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A Dynamical Approach to the Spatio-temporal Features of the Portevin-Le
Chatelier Effect

G.Ananthakrishna1

Abstract: We show that the extended Ananthakr-
ishna’s model exhibits all the features of the Portevin - Le
Chatelier effect including the three types of bands. The
model reproduces the recently observed crossover from a
low dimensional chaotic state at low and medium strain
rates to a high dimensional power law state of stress
drops at high strain rates. The dynamics of crossover is
elucidated through a study of the Lyapunov spectrum.
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1 Introduction

Of the dislocation patterns seen under different modes
of deformation, the most complex is the Portevin - Le
Chatelier (PLC) effect. The PLC effect is observed when
certain metallic alloys are deformed in a tension test in
a range of strain rates and temperatures. Here a uniform
deformation mode becomes unstable leading to spatially
and temporally inhomogeneous state. Each stress drops
is associated with the nucleation and often the propa-
gation of a band of localized plastic deformation. In
polycrystals, on increasing strain rates or decreasing the
temperature, one first finds the type C, identified with
randomly nucleated static bands with large characteristic
stress drops. Then the correlated ’hopping’ type B bands
are seen with serration amplitudes smaller than the type
C. Finally, one observes continuously propagating type
A bands associated with small stress drops. (In single
crystals such a clear classification does not exist.) These
different types of PLC bands are believed to represent
distinct correlated states of dislocations in the bands.

The classical explanation of the PLC effect is through
dynamic strain aging (DSA) first suggested by [Cottrell
(1953)] and later improved by others (see Ref. [Kubin,
Fressengeas, and Ananthakrishna (2002)]). DSA refers
to the interaction of mobile dislocations with diffusing
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solute atoms. At low strain rates (or high temperatures)
the average velocity of dislocations is low, there is suffi-
cient time for solute atoms to diffuse to the dislocations
and pin them. Longer they are arrested, larger will be
the stress required to unpin them. When dislocations are
unpinned, they move at large speeds till they are pinned
again. At high strain rates (or low temperatures), there
is insufficient time for the solute atoms to diffuse to the
dislocations and hence the stress required to unpin them
decreases. Thus, in a range of strain rates and temper-
atures where these two time scales are of the same or-
der, the PLC instability manifests. The competition be-
tween the slow rate of pinning and sudden unpinning of
the dislocations, at the macroscopic level, translates into
a negative strain rate sensitivity (SRS) of the flow stress
as a function of strain rate which is the basic instability
mechanism used in most phenomenological models [Ku-
bin, Fressengeas, and Ananthakrishna (2002)].

The inherent nonlinearity and the presence of multiple
time scales necessitates the use of tools and concepts of
nonlinear dynamical systems for a proper understand-
ing of this phenomenon. The first dynamical approach
was taken in mid 80s by Ananthakrishna and cowork-
ers [Ananthakrishna and Valsakumar (1982)]. The model
uses three types of dislocation densities taken to repre-
sent collective degrees of freedom of dislocations. Apart
from predicting the generic features of the PLC effect,
such as the emergence of the negative SRS [Ananthakr-
ishna and Valsakumar (1982), Rajesh and Ananthakr-
ishna (2000)], the existence of critical strain for the on-
set of the PLC instability, and the existence of a win-
dow of strain rates and temperatures for the occurrence
of the PLC effect (see [Ananthakrishna and Valsakumar
(1982)]), one prediction that is specific to the model is the
existence of chaotic stress drops is a range of strain rates
[Ananthakrishna and Valsakumar (1983)] subsequently
verified using methods of time series analysis [Anan-
thakrishna and Valsakumar (1982), Ananthakrishna et al.
(1995), Noronha et al. (1997)]. More recent studies
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report an intriguing crossover from a low dimensional
chaotic state found at medium strain rates to a power law
state of stress drops observed at high strain rates [Anan-
thakrishna et al. (1999), Bharathi et al. (2001)]. A
chaotic state involves small number of degrees of free-
dom, characterized by self-similarity of the attractor and
sensitivity to initial conditions. In contrast, the power-
law state of distributions of amplitudes and durations of
avalanches is an infinite dimensional state. Though the
power law state is reminiscent of self-organized critical-
ity (SOC) [Bak, Tang, and Wiesenfeld (1988)] is however
seen at low drives unlike the present case. Indeed, the
PLC effect is one the two rare phenomenon where such
a crossover is seen, the other being in hydrodynamic tur-
bulence [Heslot, Castaing, and Libchaber (1987)], thus
making the study of the PLC effect all the more interest-
ing and important. In this paper, we present an extension
of the Ananthakrishna’s model to explain this crossover
in the PLC effect as well as different types of bands.

