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Using radial basis functions in a “finite difference mode”

A.I.Tolstykh, D.A. Shirobokov 1

Abstract: A way of using RBF as the basis for PDE’s
solvers is presented, its essence being constructing ap-
proximate formulas for derivatives discretizations based
on RBF interpolants with local supports similar to sten-
cils in finite difference methods. Numerical results for
different types of elasticity equations showing reason-
able accuracy and good h-convergence properties of the
technique are presented. Applications of the technique to
problems with non-self-adjoint operators (like those for
the Navier-Stokes equations) are also considered.

keyword: radial basis functions, derivatives discretiza-
tion, RBF schemes, solid mechanics equations, Navier-
Stokes equations

1 Introduction

At present, high accuracy methods have a significant
place in both theoretical investigations and applications
due to their ability to serve, from one hand, as a high
resolution numerical tools and, from another, as a fast
solvers providing engineering accuracy. In the area of
finite difference techniques, there exist families of high-
order schemes which can be easily implemented into al-
gorithms for solving various PDE. Unfortunately, their
peak performance usually corresponds to the cases when
high-quality smooth meshes can be constructed. Some
times, it is not an easy task and considerable technical
efforts are often required to do the job.

To circumvent the difficulties associating with meshing
in the case of difference schemes, it was suggested [Tol-
stykh (2000)] to use them together with high-accuracy
meshless approximations. In more detail, it was sug-
gested to use the latter category in the framework of the
domain decomposition strategy by partitioning a compu-
tational domain into ”good” subdomains where smooth
meshes can be easily generated and ”bad” subdomains
where scattered nodes can be used to discretize govern-
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ing equations. Another possibility is using meshless ap-
proximations at junctions of smooth meshes generated
for neighbour subdomains.

To match a meshless approximation with a finite differ-
ence one, it was proposed to use the former in a ”fi-
nite difference mode” by introducing approximate for-
mulas for derivatives using local interpolants. Radial
basis functions were chosen for constructing the inter-
polants.

A hybrid scheme based on the 5th-order compact up-
wind differencing (CUD) approximations from [Tolstykh
(1994)] and local MQ-RBF formulas was developed and
successfully tested [Tolstykh (2000)].

Further investigations have shown that the proposed RBF
technique can be quite accurate when used alone for solv-
ing certain classes of PDE’s. The choice of RBF for
meshless derivatives approximations was motivated by
the existing results concerning the general properties of
RBF interpolants and their applications to PDE’s. In the
context of the present approach, using RBF offers some
nice possibilities
First, some RBF-based discretizations have potential for
providing convergence rates dependent on exact solu-
tions smoothness only rather than on degrees of underly-
ing polynomial approximations in FD and FEM methods.
In certain cases, they can be exponential. It fits neatly
into the strategy of constructing arbitrary-order multiop-
erators schemes [Tolstykh (2003)] exploiting exact solu-
tions smoothness.
Second they can be easily implemented in PDE’s solvers.
Third, good RBF performance in three-dimensional
cases is theoretically expected.

At present, the most popular lines of attack when
constructing RBF-PDE solvers seem to be collocation
and boundary elements approaches [Fasshauer (1996)],
[Franke and Schaback (1998)], [Kansa (1990)], [Zer-
roukat (1998)].

In [Wu and Shaback (1993)], [Wu (1998)] conver-
gence proofs and error estimates of the collocation
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procedure are presented. A profound impact on the
RBF-collocation technique applications is due to papers
[Kansa (1990)], [Kansa and Hon (2000)], [Sharan, Kansa
and Gupta (1997)], [Wong, Hon, Li, Chung and Kansa
(1999)]. In the works, much attention was given to
Hardy’s multiquadric [Hardy (1990)] with varying shape
parameters. Dramatic increase of accuracy was found
in the case of properly defined shape-parameter distri-
butions.

The main difficulty when using RBF collocation ap-
proach is the necessity to invert ill-conditioned matrix
arising due to a global RBF support. Several remedies
to circumvent the problem were proposed. They are,
in particular, domain decomposition approach [Wong,
Hon, Li, Chung and Kansa (1999)], preconditioning and
compactly supported RBF [Buhmann (1998)], [Wend-
land (1995)], [Wu (1995)]. Usinng local RBF supports
in the framework of the differential quadratures approach
was reported in [Shu et al. (2003)].

For completeness, an important class of mesh-free meth-
ods exploiting least-square type of approximation should
be mentioned (the relevant references can be found, for
example, in [Belytcko et al. (1996])]. Various forms
of the meshless Petrov-Galerkin method can be found in
[Atluri et al. (2004)], [Atluri and Shen (2002)], [Han and
Atluri (2004)], [Atluri (2004)]. Another approach was to
extend traditional concepts of finite difference methods
to the case of irregularly spaced nodes thus preserving
polynomial nature of the resulting approximations. Tech-
nically, the PDEs approximations can be constructed in
several ways. To the best of our knowledge, the first
attempt in this direction is dated back to [D’yachenko
(1965)]. In the paper, irregularly spaced nodes were used
to construct quadrature formulae defining solutions of the
Lagrangian gas dynamics equations. Considerable de-
velopment of the irregular spacing idea (with underly-
ing polynomial basis) has been embodied in the Gener-
alized Finite Difference Method (see [Lizka and Orkits
(1978)] where approximations to derivatives were con-
structed using linear systems generated by Taylor expan-
sion series, the main emphasize being placed on elliptical
problems. The application of the similar idea to the Euler
gas dynamics equations can be found in [Belotserkovskii
and Kholodov (1999)].

The present paper concerns finite difference-type RBF
schemes as a numerical tool for solving solid and fluid
mechanics problems. Section 2 presents the description

of RBF approximations to derivatives using compact sup-
ports (stencils) and the resulting schemes formed by al-
gebraic equations resulting from approximations to gov-
erning equations at nodal points.

In section 3, the main concepts of finite difference
schemes, that is, approximation, stability and conver-
gence, are formulated for the present approach. As sim-
plest examples showing the possibility of proving both
approximation and stability and, hence, convergence,
five-point stencils for the Poisson equation and three-
point ”upwind” and ”downwind” stencils for advection
equations are considered. A technique allowing to en-
large advection oriented stencils is outlined.

