transport
representing the natural convection in an incompressible
Newtonian Bussinesq fluid are elaborated. A compari-
son of different collocation strategies is performed based
on the two dimensional De Vahl Davis steady natural
convection benchmark with Prandtl number Pr = 0.71,
and Rayleigh numbers Ra = 103, 104, 105, 106. Mul-
tiquadrics radial basis functions are used. The three
methods are assessed in terms of streamfunction extreme,
cavity Nusselt number, and mid-plane velocity compo-
nents. Best performance is achieved with the modified
approach.

keyword: radial basis function collocation method,
heat transfer, fluid flow, natural convection.

1 Introduction

The development of efficient as well as simple algorithms
for the numerical solution of partial differential equations
(PDEs) is of major interest in applied sciences and engi-
neering. The most popular discrete approximate methods
for PDEs are nowadays the finite difference (FDM), finite
volume (FVM), the finite element (FEM), the spectral
(SM), and the boundary element methods (BEM). De-
spite the powerful features of these methods, there are
often substantial difficulties in applying them to realistic,
geometrically complex three dimensional transient situ-
ations. A common drawback of the mentioned methods
is the need to create a polygonisation, either in the do-
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main and/or on its boundary. This type of meshing is of-
ten the most time consuming part of the solution process
and is far from being fully automated. In recent years, a
new class of methods has been developed which do not
require polygonisation but use a set of nodes to approx-
imate the solution. The rapid development of these type
of methods and their classification is elaborated in the
very recent monographs [Atluri and Shen (2002a), Liu
(2003), Atluri (2004a)]. A number of mesh reduction
techiquies such as the dual reciprocity boundary element
method [Šarler and Kuhn (1999)], meshfree techniques
such as the dual reciprocity method of fundamental so-
lutions [Šarler (2002)], meshfree local Petrov Galerkin
methods (MLPG) [Lin and Atluri (2001a, 2001b), Atluri
and Shen (2002b), Atluri, Han and Rajendran (2004b)]
have been developed for transport phenomena and solu-
tion of the Navier-Stokes equations. A simplest class of
mesh-free methods in development today are the Radial
Basis Function [Buhmann (2000)] Collocation Methods
(RBFCM) [Kansa (1990a), Kansa (1990b)] which repre-
sent focus in present paper.

2 Governing equations

For the present purposes, a transport phenomena problem
can be briefly described in a general manner as the nu-
merical solution of Eulerian transport equation, defined
on a fixed domain Ω with boundary Γ, of the kind

∂
∂t

[ρ f (Φ)]+∇ · [ρ�v f (Φ)] = ∇ · (D∇Φ)+S (1)

with ρ, Φ, t, �v, S, and D standing for the density, trans-
port variable, time, velocity, source, and diffusion matrix.
The transport variable stands, for instance for the veloc-
ity component in each co-ordinate direction, or temper-
ature, or the mass fraction of a chemical species. The
function f denotes the relation between the transported
and the diffused variable such as for example the relation
between the enthalpy and the temperature. The solution
of the governing equation for the dependent variable Φ
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at final time t = t0 +∆t is sought, where t0 represents the
initial time and ∆t the positive time increment. The solu-
tion is constructed by the initial and boundary conditions
that follow. The initial value of the transport variable Φ
at a point with position vector �p and time t0 is defined
through the known function Φ0

Φ (�p, t0) = Φ0; p ∈ Ω∪Γ (2)

The boundary Γ is divided into not necessarily connected
parts ΓD and ΓN with Dirichlet and Neumann boundary
conditions, respectively. These boundary conditions are
at the boundary point �p with normal�nΓ and time t < t ≤
t0 +∆t defined through known functions ΦD and ΦN

Φ = ΦD; �p ∈ ΓD,
∂

∂�nΓ
Φ = ΦN ; �p ∈ ΓN (3)

The involved parameters of the governing equation and
boundary conditions are assumed to depend on the trans-
port variable, space and time. The solution procedure
thus inherently involves iterations. The governing equa-
tion is transformed into a Poisson form as follows. The
diffusion matrix is split into constant isotropic part DI
and the remaining an-isotropic part D′

D = DI +D ′ (4)

The transport equation is subsequently cast into Poisson
form

∇2Φ = θ+∇ ·�Θ (5)

with

θ =
{

∂
∂t

[ρ f (Φ)]−S

}
/D (6)

