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Simulation of a 4th Order ODE: Illustration of Various Primal & Mixed MLPG
Methods

S. N. Atluri1 and Shengping Shen1

Abstract: Various MLPG methods, with the MLS ap-
proximation for the trial function, in the solution of a 4th

order ordinary differential equation are illustrated. Both
the primal MLPG methods and the mixed MLPG meth-
ods are used. All the possible local weak forms for a 4th

order ordinary differential equation are presented. In the
first kind of mixed MLPG methods, both the displace-
ment and its second derivative are interpolated indepen-
dently through the MLS interpolation scheme. In the sec-
ond kind of mixed MLPG methods, the displacement,
its first derivative, second derivative and third deriva-
tive are interpolated independently through the MLS in-
terpolation scheme. The nodal values of the indepen-
dently interpolated derivatives are expressed in terms of
nodal values of the independently interpolated displace-
ments, by simply enforcing the strain-displacement rela-
tionships directly by collocation at the nodal points. The
mixed MLPG methods avoid the need for a direct eval-
uation of high order derivatives of the primary variables
in the local weak forms, and thus reduce the continuity-
requirement on the trial function. Numerical results are
presented to illustrate the effectiveness of the primal, as
well as two kind of mixed MLPG methods. It is con-
cluded that the mixed MLPG methods are very cost-
effective.

keyword: MLPG, Mixed Methods, Moving Least
Squares, Local Weak Forms.

1 Introduction

Most problems in mechanics are characterized by partial
differential equations, in space and time. The develop-
ment of approximate methods for the solution of these
PDEs has attracted the attention of engineers, physicists

1 Center for Aerospace Research & Education
University of California at Irvine
5251 California Avenue, #140
Irvine, CA 92617, USA

and mathematicians for several decades. In the begin-
ning, the finite difference methods were extensively de-
veloped to solve these equations. As being derived from
the variational principles, or their equivalent weak-forms,
the finite element methods have emerged as the most suc-
cessful methods to solve these partial differential equa-
tions, over the past three decades. Recently, the so-
called meshless methods of discretization have become
very attractive, as they are efficient for solving PDEs
by avoiding the tedium of mesh-generation, especially
for those problems having complicated geometries, as
well as those involving large strains. As a systematic
framework for developing various truly-meshless meth-
ods, the Meshless Local Petrov-Galerkin (MLPG) ap-
proach has been proposed as a fundamentally new con-
cept [Atluri and Zhu (1998); Atluri and Shen (2002a, b);
Atluri (2004)]. The generality of the MLPG approach,
based on the symmetric or unsymmetric weak-forms of
the PDEs, and using a variety of interpolation methods
(trial functions), test functions, and integration schemes
without background cells, has been widely investigated
[Atluri and Shen (2002a, b); Atluri(2004)].

Remarkable successes of the MLPG method have been
reported in solving the convection-diffusion problems
[Lin and Atluri (2000)]; fracture mechanics [Batra and
Ching (2002)]; Navier-Stokes flows [Lin and Atluri
(2001)]; and plate bending problems [Long and Atluri
(2002)]. Recently, the MLPG method has made some
strides, and it is applied successfully in studying strain
gradient materials [Tang, Shen and Atluri, (2003)), three
dimensional elasticity problems [Li, Shen, Han and
Atluri (2003), Han and Atluri (2004a)], elstodynamics
[Han and Atluri (2004b)], and multiscale structure and
nanomechanics [Shen and Atluri (2004, 2005)]. These
research successes demonstrate that the MLPG method is
one of the most promising alternative methods for com-
putational mechanics. The interrelation of the various
meshless approaches, and the recent developments and
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applications of the MLPG methods can be founded in
Atluri (2004).

Very recently, Atluri, Han and Rajendran (2004) devel-
oped a mixed MLPG method for the 2nd order partial
differential equation system of elasticity, in which both
strains and displacements were independently interpo-
lated through meshless interpolation schemes. The nodal
values of strains were expressed in terms of the inde-
pendently interpolated nodal values of displacements, by
simply enforcing the strain-displacement relationships
directly by collocation at the nodal points. The mixed
MLPG method avoids the direct differentiation of the
trial function (and the evaluation of these directly derived
derivatives at each Gauss point in the integration of the
weak form), and reduces the continuity-requirement on
the trial function by one-order. A smaller interpolation
domain can be used in the meshless approximation with a
lower-order polynomial basis. The mixed MLPG method
improves very much the efficiency of the primal MLPG
method. In this paper, we will employ this idea to solve
the 4th order ordinary differential equation.

The 4th order ordinary differential equation is more com-
plicated. For the 4th order ordinary differential equa-
tion, in the conventional displacement-based approaches
in FEM, the interpolation of displacement requires C1

continuity (in order to ensure convergence of the finite el-
ement procedure for 4th order theories), which inevitably
involves very complicated shape functions. These shape
functions involve large numbers of degrees of freedom
in every element, including nodal displacements, nodal
rotations (i.e. first order gradients of displacement),
and even higher order derivatives. C1 continuous meth-
ods are mostly feasible only for one-dimensional prob-
lems. The standard approach for solving Bernoulli-Euler
beam problems is by employing C1 continuous Her-
mite cubic shape functions, interpolating both displace-
ments and rotations (i.e., slopes, the 1st derivative). For
two dimensional problems, such as involving plate and
shell analysis, C1 continuous methods are very compli-
cated, and formulations for three-dimensional problems
become more or less intractable. The high computa-
tional cost and large number of degrees of freedom soon
place such formulations beyond the realm of practical-
ity. Atluri, Cho and Kim (1999) presented an analysis of
thin beam problems using the MLPG method with a gen-
eralized moving least squares (GMLS) approximation.
Then, Cho & Atluri (2001) extended it to the shear flexi-

ble beams based on a locking-free formulation. Raju and
Phillips (2003) applied MLPG with the GMLS approx-
imation to a continuous beam problem to evaluate their
effectiveness, and discussed the effects of various param-
eters on the numerical results clearly and systematically.
Long & Atluri (2002) analyzed the bending problem of a
thin plate by means of MLPG with the MLS approxima-
tion.

In this paper, we will illustrate various MLPG methods
with the MLS approximation for the simulation of the
4th order ordinary differential equation (of a beam on
an elastic foundation), including both the primal MLPG
methods and the mixed MLPG methods. All the possi-
ble local weak forms for a 4th order ordinary differential
equation are given in this paper.

The outline of the paper is as follows. In Section 2, the
meshless interpolation-the moving least square method
is described briefly for the sake of completeness. The
local weak forms and the corresponding primal MLPG
methods are discussed in Section 3, and their numerical
results are also presented. In Section 4, the first kind
of mixed MLPG methods and their numerical results are
given. In the first kind of mixed MLPG methods, both the
displacement and its second derivative are interpolated
independently through meshless interpolation schemes.
The second kind of mixed MLPG methods and their nu-
merical results are presented in Section 5. In the second
kind of mixed MLPG methods, the displacement, its first
derivative, second derivative and third derivative are all
interpolated independently through meshless interpola-
tion schemes. The conclusions and discussions are given
in Section 6.

2 Meshless Interpolation: the Moving Least Square
Method

In general, meshless methods use a local interpolation,
or an approximation, to represent the trial function, using
the values (or the fictitious values) of the unknown vari-
able at some randomly located nodes in the local vicin-
ity. A variety of local interpolation schemes that inter-
polate the data at randomly scattered points (without the
need for a mesh) are currently available [Atluri and Shen
(2002a, b), Atluri (2004)].

