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Method of Fundamental Solutions for Scattering Problems of Electromagnetic
Waves

D.L. Young1,2 and J.W. Ruan2

Abstract: The applications of the method of fun-
damental solutions (MFS) for modeling the scatter-
ing of time-harmonic electromagnetic fields, which are
governed by vector Helmholtz equations with coupled
boundary conditions, are described. Various perfectly
electric conductors are considered as the scatterers to in-
vestigate the accuracy of the numerical performance of
the proposed procedure by comparing with the available
analytical solutions. It is also the intention of this study
to reveal the characteristics of the algorithms by com-
parisons with other numerical methods. The model is
first validated to the exact solutions of the electromag-
netic wave propagation problems for the scatterers of a
circular cylinder and a sphere. The radar cross sections
(RCS) of a prolate spheroid are then presented to illus-
trate the predictive capability of the algorithms for more
complex geometric shapes of the scatterers. The present
investigation has demonstrated that the MFS technique is
simple, efficient, and accurate for modeling 2D and 3D
electromagnetic scattering problems.

keyword: electromagnetic scattering, method of fun-
damental solutions, radar cross section, time-harmonic,
scatterer of a circular cylinder, scatterer of a sphere, scat-
terer of a spheroid

1 Introduction

The meshless or meshfree numerical methods have be-
come popular trends in scientific computing. In gen-
eral classification there are two categories, namely the
domain-type and boundary-type. Some former examples
are the meshless finite volume method (Atluri, Han and
Rajendran, 2004) and the meshless finite element method
(Atluri and Shen, 2002).The typical examples for lat-
ter are the meshless boundary element method and the
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method of fundamental solutions. The method of funda-
mental solutions (MFS), a kind of boundary-type mesh-
less numerical method, adopted in this paper is claimed
as a special Trefftz method (Trefftz, 1926; Cho et al,
2004). The concept of the MFS is to decompose the
solution of partial differential equations (PDEs) by the
superposition of the fundamental functions. The singu-
lar fundamental solutions are the responding equations
due to concentrated sources, with appropriate intensi-
ties of the singularities. The intensities are in fact the
unknown expansion coefficients to be determined when
the MFS is used. The magnitudes and locations of the
sources of the singularities can be obtained from the ap-
proximate satisfaction of a certain number of boundary
conditions by the method of the collocation. Therefore
the MFS is somewhat analogous to the indirect bound-
ary integral equation method (BIEM). However MFS not
only inherits the advantages of the unbounded region and
significantly reduced mesh generation of the BIEM, but
also has some unique advantages. For examples, the
MFS avoids singular kernels problems by addressing the
singularities of the fundamental solutions on a fictitious
boundary outside the study domain. In the mean time the
simple implementation of the governing equations with-
out the integration of the boundary points can be easily
achieved. Furthermore, there is no need to establish the
mesh connectivity in the physical boundary and domain.
Only the boundary discretization is required to deter-
mine the intensities of the singularities for the fundamen-
tal solutions as compared with the conventional numeri-
cal schemes or meshless local Petrov-Galerkin (MLPG)
methods (Atluri, 2004).

The MFS is attributed to Kupradze and Aleksidze (1964)
in a paper published in Russian, and the utility of the
MFS technique was later introduced into computational
communities by Mathon and Johnston (1977). In con-
cept, the MFS is similar to the boundary knot method
(BKM) [Chen (2002A); Chen & Tanaka (2002)] and the
boundary particle method (BPM) [Chen (2002B)] except