�Θ =
[
ρ�v f (Φ)−D ′∇Φ

]
/D (7)

The partial time derivative can be approximated by a two-
level fully implicit finite difference

∂
∂t

[ρ f (Φ)]≈ 1
∆t

[ρ f (Φ)−ρ0 f (Φ0)] (8)

The inhomogenous terms are Taylor expanded as

θ = θ+θ,Φ
(
Φ−Φ

)
, �Θ = �Θ+�Θ,Φ

(
Φ−Φ

)
(9)

with the ‘over-bar’ denoting value at previous iteration.
The final form of the transformed equation, suitable for
iterative solution than becomes

∇2Φ = Q(Φ) (10)

Q(Φ) = θ+θ,Φ
(
Φ−Φ

)
+∇ ·�Θ+∇ ·�Θ,Φ

(
Φ−Φ

)
(11)

The solution of equation (10) might sometimes require
additional under-relaxation

Φ = εrel

(
Φ−Φ

)
+Φ (12)

with the two ‘over-bars’ denoting the value of the un-
known two iterations ago and 0 < εrel < 1 the relaxation
factor.

3 Radial Basis Function Collocation Method

3.1 Description of fields and partial derivatives

The unknown filed Φ is calculated in points �pn; n =
1, ...,N = NΓ + NΩ. The first NΓ belong to the bound-
ary and the last NΩ to the domain. The unknown field
is approximated by M approximation functions ψm and
their coefficients ςm of the type

Φ (�p) ≈
M

∑
m=1

ςmψm (�p) (13)

Similarly, a partial derivative over coordinate ζm of point
�p(ζ1,ζ2,ζ3) can be approximated as

∂
∂ζi

Φ (�p) ≈
M

∑
n=1

ςm
∂

∂ζi
[ψm (�p)] (14)

∂2

∂ζ2
i

Φ (�p) ≈
M

∑
n=1

ςm
∂2

∂ζ2
i

[ψm (�p)] (15)

by assuming sufficient admissibility of functions ψm. A
suitable function is the multiquadric

ωm (�p) =
(
r2

m +c2)1/2
(16)

with rm standing for the Euclidean distance between the
field point �p and the reference point �pm and c for the
free parameter. The coefficients ςm of the solution can
be determined in various ways. The following three col-
location strategies have been put into context of solving
transport phenomena in this paper.
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3.1.1 A-symmetric collocation

The most simple is the a-symmetric collocation, orig-
inally proposed by Kansa [1990a,1990b]. The coeffi-
cients ςm of the solution are determined from a system
of collocation equations. The first NΓ equations read

M

∑
m=1

ςm(χD
i ψmi +χN

i
∂

∂nΓ
ψmi) = χD

i ΦD
i

+χN
i ΦN

i ; i = 1, ...,NΓ

(17)

and the last M−NΓ equations read

M

∑
m=NΓ+1

ςm∇2ψmi = Qi; i = NΓ +1, ...,M; (18)

by setting

ψmi = ωmi, M = N (19)

The first NΓ equations (17) have been written for the
boundary points, and the last NΩ equations (18) for the
domain points, and Fi ≡ F(�pi), where F stands for an
arbitrary function. The introduced boundary condition
indicators take form

χD
i =

{
1; �pi ∈ ΓD

0; �pi /∈ ΓD , χN
i =

{
1; �pi ∈ ΓN

0; �pi /∈ ΓN (20)

3.1.2 Symmetric collocation

The system of equations (16,17) can be made symmetric
by setting the Fasshauer’s [Fasshauer (1996)] ansatz

ψmi =
NΓ

∑
m=1

(
χD

mωmi +χN
m

∂ωmi

∂nΓ

)
+

M

∑
m=NΓ+1

∇2ωmi,

M = N; i = 1, ....,M (21)

The right-hand-side vector remains the same as in equa-
tions (17) and (18).

The symmetric solution gives better results [Power and
Barraco (2002)] as the a-symmetric one.