The rest of the paper presents numerical examples aimed
mainly showing h-convergence of numerical solutions
when using different types of stencils. The examples
cover solid mechanics problems with known exact so-
lution as well as solutions of model advection equations
and the compressible Navier-Stokes equations.

2 RBF approximations to derivatives and RBF
schemes

Suppose one has a set X = {x1,x2, . . . ,xM} ⊂ Ω of
nodes in a computational domain Ω. Let Xj =
(x( j)

1 ,x( j)
2 , . . . ,x( j)

Nj
), Xj ⊂ X , x j ∈ Xj be a set of nodes sur-

rounding each node x j. Following the finite difference
terminology, the set will be referred to as a stencil corre-
sponding to the node x j.

Suppose further that values ui = u(x( j)
i ) of a sufficiently

smooth function u(x), x ∈ Ω are specified at some nodes

x( j)
k , k = 1,2, . . ., p of the jth stencil while functionals

Lu|
x=x( j)

k
generated by a linear operator L acting on u(x)

are given at x( j)
k , k = 1,2, . . .,q, x( j)

k ∈ Xj. It is assumed

that x( j)
i and x( j)

k are possibly coincident for certain i and
k.

We construct the interpolant

s( j)(x) =
p

∑
k=1

akφ(||x−x( j)
k ||)+

q

∑
k=1

bkLφ(||x−x( j)
k ||) (1)

p, q ≤ Nj

Requiring that

s( j)(x( j)
k ) = u(x( j)

k ), k = 1,2, . . ., p,

Ls( j)|
x=x( j)

k
= Lu|

x=x( j)
k

, k = 1,2, . . .,q
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one obtains a linear system for ak, bk. It reads⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ11...φ1p Lφ11...Lφ1q
...

...
φp1...φpp Lφp1...Lφpq

Lφ11...Lφ1p L2φ11...L2φ1q
...

...
Lφq1...Lφqp L2φq1...L2φqq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

ap

b1
...

bq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
...

up

Lu1
...

Luq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

φik = φ(||x( j)
i − x( j)

k ||), Lφik = Lφ(||x − x( j)
k ||)|

x=x( j)
i

,

L2φik = L2φ(||x − x( j)
k ||)|

x=x( j)
i

, ui = u(x( j)
i ), Lui =

Lu|
x=x( j)

i
.

The solvability of the above type of systems is widely
discussed in the literature (see for example, survey
[Kansa and Karlson (1995)]). It is proved [Madych and
Nelson (1989)], [Micchelli (1986)] that the solvability
holds for any distinct nodes distribution provided that
φ(r) belongs to certain classes of functions. In particu-
lar, the systems are solvable in the case of multiquadrics
RBF which is used in the present paper. Therein lies es-
sential difference between Generalized Finite Difference
Method (GFDM) and the present approach. Another dif-
ference can be seen from the following observation. In
the GFDM case [Lizka and Orkits (1978)] the minimal
number of equations needed to obtain ”differencing” co-
efficients (and hence the minimal number of nodes in lo-
cal supports) is uniquely defined by derivative orders and
dimensions of spaces (2D or 3D). Adding more nodes
leads to overdetermined sets of equations which require
minimization of least squares functionals. In the present
RBF case, the number of equations in the above system
is defined by a chosen numbers p and q of the interpola-
tion conditions in (1) so the minimal number of nodes is
equal to p+q. Adding more nodes is also possible but in
this case one has to solve overdetermined systems. Such
possibility is discussed in Section 3.4.

Supposing now that Dα is the operator of the αth-order
derivative in one direction or another at a node x j, and
applying it to s(x), one obtains the following ”differenc-
ing” formulas for the x j node

(Dαu) j ≈
p

∑
k=1

C j,α
k uk +

q

∑
k=1

B j,α
k Luk,

uk = u(x( j)
k ), Luk = Lu|

x=x( j)
k

(2)

where the coefficients C j,α
k and B j,α

k depend on the coor-

dinates of the nodes forming the jth stencil.

Particular forms of Eq. (2) can be used for approxima-
tions to derivatives in governing equations. For example,
a discrete forms of the first and second order x-derivatives
of a function for j-th node reads

(ux) j ≈
p

∑
k=1

C j,1
k uk, (uxx) j ≈

q

∑
k=1

C j,2
k uk (3)

where C j,1
k and C j,2

k are the RBf x-derivatives coefficients
for the j-th stencil. Similar formulas can be constructed
for higher derivatives. However, they can be also approx-
imated by successive applications of RBF operators for
lower order derivatives. One may also need derivatives
discretizations near boundary nodes with the Neumann-
type boundary conditions. A particular form of Eq. (2)
can be written in this case as

(Duα) j ≈
p

∑
k=1

C j,α
k uk +

q

∑
k=1

B j,α
k (∂u/∂n)k

where (∂u/∂n)k are boundary values of the normal to ∂Ω
derivative. In the case of singular points, it is possible to
modify the interpolant s(x) in Eq. (1) for stencils near
singularities. It can be accomplished by considering u
as a product of singular and non-singular functions and
interpolating the latter.

Discretization at each node of a given PDE can be pro-
ceeded in a standard finite difference manner by chang-
ing derivatives by their approximations. Assembling
then the resulting algebraic equations and using bound-
ary conditions (which, if needed, can be discretized as
well provided that they contain derivatives), one obtains
a global system for unknown nodal variables. In the lin-
ear case, its matrix is a sparse one, the condition numbers
for ”global” systems being found to be quite acceptable.
It facilitates convergence of standard iterative methods
of their solutions. However, in the numerical experi-
ments described below, mainly the direct nested dissec-
tion method [George and Liu (1981)] was used.

It should be noted that though the present technique sug-
gests Nj << M, ill-conditioning of systems for determin-
ing the coefficients in Eq. (2) can not be ruled out if Nj is
too large or distances between nodes are too small. In the
calculations, the situation has been encountered only in
the h-convergence studies when very small values of h,
the characteristic distances between nodes, were used. In
those cases, quadro precision arithmetic was exploited.
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Summing up, to solve a PDE using the present RBF ap-
proach, one should:
(i) Specify a nodal distribution in the considered compu-
tational domain;
(ii) For each node x j considered as a center, specify sten-
cils with Nj nodes surrounding x j;
(iii) For each stencil, obtain ”differencing” coefficients
(for example C j,α

k and B j,α
k in (2)) by solving linear sys-

tems;
(iv) Substitute the approximations to derivatives at each
node in the PDE, taking into account the relevant bound-
ary conditions, and form the resulting ”global” system by
assembling together the nodal approximations;
(v) Solve the global system.