224 Copyright c© 2005 Tech Science Press CMES, vol.7, no.2, pp.223-232, 2005

the singularity and the symmetric properties of resulted
system matrix. Recently, Golberg (1995) and Golberg
& Chen (1997) combined the dual reciprocity method
(DRM) with the MFS as a meshless numerical method to
deal with the Poisson’s equation. Fairweather and Kara-
georghis (1998) also provided an excellent review about
the MFS for elliptic boundary value problems. Chen,
Golberg and Rashed (1998) on the other hand utilized the
DRM-MFS to solve the diffusion equation. Tsai, Young
and Cheng (2002) further employed the DRM-MFS to
solve the 3D Stokes flows. Other researches involving
the MFS solutions of fluids and elastic solids were cited
by Fairweather, Karageorghis and Martin, (2003), which
surveyed the MFS applications in scattering and radiation
problems. As far as the computational electromagnetics
is concerned [Chew,Song,Cui,Velamparambil,Hastriter
and Hu (2004); Reitich and Tamma (2004)], Jingguo,
Ahmed and Lavers (1990) utilized the MFS to analyze
the eddy current problems. However, the MFS model-
ing of electromagnetic scattering problems remains hot
research topics. In this study, we will first use the MFS
to deal with this kind of problems with simple shape of
scatterers, thus the analytic solutions (Harrington, 1961)
are available to compare with our MFS numerical re-
sults. A variety of numerical techniques to investigate the
same electromagnetic scattering problems was also un-
dertaken. We will compare the MFS results with different
numerical approaches to evaluate their comparative mer-
its and demerits. For example, Chen (2002) has used the
conventional boundary element method (BEM) to simu-
late the two-dimensional and three-dimensional simple
electromagnetic scattering problems. Chiu and Young
(2003) on the other hand employed the non-singular
boundary integral equation (NSBIE) method to study
the same problems. In addition, the three-dimensional
perfectly electric conducting sphere studied by Morgan,
Brookes, Hassan and Weatherill (1998) and the two-
dimensional perfectly electric conducting circular cylin-
der by Ledger, Morgan, Hassan and Weatherill (2002),
both using the finite element method (FEM), are all taken
into account to compare the characteristics of these nu-
merical methods. Furthermore, to extend to some more
complex spheroidal geometry, such as a prolate spheroid,
the RCS, to be defined later, and the contour of scattered
components are finally computed in this study to illus-
trate the predictive power of the MFS for the complex
scatterer. For more complicate 3D electromagnetic scat-
tering simulations the work of Hassan, Morgan, Jones,

Larwood and Weatherill is referred.

2 Electromagnetic Preliminary

2.1 Governing Equations and Boundary Conditions

The Maxwell’s equations which govern the electromag-
netic wave propagation are reduced to the wave equations
by raising the orders to result in the uncoupled second-
order partial differential equations. Since the electro-
magnetic wave propagating through the free space will
be discussed, the assumption of the lossless source-free
medium reduces the Maxwell’s equations to the simplest
vector Helmholtz forms, expressed as

∇2−→E = µε
∂2−→E
∂t2 . (1)

∇2−→H = µε
∂2−→H
∂t2 . (2)

The general behavior of a wave as a function of time can
always be expressed as a superposition of waves at dif-
ferent frequencies. Thus, we assume time-harmonic for
both the electric and magnetic waves:

−→
E = Re

(−→
E0eiωt

)
. (3)

−→
H = Re

(−→
H0eiωt

)
. (4)

where eiωt denotes the time variation of the wave forms
for these time-harmonic fields, whilst the superscript ω
is the angular frequency of the wave. Both phasor fields
of

−→
E 0 and

−→
H 0 are the functions of position only, and

are in general the complex-valued functions. Substituting
Eq. 3 into Eq. 1 and Eq. 4 into Eq. 2 respectively,
the homogeneous vector Helmholtz equations, which are
the main governing equations throughout this paper, are
obtained in the following forms.

∇2−→E +µεω2−→E = ∇2−→E +k2−→E = 0. (5)

∇2−→H +µεω2−→H = ∇2−→H +k2−→H = 0. (6)

where the subscript 0 for the phasor has been omitted
whenever no confusion is expected to arise, and the k
represents the wavenumber, which is determined by the
following formula

k = ω
√

µε =
ω

1
/√

µε
=

ω
c

=
2π
λ

. (7)
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where λ is the wavelength and c is the wave velocity. The
total electric and magnetic fields, regarded as being com-
bined with both the incident and scattered components
can be expressed in these forms.