The moving least-square method is generally considered
to be one of the best schemes to interpolate data with
a reasonable accuracy. Basically the MLS interpolation



Simulation of a 4th Order ODE 243

does not pass through the nodal data. Consider a domain
in question with control points for boundaries (i.e. nodes
on boundaries) and some scattered nodes inside, where
every node has its undetermined nodal coefficient (fic-
titious nodal value) and an influence radius (radius for
local weight function). Now for the distribution of trial
function at any point x and its neighborhood Ωx located
in the problem domain Ω, uh(x) may be defined by

uh (x) = pT (x)a(x) ∀x ∈ Ωx (1)

where pT (x)=[p1(x), p2(x), . . . ,pm(x)] is a complete
monomial basis of order m, and a(x) is a vector contain-
ing coefficients a j(x), j=1, 2, . . . ,m which are functions
of the space co-ordinates x. The commonly used bases in
1-D are the linear basis (m=2), due to their simplicity. In
the present 4th order problem, we will also employ the
quadratic basis (m=3)

pT (x) =
[

1 x x2
]

(2)

and the cubic basis (m=4)

pT (x) =
[

1 x x2 x3
]

(3)

The coefficient vector a(x) is determined by minimizing
a weighted discrete L2 norm, which can be defined as

J (x) =
N

∑
I=1

wI (x)
[
pT (xI)a(x)− ûI]2

(4)

where wI(x), is a weight function associated with the
node I, with wI(x) > 0 for all x in the support of wI(x), xI

denotes the value of x at node I, N is the number of nodes
in Ωx for which the weight functions wI(x) > 0. Here it
should be noted that ûI , I=1, 2,. . . , N, in equation (4),
are the fictitious nodal values (undetermined nodal coef-
ficients), and not the exact nodal values of the unknown
trial function uh(x), in general.

Solving for a(x) by minimizing J in equation (4), and
substituting it into equation (1), give a relation which
may be written in the form of an interpolation function
similar to that used in the FEM, as

uh (x) =
N

∑
I=1

φI (x) ûI , uh (xI) ≡ uI �= ûI, x ∈ Ωx (5)

where

φI (x) =
m

∑
j=1

p j (x)
[
A−1 (x)B(x)

]
jI (6)

with the matrix A(x) and B(x) being defined by:

A(x) =
N

∑
I=1

wI (x)p(xI)pT (xI) (7)

B(x) = [w1 (x)p(x1) , w2 (x)p(x2) , · · · , wN (x)p(xN)]
(8)

Equation (6) can be rewritten as

ΦΦΦ(x) = αααT (x)B(x) (9)

with

Aααα = p (10)

The partial derivatives of ααα are obtained through the re-
lations:

Aααα,x = p,x −A,xααα (11)

Aααα,xx = p,xx −A,xxααα−2A,xααα,x (12)

ααα,xxx = p,xxx −A,xxxααα−3A,xxααα,x −3A,xααα,xx (13)

Now, the partial derivatives of φI(x) are obtained as

φI
,x = αααT

,xBI +αααT BI,x (14)

φI
,xx = αααT

,xxBI +2αααT
,xBI,x +αααT BI,xx (15)

φI
,xxx = αααT

,xxxBI +3αααT
,xxBI,x +3αααT

,xBI,xx +αααT BI,xxx (16)

in which BI is the Ith column of matrix B. Thus, the
derivatives of φI(x) become rather complicated.

The nodal shape function is complete up to the order of
the basis. The smoothness of the nodal shape function
φI(x) is determined by that of the basis and of the weight
function. The choice of the weight function is more or
less arbitrary as long as the weight function is positive
and continuous. The following weight function is con-
sidered in the present work:

wI(x) =

⎧⎪⎪⎨
⎪⎪⎩

1−
p

∑
k=1

ak

(
dI
rI

)k

0

0 ≤ dI ≤ rI = ρIhI

dI > rI = ρIhI

(17)
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where dI = |x − xI | is the distance from node xI to point
x, hI in the nodal distance, ρI is the scaling parameter
for the size of the sub-domain ΩI

tr , and p is the order
of spline function. The coefficients ak are obtained by
taking the following boundary conditions:

⎧⎨
⎩

wI(dI/rI = 0) = 1, m0 = 0

∂m0 wI(dI/rI=0)
∂xm0 = 0, m0 ≥ 1

(18)

and⎧⎨
⎩

wI(dI/rI = 1) = 0, m1 = 0

∂m1 wI(dI/rI=1)
∂xm1 = 0, m1 ≥ 1

(19)

where p = m0 +m1 +1. The form of the weight functions
may be changed by the geometry of the sub-domain ΩI

tr
over which the weight function is non-zero. Since the
weight function is a type of a polynomial, the “nodal
shape function” given in equation (6) has the charac-
teristics of a rational function. One can easily obtain a
global Cl continuity up to a desired order l if the order of
spline is changed. Therefore, the Cl continuity depends
upon value of m0 and m1 in equations (18) and (19), i.e.
φ(x) ∈ Cmin(m0,m1) if m0 is even; φ(x) ∈ Cmin(m0+1,m1) if
m0 is odd. It is very important to preserve the smoothness
of the derivatives of shape functions, because discontinu-
ities and vertices in the derivatives of the shape functions
make numerical integration difficult. In this paper, we
choose a 4th order spline function (C2)

wI (x)=

{
1−6

(
dI
rI

)2
+8

(
dI
rI

)3 −3
(

dI
rI

)4
, 0 ≤ dI ≤ rI

0, dI ≥ rI

(20)

as well as a 7th order spline function (C3),

wI (x) =

1−35

(
dI

rI

)4

+84

(
dI

rI

)5

−70

(
dI

rI

)6

+20

(
dI

rI

)7

(21)

for 0 ≤ dI ≤ rI, as weight functions.

Now, in order to depict its performance, we will employ
the MLS to simulate the following function, which is the

known exact solution of the 4th order differential equa-
tion

d4u
dx4 +u−1 = 0, 0 < x < 1

u = u′′ = 0, x = 0, and 1 (22)

i.e.,

uexact = 1+

⎛
⎝−e−

1√
2

(
cos 1√

2
+e−

1√
2

)
2e

− 1√
2 cos 1√

2
+e

− 2√
2 +1

⎞
⎠e

x√
2 cos

x√
2

+

⎛
⎝ −e−

1√
2 sin 1√

2

2e−
1√
2 cos 1√

2
+e−

2√
2 +1

⎞
⎠e

x√
2 sin

x√
2

+

⎛
⎝ −

(
e
− 1√

2 cos 1√
2
+1

)
2e−

1√
2 cos 1√

2
+e−

2√
2 +1

⎞
⎠e−

x√
2 cos

x√
2

+

⎛
⎝ −e−

1√
2 sin 1√

2

2e−
1√
2 cos 1√

2
+e−

2√
2 +1

⎞
⎠e−

x√
2 sin

x√
2

(23)

In this simulation, the linear basis, and the 7th order
spline function (21) are employed; 20 nodes are dis-
tributed evenly from 0 to 1, the radius of the support
domain of the trial function is taken to be 5.5hI. Thus,
setting:

uexact (xJ) =
20

∑
I=1

φI (xJ) ûI; J = 1, · · · , 20 (24)

and using (6), we obtain the values of ûI. Then we obtain
the interpolation uh (x) for uexact , as:

uh (x) =
20

∑
I=1

φI (x) ûI (25)

Fig. 1 shows the distinction between the exact nodal val-
ues uI of the trial function uh (x), and the fictitious nodal
values ûI. Figs. 2-5 compare the values of the function
uh (x) and its 1st -3rd order derivatives calculated from the
MLS interpolation with the corresponding exact values
obtained from (23). Form these figures, we can see that
the MLS can interpolate the function uexact and its first
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Figure 1 : The distinction between the exact nodal val-
ues uI of the trial function uh (x), and the fictitious nodal
values ûI .
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Figure 2 : The function u.

derivative very well, but it has poor accuracy to inter-
polate the higher order derivatives. Hence, in the weak
forms, we should avoid the appearance of the higher or-
der derivatives of uh (x).

3 Local Weak Forms and Primal MLPG Methods

Consider a 4th order ODE

d4u
dx4 +u−1 = 0 (26)

in domain Ω (0 ≤ x ≤ 1). Equation (26) is actually the
governing equation for a thin beam on an elastic foun-
dation undergoing small deformations, in which u is the
normalized transverse displacement. The boundary con-
ditions at x=0 and x=1 can have several combinations.
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Figure 3 : The first derivative of the function u.
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Figure 4 : The second derivative of the function u.
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Figure 5 : The third derivative of the function u.