It should be noted that steps (i)-(iii) can be viewed as
a preprocessing procedure once nodal distributions and
stencils are not supposed to be changed during calcula-
tions. In nonlinear cases, only steps (iv) and (v) have to
be included in iterations.

The approach seems to possess the following merits.
(i) The problem of ill conditioned systems is greatly re-
laxed due to a limited number of nodes in stencils.
(ii) The technique has the potential for being quite accu-
rate.
(iii) Once RBF coefficients of the derivatives approxima-
tion are calculated, the technique can be implemented in
a simple manner typical for finite difference schemes.
(iv) The approach offers considerable flexibility by con-
structing various stencil configurations for different cen-
ter nodes where derivatives are considered (for example,
special configurations near boundaries and singularities).
(v) The resulting RBF schemes can be readily combined
with finite differencing schemes in the framework of the
domain decomposition strategy.

3 Approximation, stability and convergence

Main definitions and theorems of the finite difference
schemes theory can be readily applied to the present RBF
approach. We present them in spirit of [Godunov and
Ryaben’kii (1977)].

Consider a target problem written in the abstract form

Lu = f , u ∈ U, f ∈ F (4)

where U and F are spaces to which belong the solution u
and RHS f .

Suppose we have a RBF discretization of Eq. (4) written
in the form

LRBF uh = fh, uh ∈Uh, fh ∈ Fh (5)

where the index h denotes nodal functions and spaces of
nodal functions. We also denote by h some character dis-
tance between nodes, for example,

h = max
j

max
i

||x( j)
i −x j||

where x j is a center of the j-th stencil where deriva-
tives are approximated. We supposed that both Uh and Fh

spaces are supplied by norms || · ||Uh and || · ||Fh. Follow-
ing notations from [Godunov and Ryaben’kii (1977)], we
introduce a projection operator [·]h : U → Uh which can
be viewed as a table of values of u ∈ U at nodal points
x j ∈ X( j = 1, ...,M).

Definition 1
RBF scheme (5) approximates target problem (4) with an
order k if

||LRBF [u]h− fh||Fh < ε(h), ε(h) = O(hk) (6)

According to the above definition, the approximation
property of Eq. (5) can be established by considering
the action of LRBF on solution of Eq. (4) at the nodal
points and then checking if the difference between the
result and fh tends to zero as hk when h tends to zero.
In practice, there is no need in knowing the exact solu-
tion u(x). It is sufficient to use its smoothness properties
and possibly the equality Lu− f = 0. Technically, one
should construct the Taylor expansion series for LRBF [u]h
at the nodes and see if the zero order terms form the ex-
act operator plus O(hk) remainder. Of course, one should
check also if fh approximates f with the O(hk) order but
usually it is natural to set fh = [ f ]h.

Unfortunately, the procedure is more complicated than
that in the finite difference case since analytical expres-
sions for the RBF coefficients C j,α

k j and B j,α
k j in Eq. (2)

are needed.

Definition 2
The RBF scheme Eq.(5) is said to be stable if:
(i) Eq. (5) is solvable for uh, fh being an arbitrary nodal
function,
(ii) the following inequality holds

||uh−vh||Uh < C1||δh||Fh
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where vh and δh are the solution and the perturbation re-
spectively of the perturbed equation

LRBF vh = fh +δh

while constant C1 is independent of h.

The above definition is formulated for general case of a
non-linear problems (4). In the case of a linear LRBF it is
equivalent to

||L−1
RBF ||< C2 or ||uh||< C|| fh|| (7)

where C2 and C are independent of h. To prove the equiv-
alence of (ii) and (7), it is sufficient to use the definition
of norms of any operator A : Uh → Fh which looks as

||A||= sup
v �=0

||Av||Fh

||v||Uh

and the equality uh−vh = L−1
RBF δh.

Theorem 1
Suppose RBF scheme (5) approximates problem (4) with
an order and is stable. Than its solution tends to the exact
solution at nodes as O(hk) when h → 0 and the following
estimate holds

||[u]h−uh||< C1ε(h), ε(h) = O(hk) (8)

where C1 is independent of h.

Proof
Consider the following pair of equation

LRBF uh = fh

LRBF [u]h = fh +δh

One has due to the stability of the scheme

||[u]h−uh||< C1||δh||.

But ||δh|| < ε(h) due to the approximation property Eq.
(6). Therefore the convergence inequality holds with
ε(h) = O(hk).

In general, the most difficult part of theoretical investi-
gation of the present type of RBF schemes seems to be
stability proofs. The situation is quite similar to that in
the area of difference schemes. It is quite understand-
able since they may be viewed as the important step
towards proving exact solutions existence. However in
some simple linear cases of uniformly distributed nodes

and small number of nodes in stencils, it is possible to
prove both approximation and stability statements and
hence to prove convergence to exact solution with in-
creasing density of nodes. As particular cases, we present
below simple examples.

In the following, the Hardy multiquadrics (MQ) radial
basis functions will be considered only, the constant C
in their definition being set to unity. Of course, judging
from the investigations [Kansa (1990)], [Kansa and Hon
(2000)], the present solutions accuracy is expected to be
poorer than that for a more successful choice of C.

3.1 Five point stencils for the Laplace operator

Consider the standard stencil used in the second order
finite difference schemes for the Poisson equation. In the
case of an uniform mesh with the mesh step h, it contains
four nodes near each center xi j , that is nodes xi±1, j±1.
For such stencils, it is possible to obtain the analytical
solution for the coefficients C j,2

k in (3) and then to expand
them in terms of the mesh size. Omitting upper indices,
the result for the second x-derivatives and the numbering
shown in Fig. 1a looks as

c1 = − 2
h2

+
5
3

+O(h2), c2 = c4 = − 1
h2

− 7
6

+O(h2),

c3 = c5 =
1
3

+O(h2)

As seen, the difference in the RBF and 5-point FD ap-
proximations to the second derivatives is of O(h2) order.
Using two lower indices notations, the RBF approxima-
tion to the Laplace operator can be cast in the form

∆RBFui j = (1− 5
6

h2)∆FDui j +ci jh
2 +O(h4) (9)

where

ci j = −7
6

ui j +
1
12

(
∂4u
∂x4 +

∂4u
∂y4

)
i j

and ∆FDui j is the second-order accurate five-point finite
difference operator.