3.1.3 Modified collocation

If we attempt the solution only in the boundary nodes or
only in the domain nodes the information either on the
governing equation or on the boundary conditions is lost

in these two extremes. In boundary points, the govern-
ing equation as well as boundary conditions have to be
valid. Respectively, the system of equations (17,18) can
be made symmetric and consistent by attempting the so-
lution with double consideration of the boundary nodes,
as deduced in [Chen (2002)], by setting

ψmi =
NΓ

∑
m=1

(
χD

mωmi +χN
m

∂ωmi

∂nΓ

)
+

M

∑
m=NΓ+1

∇2ω(m−NΓ)i,

M = NΓ +N (22)

Collocation is first made in the boundary nodes where
the boundary conditions are valid and subsequently in the
boundary and domain nodes where the governing equa-
tion is valid. By inserting the approximation (22) into
framework (17,18) gives an (NΓ + N)× (NΓ + N) sym-
metric system of algebraic equations. The right-hand-
side vector is equal to

χD
i ΦD

i +χN
i ΦN

i ; i = 1, ...,NΓ (23)

χD
i−NΓΦD

i−NΓ +χN
i−NΓ ΦN

i−NΓ ; i = NΓ +1, ...,2NΓ (24)

Qi−2NΓ ; i = 2NΓ +1, ...,N (25)

3.1.4 The convergence criterion

The timestep iterations are stopped when the condition

|Φ j+1 (�pi, t)−Φ j (�pi, t) | < εitr (26)

is satisfied in all gridpoints �pi, where j counts iteration
level.

3.1.5 The steady-state criterion

The steady-state is assumed to be reached when the con-
dition

|Φ (�pi, t +∆t)−Φ (�pi, t) | < εste (27)

is satisfied in all gridpoints �pi.

4 Natural Convection Problem

In order to demonstrate the application and suitability of
the represented solution procedures for a typical compu-
tational fluid dynamics problem, the following system of
coupled mass, momentum, and energy equations is used.
It describes the natural convection of an incompressible
Newtonian Bussinesq fluid

∇ ·�v = 0, (28)
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∂
∂t

(ρ�v)+∇ · (ρ�v�v)

= −∇P +µ∇2�v +ρ�a[1−β(T −T
ref

)] (29)

∂
∂t

(ρcPT )+∇ · (ρ�vcPT ) = k∇2T (30)

with P standing for pressure, µ for viscosity,�a for accel-
eration, β for the volumetric thermal expansion coeffi-
cient, T0 for the Bussinesq reference temperature, cP for
specific heat, k for thermal conductivity, and T for tem-
perature. All material properties are assumed constant.

5 Solution Strategy

The energy equation is coupled with the momentum
equation through the velocity field and the momentum
equation is coupled with the energy equation through
the body force. Respectively, the solution inherently in-
volves iterations. Let us assume the velocity, pressure
and temperature fields are all known at iteration level
j.What follows explains the solution at the iteration level
j +1.

5.1 Solution of the momentum equation

The solution of the momentum equation at iteration level
j+1 is obtained in the following way: The Pressure Pois-
son Equation (PPE) is constructed by taking the diver-
gence of the momentum equation

∇2P j+1 = ∇ ·
{
− 1

∆t

(
ρ�v j −ρ�v0

)−∇ · (ρ�v j�v j)

+µ∇2�v j +ρ�a
[
1−β

(
T j −T

ref

)]}
(31)

The Neumann pressure boundary conditions can be de-
fined along the whole boundary Γ by taking the scalar
product of the momentum equation with the normal on
the boundary. This gives

∂
∂nΓ

P j+1 =
{
− 1

∆t

(
ρ�v j −ρ�v0

)−∇ · (ρ�v j�v j)

+µ∇2�v j +ρ�a
[
1−β

(
T j −T

ref

)]}
·�nΓ (32)

After calculating the pressure gradient field the velocity
field at iteration level j +1 can be solved from the veloc-
ity Poisson equation

∇2�̂v j+1 =
1
µ

{
1
∆t

(
ρ�̂v j+1 −ρ�v0

)
+∇ · (ρ�v j�v j)

+∇P j+1 −ρ�a
[
1−β

(
T j −T

ref

)]}
(33)

The “hat” on the velocity denotes that the velocity does
not correspond to the mass conservation in general. The
incompressibility is enforced through the pressure P̃ and
velocity corrections �̃v, which ensure

∇ ·�v j+1 = ∇ ·
(
�̂v j+1 +�̃v j+1

)
(34)

Consider that the velocity corrections occur exclusively
due to action of the pressure correction P̃