The essential boundary conditions are of the form

u = u on Γu (27)
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u′ = u′ on Γ′
u (28)

and the natural boundary conditions are of the form

u′′′ = u′′′ on Γ′′′
u (29)

u′′ = u′′ on Γ′′
u (30)

where Γu, Γ′
u, Γ′′

u, and Γ′′′
u denote the boundary points

where u (deflection), u′ (slope), u′′′ (shear), and u′′ (mo-
ment) are prescribed, respectively. Note that the prescrip-
tions of u & u′′′, and u′ & u′′ are mutually disjoint, i.e.,
when u = u is prescribed, u′′′ becomes the corresponding
reaction, and when u′ = u′ is prescribed, u′′ becomes the
corresponding reaction.

Now, we will give all the local weak forms for equation
(26), which are the basis of the MLPG methods. A gener-
alized local weak form (LWF) of the 4th order differential
equation (26) over a local subdomain Ωs, can be written
as:
∫

Ωs

(
d4u
dx4 +u−1

)
vdx = 0 (31)

The local weak form (31) includes the fourth derivative
of the trial function. If the test function v is taken to be
the Delta function, the collocation method will be derived
from equation (31). In section 2, it is shown that it is too
difficult to obtain the accurate higher order derivatives of
the trial function; moreover, they are not very accurate.
Hence, this weak form is not appropriate for the numeri-
cal implementation. In fact, we did implement the collo-
cation in our numerical experiments; However, we could
not obtain any meaningful results, as was expected (these
numerical results are omitted in this paper).

To obtain an accurate and efficient meshless method, one
should decrease the order of the derivatives of the trial
function in the local weak forms. There are two ways to
reach this goal. One is by means of integrating by parts,
through which the differentiation can be transferred from
the trial function, u, to the test function, v. Then, the
higher order derivatives in the domain integration will
disappear. However, the higher order derivatives of the
trial function still appear in the local boundary integral
(local boundary for 1D problem). This is the primal
MLPG method. Another promising approach is the use
of the “mixed” MLPG approach [Atluri, Han, Rajendran
(2004)], wherein, independent meshless interpolations
are also used for the derivatives, as well as the function

per se. The mixed methods are described in detail in the
next section. In this section, we limit ourselves to the
primal MLPG methods.

3.1 Unsymmetric local weak form 1

By integrating (31) by part once, one obtain:

nx
[
u′′′v

]
Γs
−

∫
Ωs

u′′′v′dx+
∫

Ωs

(u−1)vdx = 0 (32)

where nx [·]Γs
denotes the boundary term and nx is the

outward normal. For one-dimensional problems, the lo-
cal boundary Γs has two points, and nx has the values of
±1. Equation (32) is an unsymmetric weak form, and
the trial function should be C2 continuious. There is a
third derivative of function u in LWF (32). Imposing the
boundary conditions (29), one obtains

nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′′v

]
Γsu

+nx
[
u′′′v

]
Ls

−
∫

Ωs

u′′′v′dx+
∫

Ωs

(u−1)vdx = 0 (33)

where Γsu′′′ is the boundary where u′′′ is prescribed on
the local boundary (Γs ∩ Γ′′′

u ). In general, when a lo-
cal boundary, Γs, intersects a global boundary, Γ, four
boundary condition possibilities exist. These possibili-
ties are Γs ∩Γu, Γs ∩Γ′

u, Γs ∩Γ′′
u , and Γs ∩ Γ′′′

u , and are
denoted as Γsu, Γsu′ , Γsu′′ , and Γsu′′′ , respectively; and Ls

is the other part of the local boundary which is inside
the solution domain. Since the boundary Γu and Γ′′′

u are
mutually disjoint, and are related by Γ = Γu ∪Γ′′′

u , the lo-
cal boundary Γs can be decomposed into disjoint subsets
of Ls, Γsu and Γsu′′′ . By the same reason, it can also be
decomposed into disjoint sunsetsLs, Γsu′ and Γsu′′. By us-
ing these decompositions, along with the boundary con-
ditions (27)-(30), equation (33) is obtained.

In order to simplify the above equation, we can select a
test function v such that it vanishes over Ls, then equation
(33) can be rewritten as∫
Ωs

uvdx−
∫

Ωs

u′′′v′dx+nx
[
u′′′v

]
Γsu

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

(34)

With equation (5), one may discretize the local unsym-
metric weak form (34) as
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N

∑
I=1

∫
Ωs

[
φI (x)v− d3φI (x)

dx3 v′
]

dxûI

+
N

∑
I=1

nx

[
d3φI (x)

dx3 v

]
Γsu

ûI =
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

(35)

As discussed in Atluri (2004), one may choose the Heav-
iside function as the test function, and obtains

nx
[
u′′′v

]
Γsu

+nx
[
u′′′v

]
Ls

+
∫

Ωs

uvdx

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

(36)

Equation (36) can be discretized as

N

∑
I=1

nx

[
d3φI (x)

dx3 v

]
Γsu

ûI+
N

∑
I=1

nx

[
d3φI (x)

dx3 v

]
Ls

ûI

+
N

∑
I=1

∫
Ωs

φI (x)vdxûI =
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

(37)

In this study, the collocation method is used to impose
the boundary conditions. For boundary node xI , one has

β1u(xI)+β2u′ (xI)+β3u′′ (xI) = β1u+β2u′+β3u′′ (38)

It is noted that actually there exist only 1 or 2 terms in
both sides of equation (38), depending on the combina-
tion of the boundary conditions.

However, as discussed in Section 2, we know that the
MLS interpolation is hardly capable of approximating
the third derivative of function u. Our numerical ex-
periments based on LWF (33), cannot obtain any stable
and convergent results (using some special parameter-
combinations, one may happen to obtain some good re-
sults), using either weight function (20) or Heaviside
function as test function. Hence, the unsymmetric local
weak form (33) is not appropriate for the numerical im-
plementation either. However, the mixed MLPG method
based on this LWF (33) can still generate stable and con-
vergent results, as will be described in next section.

3.2 Symmetric local weak form

Integrating (31) by parts twice yields the following sym-
metric local weak form,

nx
[
u′′′v

]
Γs
−nx

[
u′′v′

]
Γs

+
∫

Ωs

u′′v′′dx+
∫

Ωs

(u−1)vdx = 0 (39)

This is a symmetric local weak form, and both the trial
and test function should be C1 continuious. Imposing the
boundary conditions (29) and (30), one obtains

nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′′v

]
Γsu

+nx
[
u′′′v

]
Ls

−nx
[
u′′v′

]
Γsu′′

−nx
[
u′′v′

]
Γsu′

−nx
[
u′′v′

]
Ls

+
∫

Ωs

u′′v′′dx+
∫

Ωs

(u−1)vdx = 0 (40)

In order to simplify the above equation, one can select a
test function v such that it, and its derivative, vanish over
Ls, then equation (40) can be rewritten as

nx
[
u′′′v

]
Γsu

−nx
[
u′′v′

]
Γsu′

+
∫

Ωs

u′′v′′dx+
∫

Ωs

uvdx

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′v′

]
Γsu′′

(41)

By means of the MLS interpolation (5), the local sym-
metric weak form (41) can be discretized as

N

∑
I=1

nx

[
d3φI (x)

dx3 v

]
Γsu

ûI −
N

∑
I=1

nx

[
d2φI (x)

dx2 v′
]

Γsu′
ûI +

N

∑
I=1

∫
Ωs

[
φI (x)v+

d2φI (x)
dx2 v′′

]
dxûI

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′v′

]
Γsu′′

(42)

The collocation method is used to impose the boundary
conditions. For boundary node xI , one has

β1u(xI)+β2u′ (xI) = β1u+β2u′ (43)
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It is noted that actually there may exist 0 to 2 terms in
each sides of equation (43), depending on the combina-
tion of the boundary conditions.

To illustrate their effectiveness, the MLPG methods
based on the LWF (41) are used to solve equation (26)
with boundary conditions:

u = u′′ = 0 at x = 0,1 (44)

The exact solution is equation (22).