Consider now the Dirichlet problem

∆u = f (x,y), x,y ∈ Ω\∂Ω (10)

u|∂Ω = φ(x,y)|x,y∈∂Ω = φΓ (11)
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Figure 1 : Examples of stencils for low-order approxi-
mations.

Introducing the uniform mesh ωh = (xi = ih, y j = jh),
the five point discretization of (10), (11) can be written
as

∆RBF ui j = fi j, (xi,y j) ∈ ωh = Ωh\Γh (12)

ui j|Γh = φΓh, (xi,y j) ∈ Γh (13)

In Eq. (12) and (13), Ωh is the set of nodes xi,y j ∈ Ω and
Γh is a set of boundary and possibly near boundary nodes
were ui j|Γh are supposed to be defined by (13) in one way
or another.

Theorem 2
RBF scheme (12) and (13) is stable for sufficiently small
h.

Proof
The proof is similar to that in the case of finite difference
operator ∆FD (for example, [Godunov and Ryaben’kii
(1977)]), only slight modification being needed. It is
based on the following observations
(I)

∆RBF (x2 +y2)i j = 4

(
1− 5

6
h2
)

+O(h2) (14)

(II) Supposing that f (x,y) > 0, the nodal function uh

satisfying (12) can not have its maximum value when
(xi,y j) ∈ ωh at least for sufficiently small h.

Statement (I) follows from (9) while (II) can be proved in
the following way. Consider Eq. (9). Using the standard
FD notation, Eq. (12) can be rewritten as

(ui+1, j +ui−1, j +ui, j+1 +ui, j−1 −4ui j) =

− ci jh4

1− 5
6h2

+
h2 fi j

1− 5
6 h2

+O(h6) (15)

Now suppose that there exists a node xĩ,y j̃, (ĩ, j̃) ∈ I(ωh)
satisfying max

i, j∈I(Ωh)
ui j = uĩ j̃ where I(ωh), I(Ωh) are the

index sets corresponding to ωh, Ωh respectively.

Considering Eq.(15)) for i = ĩ, j = j̃, one can see that
it can not be satisfied for sufficiently small h since the
LHS of (15) is negative due to our assumption while its
RHS is positive due to fĩ j̃ > 0. Hence, our assumption is
erroneous.

Returning now to Eq.(12) , we construct the nodal func-
tion

vi j = ui j +
d
2
(x2 +y2)i j max

i, j∈I(ωh)
| fi j|

where constant d > 1 is chosen to satisfy d > x2 + y2,
x2 +y2 ∈ Ω. One has the following equation

∆RBFvi j = ∆RBF ui j +2d(1− 5
6

h2) max
i, j∈I(ωh)

| fi j|+O(h2)

(16)

Since the first term in the RHS of (16) is fi j, one can see
that the RHS is positive for sufficiently small h. So one
has due to (II) vi j < v|Γh . Using then the expressions for
v|Γh , one obtains

ui j <
d
2
(x2 +y2)|Γh max

i, j∈I(ωh)
| fi j|+max

Γh

|φΓ| <

d2

2
max

i, j∈I(ωh)
| fi j|+max

Γh

|φΓ|
for sufficiently small h. Multiplying Eqs. (12), (13) by
(-1) and repeating the above reasoning, one arrives at the
last inequality written for −ui j. Hence, it is true for |ui j|.
We define now the following norms

||uh||Uh = max
i, j∈I(ωh)

|ui j|,

|| fh||Fh = max
i, j∈I(ωh)

| fi j|+max
Γh

|φΓ|

and obtain max
i j∈ωh

|ui j| = ||uh||Uh ≤ C|| fh||Fh where C =

max
(
1,d2/2

)
. It means that scheme (12), (13) is stable

in maximum norm.
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3.2 Three-point stencil for the advection equation

Consider first the RBF approximation to ∂u/∂x using
three point ”upwind” and ”downwind” stencils shown in
Fig. 1b, 1c, the nodes numbering and geometrical pa-
rameters being presented herein.

In the case of upwind stencil Fig. 1b, the analytical ex-
pressions for the RBF coefficients C1, C2, C3 in the ap-
proximate formula

D+u1 =
3

∑
i=1

Ciui ≈
(

∂u
∂x

)∣∣∣∣
x=x1,y=y1

lead to the following estimates

C1 =
ksinβ+ sinγ
sin(β+ γ)kh

+O(h),

C2 = − sinβ
sin(β+ γ)h

+O(h)

C3 = − sinγ
2sin(β+ γ)kh

+O(h),

C1 +C2 +C3 = h
sinβ+ksinγ
2sin(β+ γ)

(17)

It follows from (17) that

C1 > 0, C2 < 0, C3 < 0, C1 = |C2|+ |C3|+δ, δ > 0 (18)

for sufficiently small h. Moreover, the Taylor expansion
series give

D+u1 =
(

∂u
∂x

)
x=x1,y=y1

−h

(
Au+B

∂2u
∂x2 +

C
∂2u
∂y2 +D

∂2u
∂x∂y

)
x=x1,y=y1

+O(h2) (19)

where A, B, C, D are functions of α, β, k satisfying
A < 0, B > 0, C > 0. It is possible to show also that
4BC−D2 = sin2(β+ γ) > 0 which means that the strong
ellipticity condition Bξ2 + Cη2 > 2Dξη is satisfied. It
means that (19) is the first-order dissipative approxima-
tions to ∂u/∂x like that in the case of the two-point back-
ward finite difference approximation to the derivative.

In the case of the downwind stencil Fig. 1c, the esti-
mates similar to (17) can be obtained by the substitutions
β → α + π, γ → γ + π. Eq.(19) then should be changed
by changing D+ by D−in the LHS and changing minus
by plus in the RHS without changing expressions for
A, B, C, D.

An important property of D+ (D−) operators is the pos-
itivity (negativity) of their components in the case of
the nodal distribution generated by the uniform skewed
mesh.