2 The Ananthakrishna’s Model

The fully dynamical basis of the dynamical model makes
it most suitable for studying this crossover. Here, we out-
line the model in terms of scaled variables in the notation
of Ref. [Rajesh and Ananthakrishna (2000)] and intro-
duce a spatial coupling arising out of the cross-slip mech-
anism [Kubin, Fressengeas, and Ananthakrishna (2002)].
The model consists of densities of mobile, immobile, and
Cottrell’s type dislocations denoted by ρm(x, t), ρim(x, t)
and ρc(x, t) respectively, in the scaled form. The evolu-
tion equations are:coupled to stress rate equation through

∂ρm

∂t
= −b0ρ2

m −ρmρim +ρim −aρm +φm
e f f ρm

+
D

ρim

∂2(φm
e f f (x)ρm)

∂x2 , (1)

∂ρim

∂t
= b0(b0ρ2

m −ρmρim −ρim +aρc), (2)

∂ρc

∂t
= c(ρm −ρc), (3)

dφ(t)
dt

= d[ε̇− 1
l

∫ l

0
ρm(x, t)φm

e f f (x, t)dx] = d[ε̇− ε̇p] (4)

The first term in eqn.(1) refers to annihilation or immo-
bilization of two mobile dislocations, the second term
to the annihilation of a mobile dislocation with an im-
mobile one, and the third term to the remobilization of

the immobile dislocation due to stress or thermal activa-
tion. The fourth term represents the immobilization of
mobile dislocations due to solute atoms. Once a mobile
dislocation starts acquiring solute atoms we regard it as
the Cottrell’s type dislocation ρc. As they progressively
acquire more solute atoms, they eventually stop, then
they are considered as immobile dislocations ρim. Alter-
nately, the aggregation of solute atoms can be regarded
as the definition of ρc, ie., ρc =

∫ t
−∞ dt ′ρm(t ′)K(t − t ′).

For the sake of simplicity, we use a single time scale
with K(t) = e−ct (see ref. [Rajesh and Ananthakrishna
(2000)]). The fifth term represents the rate of multipli-
cation of dislocations due to cross-slip. This depends
on the velocity of the mobile dislocations taken to be
Vm(φ) = φm

e f f , where φe f f = (φ− hρ1/2
im ) is the scaled

effective stress, φ the scaled stress, m the velocity ex-
ponent and h a work hardening parameter. Cross-slip
is a natural source of spatial coupling within the scope
of the model, as dislocations generated due to cross
slip at a point spread over to the neighboring elements.
(See Ref. [Kubin, Fressengeas, and Ananthakrishna
(2002)] for other sources of coupling.) Let ∆x be an el-
ementary length. Defining Φ(x) = ρm(x, t)φm

e f f (x, t), and
considering dislocation multiplication occurring x ± ∆x
and x, the rate of mobile density is given by Φ(x) +
p
2 [Φ(x+∆x)−2Φ(x)+Φ(x−∆x)]. Here p is the proba-
bility of cross-slip spreading into neighboring elements.
Expanding Φ(x±∆x) and keeping the leading terms, we

get ρ̇m(x, t) = ρmVm + p
2

∂2(ρmVm)
∂x2 (∆x)2. Noting that cross-

slip spreads only into regions of minimum back stress
and that the back stress is usually taken to result from
the immobile dislocation density ahead of it, we use
∆x2 =< ∆x2 >= r2ρ−1

im . Here < .. . > refers to the en-
semble average and r2 is an elementary (dimensionless)
length. In Eq.(4), ε̇ is scaled applied strain rate and ε̇p

the plastic strain rate. Finally, a, b0, c and d are respec-
tively the scaled rate constants referring, respectively, to
the concentration of solute atoms slowing down the mo-
bile dislocations, the thermal and athermal reactivation
of immobile dislocations, and the rate at which solute
atoms are gathering around the mobile dislocations and
the combined elastic constant of machine and the sample.