εPv
ρ
∆t

�̃v j+1 = −∇P̃ j+1 (35)

where εPv represents a heuristic velocity correction –
pressure correction relaxation factor. The pressure cor-
rection can thus be calculated from the velocity field
�̂v through the Pressure Correction Poisson Equation
(PCPE)

∇2P̃ j+1 = εPv
ρ
∆t

�̂v (36)

deduced from the equations (34) and (35). Since no cor-
rection is needed in the direction normal to the solid
boundary, the following pressure correction boundary
conditions are valid

∂
∂nΓ

P̃ j+1 = 0; �p ∈ Γ (37)

Both PPE and PCPE are singular due to the presence of
the Neumann boundary conditions over the whole bound-
ary. One of the domain grid-points �p0 is fixed to the ref-
erence pressure P0 in case of the PPE, and to 0 in case of
the PCPE, in order to avoid the singularity

P j+1 (�p0) = P0; �p0 ∈ Ω (38)

P̃ j+1 (�p0) = 0; �p0 ∈ Ω (39)

The domain point which coincides with the point �p0 is
treated in a formally equivalent way as it would repre-
sent a boundary point with prescribed Dirichlet boundary
conditions.
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5.2 Solution of the energy equation

The energy equation is solved from

∇2T j+1

=
1
k

{
1
∆t

(
ρcPT j+1 −ρcPT0

)
+∇ · (ρ�v j+1cPT j)}

(40)

At the end of the iteration, the body force is updated with
the new value of the temperature and the solution is re-
peated until the iteration and steady state conditions are
met for the pressure, velocity components, and tempera-
ture.

6 Numerical Results

6.1 Natural convection [De Vahl Davis (1983)] bench-
mark

Geometry is a square with dimension L. Two dimen-
sional Cartesian coordinates px, py are used. The square
is extending from px− ≤ px ≤ px+, py− ≤ py ≤ py+,
pxy± =±L/2. Upper and lower boundaries are insulated,
the left boundary is subject to temperature T+, the right
boundary is subject to temperature T−. The solution is
performed for Prandtl number Pr = µcP/k = 0.71, and for
Rayleigh numbers Ra = aβ(T+−T−)L3 Pr ρ2µ2 = 103,
104, 105, 106. The square is discretized in an uniform
grid 20 × 20 or 30 × 30. The first (second) grid in-
volves 441 (961) points of which 80 (120) are on the
boundary and 361 (841) in the domain. The dimension-
less time-step used in the calculations has been set to
∆t = 10/Ra. The constant in multiquadrics has been
set to c = 1.75∆L, where ∆L represents a typical grid
distance. The global relaxation factor has been set to
εrel = 1, the velocity correction – pressure correction re-
laxation factor has been set to εPv = 1. The iteration
criterion and the steady-state criterion have been set to
εitr = 10−5, εste = 10−4, respectively. The temperature
is distributed linearly from the left to the right of the cav-
ity and no flow is assumed at the initial time. The sim-
ulations have been performed with three different solu-
tion procedures: with the symmetric one (SYM) [Šarler,
Perko Chen and Kuhn (2001)], with the a-symmetric one
(ASY) and with the modified one (MOD). The dimen-
sions of the Poisson equations are for the grids 20×20
equal to 441×441 in case of the ASY and SYM proce-
dures, and equal to 521×521 in case of the MOD pro-
cedure. The dimensions of the Poisson equations are for

the grids 30×30 equal to 961×961 in case of the ASY
and SYM procedures, and equal to 1081×1081 in case
of the MOD procedure.

6.2 Calculation of the streamfunction

The streamfunction Ψ is calculated as

Ψ =

py∫
py−

vxdpy, Ψ = −
px∫

px−

vydpx (41)

A variation of the velocity components over the domain
Ω and boundary Γ is based on the global approximation

vx =
M

∑
m=1

ςvx
m ψm, vy =

M

∑
m=1

ςvy
m ψm (42)

Respectively, Ψ can be calculated as

Ψ =
M

∑
m=1

ςvx
m

py∫
py−

ψmdpy, Ψ = −
M

∑
m=1

ςvy
m

px∫
px−

ψmdpx (43)

6.3 Calculation of the Nusselt number

The cavity Nusselt number Nu is calculated as

Nu =
1

T+−T−

py+∫
py−

∂
∂px

Tmdpy (44)

A variation of the temperature over the domain Ω and
boundary Γ is based on the global approximation

T =
M

∑
m=1

ςT
mψm (45)

Respectively, Nu can be calculated as

Nu =
1

T+−T−

M

∑
m=1

ςT
m

py+∫
py−

∂
∂px

ψmdpy (46)

All involved integrals of RBFs in numerical evaluation of
the Ψ and Nu are evaluated in an analytical way.