Consider the mesh shown in Fig. 1d with the cells formed
by the upwind stencil, Fig. 1b, in a skewed coordinate
system (ξ,η). We introduce now two-indices notations
for a nodal functions, that is ui j = u(xi j,yi j) where xi j,yi j

are the Cartesian coordinates of nodes ξi = hi, η j = kh j,
i, j = 0,±1,±2, ... We introduce also the Hilbert space of
nodal functions defining the inner product

(uh,vh) = h2
∞

∑
i, j=−∞

ui jvi j

Theorem 3
The D+ operator satisfies (D+uh,uh) > 0.

Proof
Let us define the following operators

∆(k) = I −T (k)
−1 , ∆(k)

0 = T (k)
1 −T (k)

−1 ,

∆(k)
2 = T (k)

1 −2I +T (k)
−1 , k = 1,2

(20)

where T (1)
l and T (2)

l are the shift operators correspond-
ing to the ξ and η coordinates respectively, that is,

T (1)
l ui j = ui+l, j, T (2)

l ui j = ui, j+l . Now it is easy to see

that ∆(k) = 1
2 (∆(k)

0 −∆(k)
2 ). One can also verify by shift-

ing the summation indices that ∆(k)
0 and ∆(k)

2 satisfy

(∆(k)
0 uh,uh) = 0, (∆(k)

2 uh,uh) = −h2
∞

∑
i, j=−∞

(∆(k)ui j)2,

k = 1,2

which means that they are the skew-symmetric and the
self-adjoint negative components of ∆(k)

0 respectively.

Using the two-indices notations for the action of D+, one
has D+ui j = C1ui j − |C2|ui−1, j − |C3|ui, j−1 or D+ui j =
|C2|∆(1)ui j − |C3|∆(2)ui j + δui, j . The calculations of the
inner product give

h−2(D+uh,uh) = |C2|
∞

∑
i, j=−∞

(∆(1)ui j)2+

|C3|
∞

∑
i, j=−∞

(∆(2)ui j)2 +δ
∞

∑
i, j=−∞

u2
i j > 0

for sufficiently small h.
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In the same way, it can be proved that (D−uh,uh) < 0.

Consider now the 2D advection equation

∂u
∂t

+a
∂u
∂x

+b
∂u
∂y

= 0, a,b = const. (21)

There are two ways of using the RBF derivatives approx-
imations formed by 3-point stencils.

First, one can use x- and y- upwind or downwind deriva-
tives stencils separately according to the a and b signs
(that is, upwind or downwind for the positive or negative
coefficients respectively). Second, one can cast Eq. (21)
in the ”unidirectional” form by writing

∂u
∂t

+c
∂u
∂ξ

= 0

where ξ is the coordinate along the advection direction
which makes the angle φ with the x-axes defined by
φ = arctg b/a. Then the operators D± may be viewed
as a 3-point approximation to the ξ-derivative when sub-
stituting β → β + φ, γ → γ− φ in Eqs.(17). Of course,
nodes 2 and 3 in Fig. 1b, 1c should be chosen to meet the
conditions β < π/2, γ < π/2. In both cases, the spatial
RBF discretizations lead to positive operators and, as can
be easily shown, result in conditionally or uncondition-
ally stable schemes (depending on chosen time stepping
procedures).

Of course, using the above stencils in the case of arbi-
trary spaced nodes and a = a(x,y,u), b = b(x,y,u) may
be viewed as a good heuristic choice based on the ”frozen
coefficients” and ”frozen nodal distribution” principles.

Unfortunately, analytic investigations into RBF schemes
in the case of arbitrary spaced nodes are quite compli-
cated if the number of nodes in stencils is large. It is the
case if one wants to construct high accuracy discretiza-
tion. So numerical experiments play an important role
when estimating the efficiency of the present technique.

3.3 Comments in using irregularly spaced nodes.

Though the present technique (as other meshless meth-
ods) can enjoy operating with arbitrary node distribu-
tions, nodes spacings may influence significantly accu-
racy of numerical solutions. For example, concentration
of nodes is needed in regions where exact solutions gra-
dients are large. In this way, approximation errors ε(h) in
Eq. (6) can be decreased. From the practical viewpoint,
it is advantageous in many cases to borrow nodal distri-
butions from either FEM or FD meshes and modify them

(if needed) in a desired manner (for example. by adding
more nodes, rearranging nodes and/or allowing them to
move during calculations).

Supposing that a proper nodal distribution is specified,
one encounters the necessity of defining stencils. As in
the case of finite difference methods, the resulting RBF
schemes should meet the stability requirements. Other-
wise two calculation scenarios are possible. The first one
is a breakdown of time stepping or iterative procedures.
The second (and perhaps more dangerous) possibility is
obtaining a solution for a fixed nodes distribution which
bears no relation to the corresponding exact one.

It means that in the cases for which stability proofs are
lacking, calculations with increasing densities of nodes
are needed to demonstrate convergence to exact solu-
tions. The results of calculations of this sort for PDEs
relevant to elasticity problems have shown that various
geometrical forms of supports are possible.

It is not the case if one deals with non-selfadjoint opera-
tors in convection, convection-diffusion or fluid dynam-
ics types of equations. As for finite difference methods,
a choice of supports is of prime importance when con-
structing stable RBF schemes. In this context, the proper-
ties of the above described three-point stencils may serve
as guidelines. An example is presented below.

3.4 Heuristic upwind-type stencils

The three-point stencils described in the previous sub-
section provide low-order approximations. A way of
constructing more accurate RBF formulas for advection
terms is as follows. Suppose that one has a stencil with
p nodes but only l < p equations are used to obtain the
RBF operator. Assuming that the differencing formula

∂u
∂x

∣∣∣∣
x=x j

≈ Dh+u j =
p

∑
i=1

c+
i ui (22)

is identically accurate for l RBF φ(||x − x( j)
k ||), k =

1, ..., l, one arives at the system

∂φ(||x−x( j)
k ||)

∂x

∣∣∣∣∣
x=x j

=
p

∑
i=1

c+
i φ(||x( j)

i −x( j)
k ||) (23)

k = 1, ..., l

If l = p then the coefficients c+
i are those obtained using

the interpolation conditions at x = x j, j = 1, ..., l. In our
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case l < p and system(22) has an infinite set of solutions.
They can be written as

c+
i = ai +

p−l

∑
q=1

biqtq, i = 1, ..., p (24)

where tq, q = 1, .., p− l are free parameters while ai, biq

are uniquely defined.