The PLC state is reached through a Hopf bifurcation. The
domain of instability in ε̇ is 10 < ε̇ < 2000 when the val-
ues of other parameters are in the instability limit. Here,
we use a = 0.8,b0 = 0.0005,c = 0.08,d = 0.00006,m =
3.0,h = 0.07 and D = 0.5. But the results hold true for a
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wide range of other parameters in the instability domain
including a range of values of D. A uniform steady state
exists beyond this domain.

The above equations are discretized by considering the
specimen to be divided into N equal parts of some unit
length. Then, ρm( j, t), ρim( j, t),ρc( j, t), j = 1, ...N,
and φ(t) are solved. Due to the widely differing time
scales, appropriate care is exercised in the numerical so-
lutions by using a variable step fourth order Runge-Kutta
scheme. The spatial derivative is approximated by its
central difference. The initial values are taken as the
steady state values for the variables (as the long term evo-
lution does not depend on the initial values) with a Gaus-
sian spread along the length of the sample. Now consider
the boundary conditions. Since the sample is strained at
the grips, we use high (two orders of magnitude more
than the rest of the sample) values of ρim( j, t), j = 1 and
N. Further, as bands cannot propagate into the grips, we
use ρm( j, t) = ρc( j, t) = 0 at j = 1 and N.
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Figure 1 : (a,b) Experimental stress-time series for the
chaotic state at ε̇a = 1.7×10−5s−1 and power law state
at ε̇a = 8.3×10−5s−1. (c, d) Stress-time series from the
model at ε̇ = 120 and ε̇ = 280 respectively.

3 Dynamics of Crossover

3.1 Reconstruction of Dynamics from Experimental
Time Series

Plots of two experimental stress-strain curves corre-
sponding to the chaotic (medium ε̇) and power law

regimes of applied strain rates (high ε̇ ) and time se-
ries from the model at intermediate and high strain rates
are shown in Fig. 1. The similarity of the experimental
time series at medium and high strain rates with that of
the model in similar range of ε̇ is clear. Now consider
the dynamical aspects of the experimental time series. It
was shown earlier [Ananthakrishna et al. (1999)] that the
stress-strain curve in Fig. 1 a is chaotic. This was done
by demonstrating the existence of a finite correlation
dimension [Grassberger and Procaccia (1983)] and the
existence of a positive Lyapunov exponent [Abarbanel
(1996)]. The correlation dimension, ν, of the experimen-
tal attractor for this value of ε̇a was found to be 2.3. Then,
the number of degrees of freedom required for the de-
scription of the dynamics of the system is given by the
minimum integer larger than ν + 1 which is four in this
case, consistent with that used in the original model. The
geometrical interpretation of these degrees of freedom is
that it is the subspace to which the trajectories are con-
fined. The dimension of this subspace can be obtained
directly by a method called as the singular value decom-
position [Broomhead and King (1987)]. This method has
an additional advantage of allowing the visualization of
the strange attractor. (See [Noronha et al. [1997]] where
this method has been applied to the PLC time series.) In
this method, the trajectory matrix is constructed and the
eigen values of the covariance matrix are calculated. For
this case, the relative strength of the fourth eigen value
drops more than two orders of magnitude compared to
the first and changes very little beyond the fourth [Anan-
thakrishna and Bharathi (2004)]. Thus, the dimension
of the experimental attractor is four consistent with that
obtained from the correlation dimension. Using the first
three principal directions of the subspace Ci; i = 1 to 3,
we have reconstructed the experimental attractor in the
space of specifically chosen directions C1 −C2,C3 and
C1 to permit comparison with the model. This is shown
in Fig. 2a. The strange attractor obtained from the model
in the space of ρm,ρim and ρc (at an arbitrary spatial lo-
cation, here j = 50 and N = 100) is shown in Fig. 2b for
ε̇ = 120 corresponding to the mid chaotic region. Clearly,
the geometry of the two attractors are similar particu-
larly along the direction of the arrow (Fig. 2a) identified
with the loading direction in Fig. 1a.
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3.2 Power Law State of Stress Drops

Consider the stress-time series at high strain rates beyond
ε̇ ∼ 260, say 280, shown in Fig. 1 obtained from the
model. It is clear that there are stress drops of all mag-
nitudes. Actually, the distribution of stress drop magni-
tudes, D(∆φ), shows a power law D(∆φ)∼ ∆φ−α. This is
shown in Fig. 3 (◦) along with the experimental points
(•) corresponding to ε̇a = 8.3×10−5s−1. It is clear from
Fig. 3 that both experimental and theoretical points show
a scaling behavior with an exponent value α ≈ 1.1 ( Fig.
1a). The distribution of the durations of the stress drops
D(∆t)∼ ∆t−β also follows a power law with an exponent
value β ≈ 1.3.
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Figure 2 : (a) Reconstructed experimental attractor (b)
Attractor from the model for N = 100, j = 50.