For the purpose of error estimation and convergence
studies, the following norm is used:

‖u‖=
(∫

Ω
u2dx

) 1
2

(45)

The relative errors for every order derivative are defined
as

ek =

∥∥∥∥(
d(k)u
dxk

)num −
(

d(k)u
dxk

)exact
∥∥∥∥∥∥∥∥(

d(k)u
dxk

)exact
∥∥∥∥

, k = 0,1,2,3 (46)

For the present problem of a beam on elastic founda-
tion, the normalized elastic energy stored in the system,
at equilibrium, may be written as

W =
1
2

∫ 1

0

(
u′′+u2)dx

The relative error for the energy is defined as

ep =

∣∣∣Wnum−W exact
∣∣∣∣∣Wexact∣∣ (47)

At first, we use the cubic basis, i.e. m=4. Both the
weight function in the MLS interpolation and the test
function are taken to be equation (20). 41 nodes are used
(h=0.025, with h being the distance between nodes). Fig.
6 shows the influence of the radius of the test domain on
the relative errors e0 and e1, where the radius of the trial
function domain is taken to be 4.5h. From this figure, it
can be found that the relative errors of the function u and
its first derivative are less than 1% when the trial func-
tion domain is big enough (> 2.5h). It is noticed that the
accuracy is not sensitive to the radius of the test domain

from 3-5h. Fig. 7 shows the influence of the radius of
the trial domain on the errors e0 and e1, where the radius
of the test domain is taken to be 3.5h. The results for
the function u and its first derivative are highly accurate.
The relative errors e0 and e1 are not sensitive to the radius
of the trial function domain from 3.5-5.5h, and less than
1%. For the linear (m=2) basis, the same trends can be
observed. However, for m=2, a larger radius of the trial
function domain should be chosen to obtain an accurate
and stable result. In fact, in MLS, to increase the radius
of the trial function domain is equivalent to increase m of
the basis function.

The convergence rate is investigated with three nodal
configurations: 11, 21, and 41 nodes. We also consider
the effects of the basis functions: linear (m=2) and cu-
bic (m=4) bases are used in this investigation. For cu-
bic (m=4) basis, the radius of the test domain is taken to
be 3.5h, and the radius of the trial domain is taken to be
4.5h. For linear (m=2) basis, the radius of the test domain
is taken to be 3.5h, and the radius of the trial domain is
taken to be 8h. The relative errors e0 and e1 and the con-
vergence rates R of the displacement and first derivative
are depicted in Fig. 8, for both m=4 and m=2. The con-
vergence rates R of the relative errors e2, e3 and ep for
the second, third derivatives and the energy, are plotted
in Fig. 9 only for m=4. It can be seen that the present
MLPG method has high rates of convergence for norms
e0, e1, e2, and ep, and gives very accurate results for the
unknown variable, its first and second derivatives, and the
energy. The results from the cubic (m=4) basis are more
accurate, and of higher convergent rate than those from
the linear (m=2) basis. However, the results for the third
derivative are not very accurate, and the convergence rate
for the relative error e3 is not high.

3.3 Unsymmetric local weak form 2

Integrating (31) by parts three times yields the following
local unsymmetric weak form,

nx
[
u′′′v

]
Γs
−nx

[
u′′v′

]
Γs

+nx
[
u′v′′

]
Γs

−
∫

Ωs

u′v′′′dx+
∫

Ωs

(u−1)vdx = 0 (48)

This is an unsymmetric weak form, and the trial function
can be C0 continuious. Imposing the boundary condi-
tions (29) and (30), one obtains
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Figure 6 : The influence of the test domain size (41
nodes).
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Figure 7 : The influence of the trial domain size (41
nodes).

nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′′v

]
Γsu

+nx
[
u′′′v

]
Ls

−nx
[
u′′v′

]
Γsu′′

−nx
[
u′′v′

]
Γsu′

−nx
[
u′′v′

]
Ls

+nx
[
u′v′′

]
Γsu′

+nx
[
u′v′′

]
Γsu′′

+nx
[
u′v′′

]
Ls

−
∫

Ωs

u′v′′′dx+
∫

Ωs

(u−1)vdx = 0 (49)

One can select a test function v such that itself, and its
first and second derivatives vanish over Ls. Such a test
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Figure 8 : Convergence rate in relative errors e0 and e1.
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Figure 9 : Convergence rate in relative errors e2, e3, and
ep.

function is given in (20) and (21). Then equation (49)
can be simplified as

nx
[
u′′′v

]
Γsu

−nx
[
u′′v′

]
Γsu′

+nx
[
u′v′′

]
Γsu′′

+
∫

Ωs

uvdx−
∫

Ωs

u′v′′′dx

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′v′

]
Γsu′′

−nx
[
u′v′′

]
Γsu′

(50)

With equation (5), one may discretize the local symmet-
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ric weak form (50) as

N

∑
I=1

nx

[
d3φI (x)

dx3 v

]
Γsu

ûI −
N

∑
I=1

nx

[
d2φI (x)

dx2 v′
]

Γsu′
ûI +

N

∑
I=1

nx

[
dφI (x)

dx
v′′

]
Γsu′′

ûI

+
N

∑
I=1

∫
Ωs

[
φI (x)v− dφI (x)

dx
v′′′

]
dxûI

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′v′

]
Γsu′′

−nx
[
u′v′′

]
Γsu′

(51)

The collocation method is used to impose the only
boundary condition, which does not appear in the left
side of equation (51). For boundary node xI , one has

β1u(xI) = β1u (52)

In the numerical example, we also use the cubic basis,
i.e. m=4. The weight function in MLS is taken to be
as in equation (20), while the test function in LWF (49)
is chosen to be as in equation (21). 41 nodes are used
(h=0.025) to consider the influences of the radius of both
test and trial domains. Fig. 10 shows the influence of the
radius of the test domain on the errors e0 and e1, where
the radius of the trial function domain is taken to be 4.5h.
From this figure, it can be found that the accuracy of the
function, u as well as its first derivative, is high, when the
trial function domain is big enough (> 2.5h). Similarly,
it is noticed that the accuracy is not sensitive to the radius
of the test domain from 3-5h. Fig. 11 shows the influence
of the radius of the trial domain on the errors e0 and e1,
where the radius of the test domain is taken to be 3.5h.
The results for the function u, as well as its first deriva-
tive, are of high accuracy. The relative errors e0 and e1

are less than 1%, and are not sensitive to the radius of
the trial function domain as the radius of the trial domain
is greater than 4h. For the linear (m=2) basis, the same
trends can be observed. Again, for m=2, a larger radius
of the trial function domain should be chosen to obtain
an accurate and stable result.

Similarly, the convergence rate is investigated with three
nodal configurations: 11, 21, and 41 nodes. The ef-
fects of the basis functions: linear (m=2) and cubic (m=4)
bases are investigated. For cubic (m=4) basis, the radius
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Figure 10 : The influence of the test domain size (41
nodes).

of the test domain is taken to be 3.5h, and the radius of
the trial domain is taken to be 4.5h. For linear (m=2) ba-
sis, the radius of the test domain is taken to be 3h, and
the radius of the trial domain is taken to be 6.5h. The rel-
ative errors e0 and e1 and the convergence rates R of the
displacement and first derivative are depicted in Fig. 12,
for both m=4 and m=2. The convergence rates R of the
relative errors e2, e3 and ep for the second, third deriva-
tives and the energy, are plotted in Fig. 13 only for m=4.
It can be seen that the present MLPG method has stable
convergence rates for norms e0, e1, e2, and ep, and gives
reasonably accurate results for the unknown variable, its
first and second derivatives, and the energy. The results
from the cubic (m=4) basis are more accurate, and are of
a higher convergent rate than those from the linear (m=2)
basis. However, the results for the third derivative are not
very accurate, and the convergence rate for the relative
error e3 is not high.

3.4 Unsymmetric local weak form 3

Integrating (31) by parts four times yields the following
unsymmetric local weak form,

nx
[
u′′′v

]
Γs
−nx

[
u′′v′

]
Γs

+nx
[
u′v′′

]
Γs

−nx
[
uv′′′

]
Γs

+
∫

Ωs

u
d4v
dx4 dx+

∫
Ωs

(u−1)vdx = 0 (53)
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Figure 11 : The influence of the trial domain size (41
nodes).
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Figure 12 : Convergence rate in relative errors e0 and e1.