Suppose now that a three-point upwind stencil with
the center x j is specified which gives C1, C2 and C3

coefficients. Then we define the p-component vector
(c̃1, c̃2, ..., c̃p) = (C1,C2,C3,0, ...,0) corresponding to the

nodes x( j)
1 ,x( j)

2 , ...,x( j)
p and require that

p

∑
i=1

(c+
i − c̃i)2 = min (25)

In other words, we require that c+
i coefficients are close

to c̃i in the least square sense. Substituting Eq.(24)
into Eq.(25) and differentiating the result in respect to
tq, q = 1, .., p− l, we arrive at a linear system defining
c+

i . Euristically, we expect that ”upwinding property” of
ci are close to that of C1,C2,C3.

4 Numerical examples

4.1 Derivatives approximation accuracy

A natural but not general way to estimate the approxi-
mation errors of ”differencing” formulas (2) is direct cal-
culations for certain classes of functions. Of coarse, it
gives only some impression concerning the RBF perfor-
mance in a finite difference mode. The results of the cal-
culations for MQ interpolants with appended constant are
presented in [Tolstykh (2000)]. Fig. 2 shows the absolute
values of errors in the case of first and second derivatives
of f (x) = exp(2(x + y)) for x = 0, y = 0 when using the
stencils indicated herein.

It can be seen from Fig. 2 that the errors can be well
presented by the power laws hp where h is the distance
between nodes while p = 2, 4, 6 for stencils 1, 2, 3. For a
fixed h = h∗, enlarging stencils increases the accuracy of
the derivatives discretization. However, one should not
expect that this will continue when the number of nodes
Nj = K in the stencils increases without bound. When
K → ∞, the accuracy of the interpolation which provides
differencing formulas is expected to tend to that of the
cardinal interpolation [Buhmann (1990)] for h = h∗.

Figure 2 : Derivatives discretization errors vs. mesh size
and the corresponding RBF stencils. Solid and dashed
lines correspond to first and second derivatives.

In the Figure, the result obtained with the second-order-
accurate centered finite difference formula for the first
derivative are also shown (the line with markers). They
are close to those for stencil 1.

4.2 Problems relevant to solid mechanics

We present below some examples from [Tolstykh and
Shirobokov (2003)]. More details can be found in the
cited paper. For comparison purposes, structured meshes
served in many cases as generators of nodal distributions.

Poisson equation. We consider first the Dirichlet’s prob-
lem for the Poisson equation appearing for example when
considering bars torsion. The problem is

	u = f (x,y) = −2π2 sinπx sinπy,

Ω = {0 < x < 1, 0 < y < 1}, u|∂Ω = 0

The exact solution is u = sinπx sinπy. As RBF nodes,
those of meshes usually adopted for FD and FEM cal-
culations were used thus facilitating comparisons of the
solutions on equal terms. As a particular examples of
constructing stencils, two types of supports for each cen-
ter nodes with 7 and 19 neighbour points supplied by tri-
angulated meshes were considered. They will be referred
to as ”simple” and ”enlarged” ones

Fig. 3 presents the discrete L2 norms of the solutions
errors for the ”simple”(RBF-1) and ”enlarged”(RBF-2)
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Figure 3 : Mean-root-square errors vs. mesh size for the
Dirichlet problem.

stencils (shown herein as A and B stencils respectively)
as functions of the mesh size. For comparison, the results
for the FEM method with linear elements as well as the
fourth-order finite-difference scheme based on compact
differencing (FD-IV) are also presented in the Figure.

As can be seen, RBF-1 and RBF-2 discretizations show
second- and fourth-order convergence respectively, the
latter being slightly more accurate than finite difference
one. Some decrease of accuracy of the RBF-2 solution
seen in the finest mesh region is perhaps due to the de-
terioration of the condition number of the linear systems
defining the RBF operator.

Biharmonic equation: bending of simply supported
rhombic plate under an uniform load. In this case, there
is a singularity of the exact solution which has an adverse
effect on accuracy of a numerical method due to decreas-
ing its smoothness with decreasing the angle α, α < π/2,
of the rhomb. More presicely, the asymptotic behaviour
of the exact solution near corner points looks like O(rν),
ν = π/(π− α), where r is the distance from the corner
point.

The problem is investigated in [Babuska and Scapolla
(1989)] in the context of several finite element methods
performance using the variational approach rather than
the biharmonic equation.

In the present calculations, nodal distributions from uni-
form triangulations were used, no special RBF approxi-

Figure 4 : Relative center displacement error for rhom-
bic plate vs. number of nodes.

mations near corners being introduced.

Fig. 4 displays the relative center displacement errors (on
a percentage basis) for α = π/6 vs. the number of nodes
in the computational domain. For comparison purposes,
the FEM results for 21 degrees of freedom elements from
[Babuska and Scapolla (1989)] (with uniform, FEM-1,
and condensed, FEM-2, meshes) are also shown in the
Figure.

Torsion of prismatic bars.

According to the elasticity theory, solutions of the bar
torsion problem can be obtained by solving the Dirichlet
problem for the Poisson equation

	φ = −2, x ∈ Ω, φ|∂Ω = 0

where Ω is a bar cross-section domain. The corre-
sponding stress components can then be expressed in
terms of x- and y-derivatives of φ. In the case of cross-
sections which boundaries contain ”incoming” angles
with rounded vertices, it is of interest to predict accu-
rately stress concentrations near rounded corners where
high gradients are possible (it has been known that
stresses become singular when the corresponding curva-
ture radii tend to zero).

We consider the geometry of a bar cross-section shown
in Fig. 5 which was investigated in [Vlasov and Volkov
(1995)] using very accurate semi-analytic method. The
cross section is characterized by the radius r of the
rounded corner and the ”shelf” length A, the shelf thick-
ness being assumed to be unity. To describe properly
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Figure 5 : L-shaped domain with rounded incoming cor-
ner. The stress concentration parameter K vs. radius of
the rounding.

stresses near point C for small r, high-accuracy methods
are needed.