−→
E t =

−→
E i +

−→
E s. (8)

−→
H t =

−→
H i +

−→
H s. (9)

where
−→
E t ,

−→
H t represent the total electric and magnetic

fields in the presence of an obstacle, respectively. And−→
E i,

−→
H i represent the electric and magnetic fields in the

absence of the obstacle. They are called the incident
fields. The fields

−→
E s,

−→
H s represent the perturbation fields

of the total electric and magnetic fields in the presence of
the obstacle, they are usually referred to as the scattered
fields. The scattered fields are therefore can be expressed
by the following governing equations.

∇2−→E s +k2−→E s = 0. (10)

∇2−→H s +k2−→H s = 0. (11)

After addressing the governing equations, we discuss
about the boundary conditions in the following. The re-
gion outside the perfectly electric conductor is the main
concerned domain of interest. Applying the integral form
of the Maxwell’s equations to a small region, we obtain
the tangential component of the total electric fields and
the normal component of the total magnetic fields. Both
fields must vanish on the boundary of a perfectly electri-
cal conductor, i.e.

−→n ×−→
E s = −−→n ×−→

E i. (12)

−→n ·−→H s = −−→n ·−→H i. (13)

where −→n denotes the unit outward normal vector to the
surface of the conductor.

2.2 Radar Cross Section

The radar cross section (RCS), an essential parameter in
the radar system and electronic warfare system, reveals
the scattered field characteristic of the target. It is closely
related to the shape and the material of the target; and
the angle, frequency and polarization of the transmitter;
as well as the polarization of the receiver. The RCS is
employed to examine the accuracy of the present numer-
ical model. Moreover the verified model is used to com-
pute the RCS of other shapes. The definition of the RCS,

“the area intercepting the amount of power that, when
scattered isotropically, produces at the receiver a density
that is equal to the density scattered by the actual target”,
can be found in Balanis (1982). The RCS is referred to
as the scattering width (SW), the unit is the length for
a two-dimensional target, whereas the unit of the RCS
for a three-dimensional target is the area. Hence the
equation forms of the two-dimensional target and three-
dimensional target are written as below, respectively.

σ2−D =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
ρ→∞

[
2πρ

∣∣∣−→E s
∣∣∣2

∣∣∣−→E i
∣∣∣2

]

lim
ρ→∞

[
2πρ

∣∣∣−→H s
∣∣∣2

∣∣∣−→H i
∣∣∣2

] . (14)

σ3−D =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
r→∞

[
4πr2

∣∣∣−→E s
∣∣∣2

∣∣∣−→E i
∣∣∣2

]

lim
r→∞

[
4πr2

∣∣∣−→H s
∣∣∣2

∣∣∣−→H i
∣∣∣2

] . (15)

where ρ, r are the distances from the target to the obser-
vation point in 2D and 3D respectively,

−→
E s,

−→
E i are scat-

tered, and incident electric fields, and
−→
H s,

−→
H i are scat-

tered, and incident magnetic fields, respectively.

3 Numerical Algorithm

The basic idea of the MFS is to solve differential equa-
tions by making use of the fundamental solutions to the
problem. This method makes use of the fundamental so-
lutions of the problem by satisfying the governing equa-
tions in the interested domain. Since the fundamental
solutions may not satisfy any particular set of boundary
conditions, the fundamental solutions are appropriately
scaled by a number of unknown coefficients. These co-
efficients can be determined from the approximate sat-
isfaction of the boundary conditions by the method of
collocation.

For the Helmholtz equations of Eq. 10 and Eq. 11, we
may assume that the required solution is a linear com-
bination of the fundamental solutions of the Helmholtz
operator, i.e.