3.3 Dynamical Characterization of the Model

A natural tool for characterizing the crossover is to study
the distribution of Lyapunov exponents λi (i = 1, ..,M =
3N + 1) using Eqs. (1-4) for the entire range of strain
rates. The largest Lyapunov exponent (LLE) is shown in
Fig. 4a as a function of the strain rate for N = 100. The
region of chaos is seen to be 35 < ε̇ < 250 beyond which
the LLE almost vanishes (∼ 5× 10−4). This region of
strain rates beyond 250, as we will show corresponds to

the power law regime of stress drops. Now, consider the
evolution of the distribution of Lyapunov exponents as a
function of ε̇ as we move from the chaotic and the power
law regime. In the chaotic region, the distribution of Lya-
punov exponents is quite broad. A plot for ε̇ = 120 is
shown Fig. 4b. As ε̇ increases to 280, concomitant with
the decrease in the maximum Lyapunov exponent to a
small value, ≈ 5.2×10−4, the number of null exponents
(almost vanishing) increases gradually reaching a value
≈ 0.38M in the range [−0.00052,0.00052] (compared to
only a few for ε̇ = 120). For ε̇ ≥ 250, below a resolution
∼ 10−4, most cross each other as a function of time, but
the (time averaged) distribution remains unaffected. The
finite density of null exponents has a peaked nature in the
interval 250 ≤ ε̇ ≤ 700. A plot is shown in Fig. 4c for
ε̇ = 280 which can be fitted to a power law D(|λ|)∼ |λ|−γ

as shown in Fig. 4d with γ = 0.6. Thus, the spectrum
changes from a set of both positive and negative, but few
null exponents in the chaotic region, to a dense set of
null exponents and negative exponents with no positive
exponents in the scaling regime. As null exponents cor-
respond to a marginal situation, their finite density in the
power law state implies that most spatial elements are
perpetually close to the marginal state of unpinning. In-
deed, a full analysis confirms the the correctness of the
edge of unpinning picture [Bharathi, Rajesh, and Anan-
thakrishna (2003)].
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Figure 3 : Distributions of the stress drops from the
model (◦), from experiments (•) for N = 1000 and ε̇ =
280. Solid line is a guide to the eye.

4 Formation and Propagation of Bands

We now consider the nature the PLC bands seen in our
model. Most models of bands use diffusive coupling
although the physical mechanism of the term is differ-
ent [Kubin, Fressengeas, and Ananthakrishna (2002)].
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Figure 4 : (a)The largest Lyapunov exponent of the
model.(b) Distribution of the Lyapunov exponents at ε̇ =
120 for M = 1051. (c) and (d) Distribution of the null
exponents at ε̇ = 280 for M = 10000. In (d) (+) refers to
positive and (•) to negative null Lyapunov exponents.

An important difference in our model is the presence of
the factor 1/ρim in the spatial coupling that accounts for
spreading of dislocations into regions of low back stress.
Further, this type of spatial term couples length scales
and time scales in a dynamical way as ρim itself evolves
in time, leading to changes in the time scale of internal
relaxation as a function of ε̇. We expect this to lead to
changes in spatial correlation as strain rate is increased.

In the region where chaotic and power law states are ob-
served, the nature of bands can be broadly classified into
three different types occurring at low, intermediate and
high strain rates.