The RBF calculations were carried out using triangulated
meshes (one of them is shown in Fig. 5). The meshes are
defined by numbers M and N of nodes uniformly dis-
tributed along the boundary PQ and the boundary RS re-
spectively. Thus the condensing of nodes near C can be
achieved by increasing M. The mesh shown in Fig. 5 is
defined by M = 11, N = 20.

To compare the solution K = grad φ gradient in C with
the results of [Vlasov and Volkov (1995)], the φ deriva-
tives were approximated using the third-order four-points
formula. The calculations carried out for three meshes
M×N = 11×20, 21×40, 41×80 showed that the dif-
ference between the results corresponding to the second
and the third meshes can be estimated as 0.2%.

Fig. 5 displays the K values obtained for A = 3 and r =
0.5, 0.3, 0.1, 0.05 using the ”simple” stencil defined on
the coarsest mesh (markers as squares) and finest mesh (
markers as stars), the difference between the values being
about 1.2%. (an exception is the case r = 0.05).

The curve depicted in Fig. 5 corresponds to the ”almost
exact” solution for A = ∞. Since the influence of A is
quite insignificant in the domain A > 3 (the results for

A = 3 and A = 4 differs by 0.2%), the agreement is rather
good.

Elasto-static problem: an infinite plate with a hole sub-
jected to an uniform traction in the x-direction at infin-
ity (see for example [Zhang, Song, Lu, and Liu (2000)],
[Atluri and Zhu (2000)]). The governing equations this
time are

∂σxx

∂x
+

∂σxy

∂y
= 0,

∂σxy

∂x
+

∂σyy

∂y
= 0

where, assuming plane-stress case

σxx =
E

1−ν2

(
∂u
∂x

+ν
∂v
∂y

)
, σxy =

E
2(1+ν)

(
∂u
∂y

+
∂v
∂x

)
,

σyy =
E

1−ν2

(
∂v
∂y

+ν
∂u
∂x

)
and u, v are displacements in the x- and y-directions and
E is the elastic modulus, ν is the Poisson’s ratio. In the
calculations, we set E = 1000, ν = 0.3 as in [Zhang,
Song, Lu, and Liu (2000)]. As boundary conditions, the
displacements defined by the exact solutions were used.

They were approximated at nodal points which were dis-
tributed in the same manner as those in the above cited
publications.

Different strategies of forming stencils were tried. One
way was as follows. For each center x j, the stencil
was defined as a set of nodes which fall on a domain
S j : x j ∈ S j with a prescribed shape of its boundary and a
prescribed characteristic length R ( the latter was, for ex-
ample, a circle radius, the edge of a rectangular etc.) or
a characteristic area. Uniform nodal distributions were
used, M and N nodes being placed in the radial and az-
imuthal directions.

Two types of stencils were assigned to the nodes in the
below presented example, the supports being shown in
Fig. 6. They were squares with the characteristic length
R as well as the ”patches” defined in the polar coordinates
(r,φ) by r0 −R < r < r0 + R, φ0 − ∆φ < φ < φ0 + ∆φ
where ∆φ = 20◦.
Fig. 6 shows the relative m.r.s. displacements error
Euv for three uniform nodal distributions (4×7, 7×10,
13×19) as functions of R. As seen in the Figure, the so-
lution errors decrease with increasing R for a fixed M×N
mesh if R < R∗(M,N) where R∗(M,N) is a ”saturation”
value. Further increase of R for fixed M and N does not
reduce the errors since enlarging stencils is not accompa-
nied by increasing density of the nodes. The behaviour
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Figure 6 : Relative errors of displacements vs. character-
istic supports scale R for two supports and three meshes.

of the ”minimal” errors Em = Euv(R∗) when refining the
meshes (that is, when increasing the density of nodes) is
also shown in Fig. 6.

Non-linear shell equations. The present RBF technique
can be readily applied to more complicated PDE’s. As
an example, we consider a non-linear shell problem de-
scribed by the Karman-Fopple equations. They read
[Grigoluk and Mamai (1997)].

∂2u1

∂x2 +
∂w
∂x

∂2w
∂x2 +

1+ν
2

(
∂2u2

∂x∂y
+

∂w
∂y

∂2w
∂x∂y

)
+

+
1−ν

2

(
∂2u1

∂y2 +
∂w
∂x

∂2w
∂y2

)
= 0

∂2u2

∂y2 +
∂w
∂y

∂2w
∂y2 +

1+ν
2

(
∂2u1

∂x∂y
+

∂w
∂x

∂2w
∂x∂y

)
+

+
1−ν

2

(
∂2u2

∂x2 +
∂w
∂y

∂2w
∂x2

)
= 0

D		w = q+
Eh

1−ν2

[(
∂u1

∂x
+ν

∂u2

∂y
+

1
2

(
∂w
∂x

)2

+

+
ν
2

(
∂w
∂y

)2
)

∂2w
∂x2 +

(
∂u2

∂y
+ν

∂u1

∂x
+

1
2

(
∂w
∂y

)2

+

ν
2

(
∂w
∂x

)2
)
· ∂2w

∂y2 +(1−ν)
(

∂u1

∂y
+

∂u2

∂x
+

∂w
∂x

∂w
∂y

)
∂2w
∂x∂y

]

In the above equations, u1, u2, w are the displacements
of a plate middle surface corresponding to the Cartesian
coordinates x, y, z respectively. q is a loading function
while the coefficient D, the cylindrical stiffness, is de-
fined by D = Eh3/(12(1−ν2)), h being the shell thick-
ness.

Consider now the boundary conditions for the system.
At a boundary point, four conditions are needed, that is
one condition for each of the first two equations and two
conditions for the third equation. In the following, sim-
ply supported edges or clamped edges will be assumed.
In both cases, the boundary conditions for the first two
equations and the condition for the third equation look as

u1|Γ = u2|Γ = w|Γ = 0

The second condition for the third equation in the
clamped edges case has the form ∂w/∂n = 0 where
∂/∂n = 0 is the operator of the derivative in the normal to
the boundary direction. In the case of simply supported
edges, it reads

	w+(1−ν)k∂w/∂n = 0

where k is the curvature of the boundary.

In the calculations, an unstructured triangulated grid was
used.

Figure 7 : Non-linear example: plate’s shape, mesh and
Q vs. W curves. Solid and dashed lines correspond to the
clamped and simple supported edges.