Φ(xi) =
M

∑
j=1

β jg(Ri j). (16)
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where

g(Ri j) =

⎧⎪⎪⎨
⎪⎪⎩

−1
4Y0(kRi j)− i 1

4 J0(kRi j) for 2D

cos(kRi j)
4πRi j

− i
sin(kRi j)

4πRi j
for 3D

. (17)

are the fundamental solutions of the Helmholtz opera-
tor, and Ri j is the distance between the boundary point xi

and the j-th source point x j, which is located outside the
physical domain, and M is the number of source nodes.
Wherein, J0() and Y0() are the Bessel functions of the
first and second kinds of order zero. Furthermore, the
derivative of the fundamental solutions in Eq. 16 and 17
are obtained through

∂Φ(xi)
∂ni

=
M

∑
j=1

β j
∂g(Ri j)

∂ni
. (18)

After evaluating β j’s through collocating at the boundary
and source points, we get the required solutions through
the Eq. 16 and 17. If, the problem we are concerned,
is, in, the spherical, coordinates, or in the cylindrical co-
ordinates, the differential term in Eq. 18 can be further
written as:

∂g(Ri j)
∂ni

=
∂g(Ri j)
∂(Ri j)

∂(Ri j)
∂ni

=

⎧⎪⎪⎨
⎪⎪⎩

(−→
Ri j•−→ni

4Ri j
k

)
[Y1(kRi j)+ iJ1(kRi j)] for 2D(−→

Ri j•−→ni

Ri j

)
−e−ikRi j

4πR2
i j

(ikRi j +1) for 3D
(19)

For more general discussions and reviews about the MFS
for scattering and radiation problems, the reference of
Fairweather, Karageorghis and Martin (2003) is sug-
gested.

4 Numerical Examples

4.1 Scattering By A Conducting Circular Cylinder

Let us consider a transverse electric (T Ez) and a trans-
verse magnetic (T Mz) field of uniform plane wave with
unit amplitude travels along the direction of the positive
x axis. The T Ez and T Mzwaves are normally incident
upon a perfectly conducting circular cylinder of radius a,
in the source-free and lossless space as shown in Fig. 1
(a) and (b) respectively. Due to the simplicity of the nor-
mally incident wave, the problem can be reduced from

i
H

x

y

x

z

z

b

a

yi
E

i
H

i
E

Figure 1 : Normally incident plane wave of: (a) T Ez (b)
T Mz wave on a perfectly conducting circular cylinder.

a 3-D problem to a 2-D one. Finally, to normalize the
problem, the permittivity, permeability and wave length
will be treated as follows

µ = ε = 1 and λ = 1 (20)

Therefore, the wavenumber and angular frequency are
determined from Eq. 7. To validate the MFS technique,
first of all, the real part of the computed scattered elec-
tric field (Es

z) along r = 4 of a plane T Mz wave by radius
a = 2 perfectly conducting circular cylinder is displayed
in Fig. 2. The numerical simulation of the scattered
electric field is compared with the results of analytical
solution [Harrington (1961)] and the conventional BEM
[Chen (2002)] as well as the NSBIE [Chiu and Young
(2003)] methods, as depicted in Fig. 2. The compar-
ison with analytic solutions confirms very accurate re-
sults of the MFS, and the comparisons with the conven-
tional BEM and the NSBIE methods also reveal good re-
sults for all the numerical simulations.Furthermore, the
computed data are summarized in Tab. 1 to analyze the
CPU time for these methods. It can be observed that the
CPU time for the MFS calculation is much lesser than
the conventional BEM, and the NSBIE method. The out-
standing saving in the CPU time is a very important as-
set of the MFS which, unlike the BEM and the NSBIE
methods, the boundary integration procedure in gener-
ating discretization matrix of the governing equation is
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Figure 2 : Re(Es
z ) for a T Mz wave along r = 4 by a a = 2

perfectly conducting circular cylinder.