In this weak form, no derivatives of the trial function ap-
pear in the domain integration. Moreover, all the bound-
ary conditions become “natural” boundary conditions.
Then, there is no difficulty in the implementation of the
boundary conditions.

Imposing the boundary conditions (29) and (30), one ob-
tains
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Figure 13 : Convergence rate in relative errors e2, e3, and
ep.

nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′′v

]
Γsu

+nx
[
u′′′v

]
Ls

−nx
[
u′′v′

]
Γsu′′

−nx
[
u′′v′

]
Γsu′

−nx
[
u′′v′

]
Ls

+nx
[
u′v′′

]
Γsu′

+nx
[
u′v′′

]
Γsu′′

+nx
[
u′v′′

]
Ls

−nx
[
uv′′′

]
Γsu

−nx
[
uv′′′

]
Γsu′′′

−nx
[
uv′′′

]
Ls

+
∫

Ωs

u
d4v
dx4 dx+

∫
Ωs

(u−1)vdx = 0 (54)

In order to simplify the above equation, we can select a
test function v, such that itself and its first, second and
third derivatives vanish over Ls. Such a test function is
given in (21). Then equation (54) can be rewritten as

nx
[
u′′′v

]
Γsu

−nx
[
u′′v′

]
Γsu′

+nx
[
u′v′′

]
Γsu′′

−nx
[
uv′′′

]
Γsu′′′

+
∫

Ωs

u
d4v
dx4 dx+

∫
Ωs

uvdx

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′v′

]
Γsu′′

−nx
[
u′v′′

]
Γsu′

+nx
[
uv′′′

]
Γsu

(55)

With equation (5), one may discretize the local unsym-
metric weak form (55) as
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N

∑
I=1

nx

[
d3φI (x)

dx3 v

]
Γsu

ûI −
N

∑
I=1

nx

[
d2φI (x)

dx2 v′
]

Γsu′
ûI +

N

∑
I=1

nx

[
dφI (x)

dx
v′′

]
Γsu′′

ûI −
N

∑
I=1

nx
[
φI (x)v′′′

]
Γsu′′′

ûI

+
N

∑
I=1

∫
Ωs

φI (x)
[

v+
d4v
dx4

]
dxûI

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′v′

]
Γsu′′

−nx
[
u′v′′

]
Γsu′

+nx
[
uv′′′

]
Γsu

(56)

To illustrate the effectiveness of the MLPG method base
on the local weak form (54). The same problem as that
in the Subsection 3.2 is solved here. We also start with
the cubic basis, i.e. m=4, in the MLS interpolation. The
weight function in MLS is taken to be equation (20),
while the test function in LWF (55) is chosen to be equa-
tion (21), because of the C3 continuity-requirement for
the test function. 41 nodes are used (h=0.025). Fig. 14
shows the influence of the radius of the test domain on
the errors e0 and e1, where the radius of the trial func-
tion domain is taken to be 4.5h. From this figure, it can
be found that the accuracy of the function u, and its first
derivative, is very high when the trial function domain
is big enough (> 2.5h). Similarly, it is noticed that the
accuracy is not sensitive to the radius of the test domain
from 3-6h, the relative errors e0 and e1 are less than 1%.
Fig. 15 shows the influence of the radius of the trial do-
main on the errors e0 and e1, where the radius of the test
domain is taken to be 4h. The results for the function u
and its first derivative are of high accuracy. The relative
errors e0 and e1 are not sensitive to the radius of the trial
function domain. For the linear (m=2) basis, the same
trends can be observed. Again, for m=2, a larger radius
of the trial function domain should be chosen to obtain an
accurate and stable result. It can be found that the results
in this subsection are more accurate that those in the pre-
vious subsections, since no derivative of the trial function
appears in the domain integration in the local weak form.

Similarly, the convergence rate is investigated with three
nodal configurations: 11, 21, and 41 nodes. We also con-
sider the effects of the basis functions, and linear (m=2)
and cubic (m=4) bases are used in this investigation. For
cubic (m=4) basis, the radius of the test domain is taken
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Figure 14 : The influence of the test domain size (41
nodes).

to be 4h, and the radius of the trial domain is taken to be
5h. For linear (m=2) basis, the radius of the test domain
is taken to be 4h, and the radius of the trial domain is
taken to be 6.5h. The results clearly illustrate stable con-
vergence rates for both e0 and e1 for the present MLPG
methods. Obviously, the results from the cubic (m=4)
basis are more accurate than those from the linear (m=2)
basis. The relative errors e0 and e1 and the convergence
rates R of the displacement and first derivative are de-
picted in Fig. 16, for both m=4 and m=2. The conver-
gence rates R of the relative errors e2, e3 and ep for the
second, third derivatives and the energy, are plotted in
Fig. 17 only for m=4. It can be seen that the present
MLPG method has high convergence rates for norms e0,
e1, e2, and ep, and gives very accurate results for the un-
known variable, as well as its first and second derivatives,
and the energy. The results from the cubic (m=4) ba-
sis are more accurate and of higher convergent rate than
those from the linear (m=2) basis. However, the results
for the third derivative are not very accurate, and the con-
vergent rate for the relative error e3 is low.

4 The First Kind of Mixed MLPG Methods

For a 4th order ODE, there are two approaches to develop
the MLPG mixed methods. In this section, the first kind
of mixed MLPG methods will be developed to solve the
4th order ODE. In the first kind of mixed MLPG methods,
both the displacement as well as its second derivative are
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Figure 15 : The influence of the trial domain size (41
nodes).
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Figure 16 : Convergence rate in relative errors e0 and e1.

interpolated independently through meshless interpola-
tion schemes, in order to eliminate the direct differentia-
tion of the trial function to obtain its second and higher
order derivatives of the shape function in the local weak
forms.

First, we introduce a function z as

u′′ = z (57)

Then, equation (26) becomes

z′′+u−1 = 0 (58)
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Figure 17 : Convergence rate in relative errors e2, e3, and
ep.

With the use of the MLS approximation, the function z
can be independently interpolated as

zh (x) =
N

∑
I=1

φI (x) ẑI, zh (xI) ≡ zI �= ẑI , x ∈ Ωx (59)

4.1 Local weak form 1

Analogously, a local weak form can be derived as

nx
[
z′v

]
Γs
−

∫
Ωs

z′v′dx+
∫

Ωs

(u−1)vdx = 0 (60)

This weak form corresponds to the local unsymmetric
weak form (32), but, now there exist only the first deriva-
tives of z and v in the local weak form, and the require-
ment of the continuity for the trial function z is only C0.
As discussed in Section 2, the direct differentiation of u is
not efficient in calculating its higher order derivatives ev-
erywhere. Thus, compared to the primal MLPG method
based on LWF (32), the present mixed MLPG method
should be more efficient.