6.4 Numerical implementation

The numerical implementation is made double precision
in Compaq Visual Fortran 90 with IMSL library. Test
cases have been run on an HP Omnibook XE3 laptop
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with an Intel Pentium III 850MHz processor, 256MB ram
and Windows 2000 Professional operating system. The
system matrices have been first LU decomposed by us-
ing the routine DLFRGT and then solved by the routine
DLFSRG at each iteration. The 30×30 MOD CPU time
is 7.5 hours for Ra = 106.

6.5 Discussion of the results

The number of required iterations remains almost the
same in all three methods as seen in Table 1. Almost
without exception, the SYM approach gives better re-
sults than the ASY one, and the MOD approach gives
better results than the SYM one, as could be clearly con-
cluded from the Tables 2-5. The exceptions might origi-
nate in the fact that the reference results are estimated to
be accurate by less then 1% at Ra = 106 and probably by
less than a tenth of that at the lower Rayleigh numbers as
stated in [De Vahl Davis (1983)].

Table 1 : The number of time-steps, and internal time-
step iterations used as a function of the solution proce-
dure and problem.

Ra procedure time-steps Iterations 
310           ASY               33           340 
310          SYM               34           327 
310         MOD               37           332 
410           ASY               87           870 
410          SYM               88           853 
410         MOD               88           861 
510           ASY             188         2062 
510          SYM             191         1991 
510         MOD             194         2007 
610           ASY             295         3531 
610          SYM             299         3501 
610         MOD             304         3529 

7 Conclusions

This paper explores three RBFCM strategies for dealing
with transport phenomena. The asymmetric, symmetric

Table 2 : Natural convection in a square cavity. The max-
imum value of the vertical velocity vy max on the horizon-
tal midplane

Ra   Grid     ASY    SYM   MOD DeVahl  
Davis 

1983 

310 20×20     3.551    3.562    3.668    3.697 

310 30×30     3.566    3.583    3.680    3.697 

410 20×20     18.97    19.13    19.54    19.62 

410 30×30     19.04    19.20    19.59    19.62 

510 20×20     66.60    66.90    67.03    68.59 

510 30×30     67.59    68.01    68.27    68.59 

610 20×20   205.11  207.67  209.31  219.36 

610 30×30   211.67  213.81  215.56  219.36 

Table 3 : Natural convection in a square cavity. The
maximum value of the horizontal velocity vx max on the
vertical midplane.

Ra      grid     ASY  SYM   MOD DeVahl    
Davis 
1983 

310 20 20     3.530  3.541    3.621       3.649 

310 30 30     3.544  3.600    3.633       3.649 

410 20 20     15.53  15.56    15.99       16.18 

410 30 30     15.80  16.03    16.09       16.18 

510 20 20     31.86  31.96    32.11       34.73 

510 30 30     32.51  33.70    34.08       34.73 

610 20 20     59.67  61.01    61.48       64.63 

610 30 30     61.55   62.64    63.12       64.63 

and modified formulations are critically evaluated based
on the classical De Vahl Davis benchmark test. Even the
most simple of them, the a-symmetric formulation per-
forms well for a broad spectra of CFD problems [Šarler,
Perko, Chen, and Kuhn (2001), Kovačević, Poredoš and
Šarler (2003), Šarler, Perko and Chen (2004)]. The
other two formulations can be successfully applied to
boost the performance of the first one on the expense of
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Table 4 : Natural convection in a square cavity. Values
of stream-function extreme Ψ at the center of the cavity
as a function grid density and collocation scheme.

Ra grid   ASY    SYM   MOD DeVahl 

Davis 

1983 

310 20×20  1.153    1.161    1.165       1.174 

310 30×30  1.165    1.167    1.170       1.174 

410 20×20  4.833    4.841    4.850       5.071 

410 30×30  4.971    4.980    4.995       5.071 

510 20×20  8.861    8.880    8.901       9.111 

510 30×30  8.907    8.950    9.073       9.111 

610 20×20  15.03    15.41    15.88       16.32 

610 30×30  15.91    16.07    16.22       16.32 

Table 5 : Natural convection in a square cavity. Values
of cavity Nusselt number Nu as a function of grid density
and collocation scheme.