Table 1 : Computing CPU time of Re(Es
z ) with different

numerical methods

NSBIE BEM MFSelements
or node 
numbers CPU time CPU time CPU time

36 0.11s 0.11s 0.06s
72 0.66s 0.44s 0.14s
144 2.58s 2.03s 0.33s

avoided. The CPU time is defined as the time from the
definition of the initial implicit argument to the plot of the
scattered electric components along r = 4 by a perfectly
conducting circular cylinder with a = 2. The CPU time
is determined for the same PC hardware. Furthermore
the contours of the scattered electric field are displayed
in Fig. 3 to illustrate the good performance of the MFS
simulation.

As far as the far-field boundary contributions of the scat-
tered fields are concerned, the numerical methods of do-
main approximation have encountered some natural dif-
ficulties to circumvent the modeling of the unbounded
region. Therefore, several treatments are devoted to over-
coming this problem. For illustration, Cecot, Demkowicz
and Rachowicz (2000) utilized the finite element/infinite
element (FE/IE) to solve the two-dimensional scatter-

Figure 3 : The contour of Re(Es
z ) for a T Mz wave by a

a = 2 perfectly conducting circular cylinder.

ing problems. Ledger, Morgan, Hassan and Weatherill
(2002) employed the FEM with a perfectly matched layer
(PML) and hybrid FEM meshes to get the scattered field
of two-dimensional obstacles. And Yao-Bi, Nicolas and
Nicolas (1993) have used the FEM and coupling with two
methods, boundary element method (BEM) and absorb-
ing boundary conditions (ABC), to solve the unbounded
propagation problems. In contrast, the MFS is a mesh-
less numerical method which can treat the unbounded do-
main very well since the MFS will satisfy the out-going
wave exactly. The RCS is obtained as good as Ledger,
Morgan, Hassan and Weatherill (2002) did without any
special treatment for the far-field boundary. This is due
to the far-field property of the fundamental solution that
the far-field boundary condition of the physical problem
will be automatically satisfied. Besides it is noticed that
only 36 source nodes are used in this MFS simulation.
Similar procedures are undertaken for the simulation of
the scattered fields of the transverse electric (T Ez) wave,
as shown in Fig. 1 (a). The distributions of the RCS
for the T Ez wave and the T Mz wave are illustrated in
Fig. 4 and Fig. 5, respectively. Very accurate results are
also obtained from the computation of the MFS as com-
paring with the results of analytical solution [Harrington
(1961)], and FEM simulation [Ledger, Morgan, Hassan
and Weatherill (2002)].
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LedgerComputed

Figure 4 : RCS for a T Ez wave by a a = 1 perfectly
conducting circular cylinder.

Computed Ledger

Figure 5 : RCS for a T Mz wave by a a = 1 perfectly
conducting circular cylinder.

4.2 Scattering By A Conducting Sphere

After the two-dimensional problems have been simulated
successfully, the sphere, regarded as a benchmark prob-
lem for the three-dimensional computational scattering
problems, is the next example to be examined. A uni-
form plane electric wave, polarized in the x direction with
unit amplitude travels along the direction of the posi-
tive z axis. The wave is normally incident upon a per-
fectly conducting sphere of radius a, in the source-free
and lossless space as shown in Fig. 6. Similar to the
two-dimensional problem, the permittivity, permeability,
radius of the sphere and wave length is treated as follows

µ = ε = 1 and λ = a = 1/2 (21)

Figure 6 : Normally incident plane wave on a perfectly
spherical conductor.

Figure 7 : The contour of Re(Es
x) on the x = 0 plane and

surface of the sphere.

The computed contour of the real part of the scattered
electric component in the x direction on x = 0 plane and
the surface of the sphere, shown in Fig. 7, is acceptable
by comparing with the FEM result of Morgan, Brookes,
Hassan and Weatherill (1998).