In order to simplify the above equation, a test function v
can be selected such that it vanishes over Ls, then equa-
tion (60) can be rewritten as

nx
[
z′v

]
Γsu

+
∫

Ωs

uvdx−
∫

Ωs

z′v′dx

=
∫

Ωs

vdx−nx
[
z′v

]
Γsu′′′

(61)



254 Copyright c© 2005 Tech Science Press CMES, vol.7, no.3, pp.241-268, 2005

With the interpolations (5) and (59), one may discretize
the local weak form (61) as

N

∑
I=1

nx

[
dφI (x)

dx
v

]
Γsu

ẑI +

N

∑
I=1

∫
Ωs

[
φI (x)vûI − dφI (x)

dx
v′ẑI

]
dx

=
∫

Ωs

vdx−nx
[
z′v

]
Γsu′′′

(62)

One may choose the Heaviside function as the test func-
tion, and obtains

nx
[
z′v

]
Γsu

+nx
[
z′v

]
Ls

+
∫

Ωs

uvdx

=
∫

Ωs

vdx−nx
[
z′v

]
Γsu′′′

(63)

Equation (63) can be discretized as

N

∑
I=1

nx

[
dφI (x)

dx
v

]
Γsu

ẑI+
N

∑
I=1

nx

[
dφI (x)

dx
v

]
Ls

ẑI

+
N

∑
I=1

∫
Ωs

φI (x)vdxûI =
∫

Ωs

vdx−nx
[
z′v

]
Γsu′′′

(64)

In equation (62) or (64), there are 2N independent un-
knowns (N second derivative variables ẑI and N displace-
ment variables ûI), but the number of the equation is only
N. However, one can reduce the number of the variables
by relating z to u′′ via the collocation methods, without
any changes to equation (62) or (64). The collocation
method is employed to enforce equation (57) only at each
node xI , instead of the entire solution domain. Thus, the
function z at node xI is expressed in terms of the function
u at node xI , as

z (xI) = u′′ (xI) (65)

With the interpolations (5) and (59), the two sets of nodal
variables can be transformed through a linear algebraic
matrix,

ẑI = HIJûJ (66)

where the transformation matrix H is banded. Substi-
tuting equation (66) into equation (62) or (64), one can
obtain a linear algebraic equation system of ûI.

The collocation method is used to impose the boundary
conditions. For boundary node xI , one has

β1u(xI)+β2u′ (xI)+β3z (xI) = β1u+β2u′ +β3z (67)

It is noted that actually there exist only 1 or 2 terms on
both the sides of equation (67), depending on the combi-
nation of the boundary conditions.

To demonstrate the effectiveness of this method, the same
numerical example as in Section 3 is considered in this
section.

In this subsection, only the linear basis, i.e. m=2, is em-
ployed in the MLS interpolation, and the weight function
in MLS is taken to be equation (20).

4.1.1 The test function is taken to be the weight function

At first, we take equation (20) as the test function, i.e.
use the discretized equation (62). 41 nodes are used
(h=0.025). Fig. 18 shows the influence of the radius of
the test domain on the errors e0 and e1, where the ra-
dius of the trial function domain is taken to be 5.1h. It
is noticed that the relative errors e0 and e1 (around 2%)
are almost independent of the radius of the test domain
from 1-3.5h. Fig. 19 shows the influence of the radius
of the trial domain on the errors e0 and e1, where the ra-
dius of the test domain is taken to be 2.5h. The results
for the function u and its first derivative are acceptable
(less than 10%). The relative errors e0 and e1 are not
very sensitive to the radius of the trial function domain
from 2.5-5.5h. The convergence rate is investigated with
three nodal configurations: 11, 21, and 41 nodes for lin-
ear (m=2) basis. The radius of the test domain is taken
to be 2.5h, and the radius of the trial domain is taken
to be 2.5h. The results clearly demonstrate stable con-
vergence rates for both e0 and e1 for the present mixed
MLPG methods. The relative errors e0 and e1 and the
convergence rates R of the displacement and first deriva-
tive are depicted in Fig. 20. The convergence rates R
of the relative errors e2, e3 and ep for the second, third
derivatives and the energy, are plotted in Fig. 21. It can
be seen that the present mixed MLPG method has stable
convergence rate for norms e0, e1, e2, and ep, and gives
reasonably accurate results for the unknown variable, its
first and second derivatives, and the energy. However,
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Figure 18 : The influence of the test domain size (41
nodes).
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Figure 19 : The influence of the trial domain size (41
nodes).

the results for the third derivative are not accurate, and
the convergence rate for the relative error e3 is not stable.

These figures show that, based on the same LWF (32),
the mixed MLPG method can obtain stable results, al-
though the accuracy of the results is not very high, while
the primal MLPG method cannot work.

4.1.2 The test function is taken to be Heaviside function

Now, we choose Heaviside function as the test function,
i.e. use the discretized equation (64). 41 nodes are used
(h=0.025). Fig. 22 shows the influence of the radius of
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Figure 20 : Convergence rate in relative errors e0 and e1.
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Figure 21 : Convergence rate in relative errors e2, e3, and
ep.

the test domain on the errors e0 and e1, where the radius
of the trial function domain is taken to be 5.1h. It is no-
ticed that the relative errors e0 and e1 (around 1%) are
almost independent of the radius of the test domain from
0.5-2.5h. Fig. 23 shows the influence of the radius of the
trial domain on the errors e0 and e1, where the radius of
the test domain is taken to be 2.5h. The results for the
function u and its first derivative are acceptable. The rel-
ative errors e0 and e1 are not very sensitive to the radius
of the trial function domain from 2.5-5.5h. The conver-
gence rate is investigated with three nodal configurations:
11, 21, and 41 nodes for linear (m=2) basis. The radius of
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Figure 22 : The influence of the test domain size (41
nodes).

the trial domain is taken to be 5.1h, and the radius of the
test domain is taken to be 2.5h. The relative errors e0 and
e1 and the convergence rates R of the displacement and
first derivative are depicted in Fig. 24. The convergence
rates R of the relative errors e2, e3 and ep for the sec-
ond, third derivatives and the energy, are plotted in Fig.
25. It can be seen that the present mixed MLPG method
has stable convergence rates for norms e0, e1, e2, and ep,
and gives reasonably accurate results for the unknown
variable, its first and second derivatives, and the energy.
However, the results for the third derivative are not accu-
rate, and the convergence rate for the relative error e3 is
not stable. The mixed MLPG method with the Heaviside
function being the test function is more accurate than the
mixed MLPG method with equation (20) being the test
function.

4.2 Local weak form 2

In LWF (60), there still exists the first derivative of z in
the domain integration, which can be eliminated by inte-
grating (60) by part once. Thus, another local weak form
can be obtained as

nx
[
z′v

]
Γs
−nx

[
zv′

]
Γs

+
∫

Ωs

zv′′dx+
∫

Ωs

(u−1)vdx = 0

(68)

which corresponds to the local symmetric weak form
(39), but no derivatives of either z or u appear in the do-
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Figure 23 : The influence of the trial domain size (41
nodes).
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Figure 24 : Convergence rate in relative errors e0 and e1.

main integration. In LWF (39), there the second deriva-
tive of u occurs in the domain integration.

In order to simplify the above equation, we can select
a test function v such that, itself and its first derivative,
vanish over Ls, then equation (68) can be rewritten as

nx
[
z′v

]
Γsu

−nx
[
zv′

]
Γsu′

+
∫

Ωs

uvdx+
∫

Ωs

zv′′dx

=
∫

Ωs

vdx−nx
[
z′v

]
Γsu′′′

+nx
[
zv′

]
Γsu′′

(69)

With equations (5) and (59), one may discretize the local
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Figure 25 : Convergence rate in relative errors e2, e3, and
ep.
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Figure 26 : The influence of the test domain size (41
nodes).

weak form (69) as

N

∑
I=1

nx

[
dφI (x)

dx
v

]
Γsu

ẑI −
N

∑
I=1

nx
[
φI (x)v′

]
Γsu′

ẑI

+
N

∑
I=1

∫
Ωs

[
φI (x)vûI −φI (x)v′′ ẑI

]
dx

=
∫

Ωs

vdx−nx
[
z′v

]
Γsu′′′

+nx
[
zv′

]
Γsu′′

(70)

Substituting equation (66) into equation (70), one can ob-

tain a linear algebraic equation system of ûI .

The collocation method is employed to impose the
boundary conditions, as in equation (43).

To illustrate the effectiveness of this method, the same
numerical example as in the previous section is consid-
ered here again. At first, the cubic basis (m=4) is used in
the MLS interpolation. Both the weight function in MLS
and the test function are taken to be equation (20). 41
nodes are used (h=0.025). Fig. 26 shows the influence of
the radius of the test domain on the relative errors e0 and
e1, where the radius of the trial function domain is taken
to be 4.5h. From this figure, it can be found that the accu-
racy of the function u and its first derivative is high when
the test function domain is big enough (> 2.5h). It is no-
ticed that the relative errors e0 and e1 are not sensitive to
the radius of the test domain from 3-5h (less than 1%).
Fig. 27 shows the influence of the radius of the trial do-
main on the errors e0 and e1, where the radius of the test
domain is taken to be 3.5h. The results for the function
u and its first derivative are accurate. The relative errors
e0 and e1 are not sensitive to the radius of the trial func-
tion domain from 3.5-7h. For the linear (m=2) basis, the
same trends can be observed. However, for m=2, a larger
radius of the trial function domain should be chosen to
obtain an accurate and stable result.