For strain rates, 30 ≤ ε̇ < 70, we get uncorrelated static
dislocation bands shown in Fig. 5 (top) for a typical
value, say for ε̇ = 40. The associated stress-time curves
which are nearly regular have large characteristic stress
drops. At slightly higher values of strain rates, 70 ≤ ε̇ <

180, we find that new bands nucleate ahead of the earlier
ones, giving a visual impression of hopping bands (Fig.
5 middle). A plot of ρm( j, t) shown for ε̇ = 130 displays
the hopping nature. However, this hopping motion does
not continue till the other boundary. They stop midway
and another set of hopping bands reappear in the neigh-
borhood. Stress-time plots in this regime have a form
similar to Fig. 1a. As the strain rate is increased further,
the extent of propagation increases, concomitantly, the

Figure 5 : From top to bottom: spatially uncorrelated
bands at ε̇ = 40, the hopping bands at ε̇ = 130 and the
propagative band at ε̇ = 240.

magnitudes of the stress drops decrease. We see continu-
ously propagating bands even at ε̇ = 240 from one end to
the other as can be seen from Fig. 5 (bottom). The stress
-strain curves in this region of strain rates, exhibit scale
free feature in the amplitude of the stress drops (Fig. 1
d) with a large number of small drops. The large stress
drops correspond to bands having reached the end of the
specimen.

It is possible to calculate the velocity of the propagating
bands in the high strain rate limit. The coupled set of
integro-partial differential equations can be to reduced to
the standard form of Fischer-Kolmogorov equation for
propagative fronts. Using marginal stability analysis, we
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get the velocity of the bands

v = 2

√
Dε̇

ρmρim

( ε̇
ρm

−a−ρim
)
. (5)

At high applied strain rate, we note that ρm ∼ ρ∗
m, the

fixed point value which can be assumed to be constant.
Thus, the velocity of the bands is proportional to the ap-
plied strain rate, a result similar to Ref. [Hähner et al.
(2002)] which has been verified numerically as well. In
the unscaled units, the band velocity ∼ 120µm/s corre-
sponding to scaled strain rate ε̇ = 260, again consistent
with the experimental values [Hähner et al. (2002)]. Fur-
ther, v ∝ ρ−1

m which also appears to be consistent with an
old experimental result.

We note here that the hopping type bands belong to the
chaotic regime, a result consistent with the recent studies
on Cu-Al polycrystals [Bharathi et al. (2001)]. On the
other hand, the propagating bands are seen in the power
law regime of stress drops [Bharathi and Ananthakrishna
(2003)], again consistent with these studies [Ananthakr-
ishna et al. (1999), Bharathi, et al. (2001)]. Curiously
the uncorrelated bands predicted by the model also be-
long to the chaotic regime.

5 Discussion and Conclusions

Several comments may be in order on the dynamics of the
crossover. The crossover itself is smooth as the changes
in the Lyapunov spectrum are gradual. Second, the power
law here is of purely dynamical origin.Third, our analy-
sis shows that the power law regime of stress drops oc-
curring at high strain rates belongs to a different univer-
sality class compared to the well know self-organized
criticality [Bak, Tang, and Wiesenfeld (1988)] seen at
low drives, as our system is characterized by a dense set
of null exponents. As zero exponents correspond to a
marginal situation, their finite density physically implies
that most spatial elements are close to criticality. Indeed,
we have visualized the configurations of dislocation in
the scaling regime of stress drops ( ie., ε̇ > 260) using
the slow manifold analysis [Bharathi, Rajesh, and Anan-
thakrishna (2003), Ananthakrishna and Bharathi (2004)]
which shows that most dislocations are at the threshold of
unpinning. More significantly, the dense set of null Lya-
punov exponents themselves follow a power law. Fur-
ther, we note that the Lyapunov spectrum evolves from
a set of both positive and negative, but few null expo-
nents in the chaotic region, to a dense set of marginal

exponents as we reach the power law regime. Thus, the
dense set of null exponents in our model is actually sim-
ilar to that obtained in shell models of turbulence where
the power law is seen at high drive values [Yamada and
Ohkitani (1987); Cristani et al. (1994)].

In summary, the original model extended to include the
spatial degrees of freedom explains the crossover in the
dynamics from chaotic to power law regime as observed
in experiments. The model also exhibits all the three
types of bands, namely, the uncorrelated, hopping and
the continuously propagating type bands as strain rate is
increased as in experiments [Bharathi, Rajesh, and Anan-
thakrishna (2003)]. Thus, the extended Ananthakrishna’s
model captures the complex spatio-temporal dynamics of
the PLC effect. Finally, as far as we know, this is first
fully dynamical model which exhibits a crossover from
chaotic to power law regime in the general context of dy-
namical systems and should be of interest to the area of
dynamical systems.
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