As to the far-field problem, present results are displayed
in Fig. 8. Excellent results are obtained as compared the
RCS profile on the φ = π/2 plane with the exact solution
[Harrington (1961)] and the conventional BEM [Chen
(2002)]. And the comparisons of the RCS on the φ = 0
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Figure 8 : RCS by a a = 1/2 perfectly conducting sphere
on the φ = π/2 plane
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Figure 9 : RCS by a a = 1/2 perfectly conducting sphere
on the φ = 0 plane

plane with the analytic solution [Harrington (1961)], the
NSBIE method [Chiu and Young (2003)] and the FEM
[Morgan, Brookes, Hassan and Weatherill (1998)] also
reveal the acceptable results, as shown in Fig. 9. It is
worthy while to observe that all the above solutions give
the same accurate results as compared with the exact so-
lution. However, only 1,344 nodal points are used in the
MFS, 3,200 nodal points are employed in both the con-
ventional BEM and NSBIE methods, while 589,505 ele-
ments, 706,999 edges and 99,991 nodes are used in the

FEM formulation. It is therefore claimed that the MFS is
a simple, efficient and accurate numerical scheme in the
computational methodology.

4.3 Scattering By A Conducting Prolate Spheroid

In the previous example, the three-dimensional sphere
has been successfully formulated. To extend the method
to treat the more complex shapes of scatterers, without
being limited to just a simple sphere, the scatterers of
various geometries can be attempted. Therefore, a pro-
late spheroid subjected to the same incident wave as the
case of the sphere is taken as a final example for model-
ing the more complicate scatterer as shown in Fig. 10.
The three radii of the prolate spheroid are chosen by tak-

Figure 10 : Normally incident plane wave on a perfectly
conducting prolate spheroid.

ing

ra = rb = 0.5 and rc = 0.6 (22)

The computed contour of the real part of scattered elec-
tric component in the x direction on x = 0 plane and the
surface of the scatterer is displayed in Fig. 11. The com-
parisons of results from Fig. 7 and Fig. 11 reveal the ra-
tionality of the scattered electric field of the conducting
spheroid, when the same wavelength of the incident wave
is taken for different geometries. The prolate spheroid
accommodates more electric waves than the sphere be-
cause of one longer radius. The distributions of the RCS
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Figure 11 : The contour of Re(Es
x) on x = 0 plane and

surface of the prolate spheroid.

on the φ = 1/2 plane and the RCS on φ = 0 plane are
shown in Fig. 12 and Fig. 13, respectively. These RCS
profiles illustrate the excellent predictive capability of the
MFS even for more complex domain with smooth bound-
ary.
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Figure 12 : RCS on the φ = 1/2 plane by a perfectly
conducting prolate spheroid.
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Figure 13 : RCS on the φ = 0 plane by a perfectly con-
ducting prolate spheroid.

5 Conclusion

The innovative MFS for modeling the electromag-
netic scattering problems, which are governed by vec-
tor Helmholtz equations with coupled boundary condi-
tions, is presented. The distributions of the RCS of a
two-dimensional circular conducting cylinder, a three-
dimensional conducting sphere, and a three-dimensional
prolate spheroid are simulated. Without establishing
complex mesh and boundary integration, the MFS, a
meshless numerical method, has demonstrated the ad-
vantage in the unbounded domain via comparisons
with other domain or boundary approximation methods.
Moreover, no special treatments are required in the far-
field due to the far-field property of the fundamental solu-
tions. The comparisons of the simulated results with the
conventional BEM and NSBIE methods have revealed
the advantage of the MFS, such as avoiding singular
problem and much saving in the CPU time. The MFS
also shows the superiority to the FEM in treating the far
field boundary of the unbounded domain. The simple,
efficient and accurate algorithm of the MFS with fewer
nodes than other numerical schemes is confirmed in this
presentation. The numerical simulation of the electro-
magnetic scattering problems by the MFS technique has
opened a better approach for the research of the compu-
tational electromagnetics.
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