The convergence rate is investigated with three nodal
configurations: 11, 21, and 41 nodes. We also consider
the effects of the basis functions: linear (m=2) and cu-
bic (m=4) bases are used in this investigation. For cu-
bic (m=4) basis, the radius of the test domain is taken
to be 4h, and the radius of the trial domain is taken to
be 4.5h. For linear (m=2) basis, the radius of the test
domain is taken to be 3.5h, and the radius of the trial
domain is taken to be 8h. The relative errors e0 and e1

and the convergence rates R of the displacement and first
derivative are depicted in Fig. 28, for both m=4 and m=2.
The convergence rates R of the relative errors e2, e3 and
ep for the second, third derivatives and the energy, are
plotted in Fig. 29 only for m=4. It can be seen that the
present mixed MLPG method has high rates of conver-
gence for norms e0, e1, e2, and ep, and gives reason-
ably accurate results for the unknown variable, its first
and second derivatives, and the energy. The results from
the cubic (m=4) basis are more accurate and of higher
convergent rate than those from the linear (m=2) basis.
However, the results for the third derivative are not very
accurate, while the convergence rate for the relative error
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Figure 27 : The influence of the trial domain size (41
nodes).
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Figure 28 : Convergence rate in relative errors e0 and e1.

e3 is high.

Compared to the corresponding primal MLPG method
based on the local weak form (39), this mixed MLPG
method requires less Gaussian points, and is more stable
and accurate. The mixed MLPG method is cheaper and
faster.

4.3 Local weak form 3

By means of the idea of the mixed MLPG method, the
local weak form (53) can be rewritten as,
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Figure 29 : Convergence rate in relative errors e2, e3, and
ep.

nx
[
z′v

]
Γs
−nx

[
zv′

]
Γs

+nx
[
u′v′′

]
Γs

−nx
[
uv′′′

]
Γs

+
∫

Ωs

u
d4v
dx4 dx+

∫
Ωs

(u−1)vdx = 0 (71)

Compared to the LWF (53), the LWF (71) does not have
higher derivatives in the local boundary.

Imposing the boundary conditions (29) and (30), one ob-
tains

nx
[
z′v

]
Γsu′′′

+nx
[
z′v

]
Γsu

+nx
[
z′v

]
Ls

−nx
[
zv′

]
Γsu′′

−nx
[
zv′

]
Γsu′

−nx
[
zv′

]
Ls

+nx
[
u′v′′

]
Γsu′

+nx
[
u′v′′

]
Γsu′′

+nx
[
u′v′′

]
Ls

−nx
[
uv′′′

]
Γsu

−nx
[
uv′′′

]
Γsu′′′

−nx
[
uv′′′

]
Ls

+
∫

Ωs

u
d4v
dx4 dx+

∫
Ωs

(u−1)vdx = 0 (72)

In order to simplify the above equation, we can select a
test function v such that, itself and its first, second and
third derivatives vanish over Ls. Such a test function is
given in (21). Then equation (72) can be rewritten as
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nx
[
z′v

]
Γsu

−nx
[
zv′

]
Γsu′

+nx
[
u′v′′

]
Γsu′′

−nx
[
uv′′′

]
Γsu′′′

+
∫

Ωs

u
d4v
dx4

dx+
∫

Ωs

uvdx

=
∫

Ωs

vdx−nx
[
z′v

]
Γsu′′′

+nx
[
zv′

]
Γsu′′

−nx
[
u′v′′

]
Γsu′

+nx
[
uv′′′

]
Γsu

(73)

With the interpolations (5) and (59), one may discretize
the local symmetric weak form (73) as

N

∑
I=1

nx

[
dφI (x)

dx
v

]
Γsu

ẑI −
N

∑
I=1

nx
[
φI (x)v′

]
Γsu′

ẑI +

N

∑
I=1

nx

[
dφI (x)

dx
v′′

]
Γsu′′

ûI −
N

∑
I=1

nx
[
φI (x)v′′′

]
Γsu′′′

ûI

+
N

∑
I=1

∫
Ωs

φI (x)
[

v+
d4v
dx4

]
dxûI

=
∫

Ωs

vdx−nx
[
z′v

]
Γsu′′′

+nx
[
zv′

]
Γsu′′

−nx
[
u′v′′

]
Γsu′

+nx
[
uv′′′

]
Γsu

(74)

Substituting equation (66) into equation (74), one can ob-
tain a linear algebraic equation system of ûI.

The numerical results still start with the cubic basis, i.e.
m=4, in the MLS approximation. The weight function
in MLS is taken to be equation (20), while the test func-
tion in LWF (73) is chosen to be equation (21). 41 nodes
are used (h=0.025). Fig. 30 shows the influence of the
radius of the test domain on the errors e0 and e1, where
the radius of the trial function domain is taken to be 4.5h.
From this figure, it can be found that the accuracy of the
function u and its first derivative is very high when the
trial function domain is big enough (> 2.5h). Similarly,
it is noticed that the accuracy is not sensitive to the ra-
dius of the test domain from 3-6h. Fig. 31 shows the
influence of the radius of the trial domain on the errors
e0 and e1, where the radius of the test domain is taken to
be 4h. The results for the function u, as well as its first
derivative, are of high accuracy. The relative errors e0

and e1 are less than 1% for the radius of the trial func-
tion domain between 3.5-7h. For the linear (m=2) basis,
the same trends can be observed. However, in this mixed

MLPG method, for m=2, a larger radius of the trial func-
tion domain is needed, in order to obtain an accurate and
stable result.

Similarly, the convergence rate is investigated with three
nodal configurations: 11, 21, and 41 nodes. We also con-
sider the effects of the basis functions: linear (m=2) and
cubic (m=4) bases are used in this investigation. For cu-
bic (m=4) basis, the radius of the test domain is taken
to be 4h, and the radius of the trial domain is taken to
be 4.5h. For linear (m=2) basis, the radius of the test
domain is taken to be 4h, and the radius of the trial do-
main is taken to be 6.5h. The relative errors e0 and e1

and the convergence rates R of the displacement and first
derivative are depicted in Fig. 32, for both m=4 and m=2.
The convergence rates R of the relative errors e2, e3 and
ep for the second, third derivatives and the energy, are
plotted in Fig. 33 only for m=4. It can be seen that the
present MLPG method has high rates of convergence for
norms e0, e1, e2, and ep, and gives very accurate results
for the unknown variable, its first and second derivatives,
and the energy. This mixed MLPG method can obtain the
almost the same accurate results for both m=2 and m=4.
However, the results for the third derivative are not very
accurate, and the convergence rate for the relative error
e3 is low.

Compared to the corresponding primal MLPG method
based on the local weak form (53), this mixed MLPG
method requires less Gaussian points, and is more sta-
ble and accurate, especially for m=2. The mixed MLPG
method is cheaper and faster.

5 The Second Kind of Mixed MLPG Methods

In the first kind of mixed MLPG methods, there still ex-
ists the first derivative of z or u in the local weak forms.
To avoid fully the appearance of any derivatives in the
local weak forms, in this section, the second kind of the
mixed MLPG methods are introduced. In the second
kind of mixed MLPG methods, the displacement, its first
derivative, second derivative, as well as the third deriva-
tive are all interpolated independently through meshless
interpolation schemes. The second kind of mixed MLPG
method is developed by introducing the following 3 func-
tions

u′ = g
g′ = z
z′ = q

(75)
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Figure 30 : The influence of the test domain size (41
nodes).
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Figure 31 : The influence of the trial domain size (41
nodes).