Using boundary operators, the governing equations can
be discretized at each internal node resulting in algebraic



Using radial basis functions in a “finite difference mode” 219

systems for the vector-valued nodal functions u1, u2 and
W which can be cast in the form

L11un+1
1 +L12un+1

2 = f1(wn)

L21un+1
1 +L22un+1

2 = f2(wn)

Lwn+1 = f (un+1
1 , un+1

2 , wn)

where L11, L12, L21, L22, L are the operators approximat-
ing linear parts of the equations while the right hand sides
contain non-linear operators, n being the iteration count.
Thus, the solution procedure consists of solving the lin-
ear systems for u1 and u2 during (n + 1)th iteration with
known wn values, calculating f in the third equation and,
finally, solving the linear system for wn+1.

As an example of calculations for more complicated ge-
ometry than that in the previous testing problem, Fig.
7 presents the dependence W vs. Q where W and
Q are dimensionless vertical displacement and loading
function respectively. The plate boundary is given by
r = R(1 + cos(6φ)/5) in the polar coordinates (r,φ), the
nodes distribution being shown in the Figure. One can
see considerable difference of the results obtained in the
frameworks of linear and non-linear theory.

4.3. Solving advection and Navier-Stokes equations
In general, advection and advection-diffusion type of
equations are more difficult cases when using RBF
schemes due to presence of skew-symmetric differen-
tial operators. To meet stability requirements, some
care should be exercised when choosing neighbor nodes
around center nodes. The stencils investigated in Sub-
section 3.2 are appropriate from the stability viewpoint.
However, their first order accuracy impels one to look
for enlarged stencils allowing stable calculations. We
present an example of using approach described in the
Subsection 3.4. It consists of calculating the relevant
RBF coefficients for p nodal points by solving linear sys-
tems with l × p (l < p) matrices and obtaining values
p− l free parameters by applying the least square princi-
ple.

Advection equation with varying coefficients. As a test
problem consider the equation

∂u
∂t

+y
∂u
∂x

−x
∂u
∂y

= 0

in the domain 1 < r < 2, r =
√

x2 +y2, with the boundary
conditions ∂u/∂r|r=1 = ∂u/∂r|r=2 = 0 and the initial data

Figure 8 : Computational domain and solutions (r = 1)
in the case of advection equation. Solid line presents the
exact solution, dashed lines 1, 2, 3 correspond to 7×30,
13×60, 25×120 structured mesh.

u(r,φ,0)= sin(φ) where φ is the polar coordinates angle.
The exact solution is u(r,φ, t)= sin(φ− t).

A randomly disturbed structured mesh was used to gen-
erate nodal distribution shown in Fig. 8. In the calcula-
tions, the nodes included in stencils for each center node
fall on ellipses with smaller axes placed along φ = const
lines and aspect ratio increasing proportionally to r. The
flux splitting procedure was used to deal with varying
signs of y and x. The fourth-order Runge-Kutta method
was chosen as time stepping procedure.

The numerical solutions for p = 20, l = 6 and dimen-
sionless time t = 20 are shown in Fig. 8. As seen in
Fig. 8, the solutions tends to the exact one when increas-
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ing the density of nodes. The convergence order can be
estimated to be about two.

The Navier-Stokes calculations Applications of mesh-
less methods to incompressible Navier-Stokes equations
are reported in [Lin and Atluri (2001)], [Shu,Ding and
Yeo(2003)]. We consider here compressible gas flows
described by Navier-Stokes equations and characterized
by large Reynolds numbers. In this case, the skew-
symmetric differential operators in non-lnear terms are
dominating outside boundary layers and RBF stencils
should be constructed to provide stable time-stepping or
iteration processes. Several types of stencils were sug-
gested, and, in particular, those which use nodes from el-
liptical supports with a proper space orientation. Prelim-
inary results of the Navier-Stokes calculations are shown
in Fig. 9 and 10.

Figure 9 : Density distribution along x-coordinate for
finite length flat plate

In Fig. 9, the density distributions along a finite length
flat plate (0 ≤ x ≤ 0.5) are shown for three nodal distri-
butions generated by a structured mesh. Five-point up-
wind stencils were used for conventional terms. Mesh
convergence of the numerical solutions is clearly seen in
the Figure.

The RBF solver and 3d-order Compact Upwind Differ-
encing schemes (CUD) [Tolstykh (1994)] were used in
concert in the framework of the domain decomposition
strategy, the RBF domain near the leading edge being
shown in Fig. 10. The density distribution along the nor-

Figure 10 : Density distribution at leading edge for
NACA-0012 airfoil

mal direction at the stagnation point are obtained using
RBF stencils ”1)” and ”2)” and the CUD scheme alone
(the line with markers).

One can see that enlarged stencil ”2)” provides the solu-
tion which is very close to the quite accurate CUD one.

The calculations may be viewed as a preliminary step to-
wards numerical simulations of flows about iced airfoils.

5 Conclusions

A way of using radial basis functions for solving PDEs
has been described. Its essence is constructing approxi-
mations to derivatives at each node based on RBF inter-
polants for a limited number of neighbour nodes forming
a stencil in the finite difference sense. In contrast to the
collocation approach, PDEs are approximated rather than
satisfied at nodes in computational domains.

The approach has the potential for minimizing the draw-
back related to ill-conditioned systems for RBF coeffi-
cients and providing reasonable solutions accuracy for
relatively modest numbers of nodes. It allows one to be
quite flexible by choosing stencils for distinct nodes and
different types of derivatives.

The finite difference concepts concerning approximation,
stability and convergence are formulated for the present
RBF schemes. In the case of the simplest RBF discretiza-
tions of the Poisson and advection equations, approxima-
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tions and stability proofs are presented

The technique has been applied to several elasticity prob-
lems. The numerical experiments confirmed the above
theoretical expectations. Comparisons with the exact so-
lutions showed that quite accurate numerical solutions
can be obtained using relatively low-density nodal dis-
tributions.

Examples of the RBF solutions of the compressible
Navier-Stokes equations are also presented showing the
applicability of the technique to non-linear problems
with non-selfadjoint operators.

Further investigations into operating properties of the
RBF ”finite difference mode” are needed. In particular,
optimal strategies of defining stencils can be viewed as
the subject of the study.
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