Ra grid   ASY    SYM   MOD DeVahl 
Davis 
1983 

310 20 20  1.111    1.119    1.125    1.118 

310 30 30  1.100    1.108    1.114    1.118 

410 20 20  2.236    2.247    2.249    2.243 

410 30 30  2.241    2.244    2.246    2.243 

510 20 20  4.647    4.640    4.573    4.519 

510 30 30  4.530    4.528    4.523    4.519 

610 20 20  8.921    8.909    8.876    8.800 

610 30 30  8.869    8.845    8.834    8.800 

slightly more complicated coding. These formulations
include calculation of the higher order spatial derivatives
which might impair the convergence rate and pose spe-
cial smoothness requirements on the RBFs. Another pos-
sibility is approximation of the second derivatives by the
expression (13) and employment of the first and second
order integration to approximate first order derivative and
function itself. This method is called the Indirect Radial

Basis Function Collocation Method (IRBFCM) and has
been explored for solution of the Navier-Stokes equa-
tions in [Mai-Dui and Tran-Cong (2001)]. The main
disadvantage of the presented methods, including the
IRBFCN are full matrices that are difficult and expen-
sive to solve for large-scale problems. This issue might
be in the future mitigated or overcome by the use of the
compactly supported radial basis functions [Chen, Breb-
bia and Power (1999)], multilevel radial basis functions
[Fasshauer (1998)], iterative solvers [Bulgakov, Šarler
and Kuhn (1998)], adaptive grid or domain decomposi-
tion [Mai-Dui and Tran-Cong (2002)] or the local collo-
cation [Lee, Liu and Fan (2003)]. It would be too ambi-
tious to claim that the represented method can cope with
a wide variety of large-scale computational science and
engineering problems at this point. Additional research
in this direction is definitely required.
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Appendix A

Transformations of the governing equations into Poisson
form follow through the following definitions

Energy Equation

Variable Definition

Φ T
f (Φ) cPT
D k
D

′
ςξ 0

S 0
θ ρ [ f (Φ)−ρ f (Φ0)]/(∆t k)
θ,Φ ρcP f (Φ) /(∆t k)
Θx ρvx f (Φ)
Θy ρvy f (Φ)
Θx,Φ ρvx cP

Θy,Φ ρvy cP
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Momentum Equation x-direction

Variable Definition

Φ vx

f (Φ) vx

D µ
D

′
ςξ 0

S −P,x +ρax
[
1−β

(
T −Tref

)]
θ ρ (Φ−Φ0) /(∆t µ)−S/µ
θ,Φ ρ/∆t µ
Θx ρΦ2/µ
Θy ρvy Φ/µ
Θx,Φ 2ρΦ/µ
Θy,Φ ρvy /µ

Momentum Equation y-direction

Variable Definition

Φ vy

f (Φ) vy

D µ
D

′
ςξ 0

S −P,y +ρay
[
1−β

(
T −Tref

)]
θ ρ (Φ−Φ0) /(∆t µ)−S/µ
θ,Φ ρ/∆t µ
Θx ρvx Φ/µ
Θy ρΦ2/µ
Θx,Φ ρvx /µ
Θy,Φ 2ρΦ/µ

Pressure Poisson Equation

Variable Definition

Φ P
f (Φ) P
D 1
D

′
ςξ 0

S 0
θ 0
θ,Φ 0
Θx −ρ (vx −vx0)/∆t +ρ (vxvx,x−vyvx,y)

+µ(vx,xx +vx,yy)+ ρax
[
1−β

(
T −Tref

)]
Θy −ρ (vy −vy0)/∆t +ρ (vxvy,x−vyvy,y)

+µ(vy,xx +vy,yy)+ ρay
[
1−β

(
T −Tref

)]
Θx,Φ 0
Θy,Φ 0

Pressure Correction Poisson Equation

Variable Definition

Φ P̃
f (Φ) P̃
D 1
D

′
ςξ 0

S 0
θ 0
θ,Φ 0
Θx −ρvx

Θy −ρvy

Θx,Φ 0
Θy,Φ 0