Then, equation (26) becomes

q′+u−1 = 0 (76)

With the use of the MLS approximation, the functions g,
z, and q can be independently interpolated as

gh (x) =
N

∑
I=1

φI (x) ĝI , gh (xI) ≡ gI �= ĝI, x ∈ Ωx (77)

zh (x) =
N

∑
I=1

φI (x) ẑI, zh (xI) ≡ zI �= ẑI , x ∈ Ωx (78)
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Figure 32 : Convergence rate in relative errors e0 and e1.
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Figure 33 : Convergence rate in relative errors e2, e3, and
ep.

qh (x) =
N

∑
I=1

φI (x) q̂I, qh (xI) ≡ qI �= q̂I , x ∈ Ωx (79)

5.1 The local weak form 1

Analogously, the following local weak forms can be de-
rived, as

nx [qv]Γs
−

∫
Ωs

qv′dx+
∫

Ωs

(u−1)vdx = 0 (80)

This weak form corresponds to the unsymmetric weak
form (32) or (60). However, no derivative of the trial
functions appear in this local weak form.
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In order to simplify the above equation, one can select a
test function v such that it vanishes over Ls; then equation
(80) can be rewritten as

nx [qv]Γsu
+

∫
Ωs

uvdx−
∫

Ωs

qv′dx =
∫

Ωs

vdx−nx [qv]Γsu′′′

(81)

With equations (5) and (79), one may discretize the local
weak form (81) as

N

∑
I=1

nx
[
φI (x)v

]
Γsu

q̂I +
N

∑
I=1

∫
Ωs

φI (x)
[
vûI −v′q̂I

]
dx

=
∫

Ωs

vdx−nx [qv]Γsu′′′
(82)

In equation (82), there are 2N independent unknowns (N
second derivative variables q̂I and N displacement vari-
ables ûI), but the number of the equation is only N. How-
ever, one can reduce the number of the variables by trans-
forming the variables g, z, and q back to the displace-
ment variable via the collocation methods, without any
changes to equation (82). The collocation method is em-
ployed to enforce equation (75) only at each node xI , in-
stead of the entire solution domain. Thus, the functions
g, z, and q at node xI are expressed in terms of the deriva-
tives of the related function at node xI , as

g(xI) = u′ (xI)
z (xI) = g′ (xI)
q(xI) = z′ (xI)

(83)

With the interpolations (5) and (77)-(79), the two related
sets of nodal variables can be transformed through a lin-
ear algebraic matrix,

ĝI = GIJûJ

ẑI = GIJĝI

q̂I = GIJẑI

(84)

where the transformation matrix G is banded. Through
(84), the nodal variables of the function g, z, and q can
be related to the nodal variable of function u, as

ĝI = GIJûJ

ẑI = RIJûJ

q̂I = TIJûJ

(85)

where R = G2, and T = G3.

Substituting equation (85) into equation (82), one can ob-
tain a linear algebraic equation system of ûI .

However, our numerical experiments based on LWF (80),
cannot obtain any stable and convergent results (using
some special parameter-combinations, one may happen
to obtain some good results), using either weight function
(20) or Heaviside function as test function. Hence, this
local weak form is not appropriate for the numerical im-
plementation either. This may be since the errors intro-
duced by the collocation method are enlarged by T = G3.

5.2 The local weak form 2

By using the auxiliary functions (75), the local weak
form (39) can be rewritten as

nx [qv]Γs
−nx

[
zv′

]
Γs

+
∫

Ωs

zv′′dx+
∫

Ωs

(u−1)vdx = 0

(86)

Compared to the local symmetric weak form (39), the
LWF (86) has no derivative of the trial function in either
domain integration or local boundary integration.

In order to simplify the above equation, we can select
a test function v such that, itself and its first derivative,
vanishes over Ls. then equation (86) can be rewritten as

nx [qv]Γsu
−nx

[
zv′

]
Γsu′

+
∫

Ωs

uvdx+
∫

Ωs

zv′′dx

=
∫

Ωs

vdx−nx [qv]Γsu′′′
+nx

[
zv′

]
Γsu′′

(87)

With the interpolations (5) and (78), one may discretize
the local weak form (87) as

N

∑
I=1

nx
[
φI (x)v

]
Γsu

q̂I −
N

∑
I=1

nx
[
φI (x)v′

]
Γsu′

ẑI

+
N

∑
I=1

∫
Ωs

[
φI (x)vûI −φI (x)v′′ ẑI

]
dx

=
∫

Ωs

vdx−nx [qv]Γsu′′′
+nx

[
zv′

]
Γsu′′

(88)

Substituting equation (85) into equation (88), one can ob-
tain a linear algebraic equation system of ûI .
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The collocation method is employed to impose the
boundary conditions, as in equation (43).

To illustrate the effectiveness of this method, we consider
the same numerical example as in previous section again.
At first, we use the cubic basis, i.e. m=4 in the MLS inter-
polation. Both the weight function in MLS, and the test
function, are taken to be as in equation (20). 41 nodes
are used (h=0.025). Fig. 34 shows the influence of the
radius of the test domain on the errors e0 and e1, where
the radius of the trial function domain is taken to be 4.5h.
From this figure, it can be found that the accuracies of the
function u and its first derivative are very high, when the
test function domain is big enough (> h). The relative
errors e0 and e1 are less than 0.01%. It is noticed that the
accuracy is almost independent of the radius of the test
domain from 1.5-5h. Fig. 35 shows the influence of the
radius of the trial domain on the errors e0 and e1, where
the radius of the test domain is taken to be 3.5h. The re-
sults for the function u and its first derivative are highly
accurate. The relative errors e0 and e1 are not sensitive to
the radius of the trial function domain from 3.5-7h. For
the linear (m=2) basis, the same trends can be observed.
In this method, for m=2, the requirement of a larger ra-
dius of the trial function domain is not needed.

The convergence rate is investigated with three nodal
configurations: 11, 21, and 41 nodes. We also consider
the effects of the basis functions: linear (m=2) and cu-
bic (m=4) bases are used in this investigation. For cubic
(m=4) basis, the radius of the test domain is taken to be
4h, and the radius of the trial domain is taken to be 5h.
For linear (m=2) basis, the radius of the test domain is
taken to be 3.5h, and the radius of the trial domain is
taken to be 4.5h. The relative errors e0 and e1 and the
convergence rates R of the displacement and first deriva-
tive are depicted in Fig. 36, for both m=4 and m=2. The
convergence rates R of the relative errors e2, e3 and ep

for the second, third derivatives and the energy, are plot-
ted in Fig. 37 only for m=4. It can be seen that the present
mixed MLPG method has very high rates of convergence
for norms e0, e1, e2, and ep, and gives very accurate re-
sults for the unknown variable, its first and second deriva-
tives, and the energy. The results from the cubic (m=4)
basis are more accurate, and are of higher convergent rate
than those from the linear (m=2) basis. However, the re-
sults for the third derivative are not very accurate, while
the convergence rate for the relative error e3 is very high.

Compared to the corresponding primal MLPG method

based on the local weak form (39), this mixed MLPG
method requires less Gaussian points, is more stable,
and the results is of two-orders higher accuracy. This
mixed MLPG method is also more accurate than the cor-
responding first kind of mixed MLPG method.
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Figure 34 : The influence of the test domain size (41
nodes).
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Figure 35 : The influence of the trial domain size (41
nodes).

5.3 The local weak form 3

By using the auxiliary functions (75), the local weak
form (48) can be rewritten as
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Figure 36 : Convergence rate in relative errors e0 and e1.
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Figure 37 : Convergence rate in relative errors e2, e3, and
ep.
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]
Γs

−
∫

Ωs

gv′′′dx+
∫

Ωs

(u−1)vdx = 0 (89)

Compared to the local symmetric weak form (48), the
LWF (89) has no derivatives of the trial function in either
domain integration or local boundary integration.

Imposing the boundary conditions (29) and (30), one ob-
tains

nx [qv]Γsu′′′
+nx [qv]Γsu

+nx [qv]Ls

−nx
[
zv′

]
Γsu′′

−nx
[
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−nx
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+nx
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+nx
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+nx
[
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]
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−
∫

Ωs

gv′′′dx+
∫

Ωs

(u−1)vdx = 0 (90)

In order to simplify the above equation, one can select
a test function v such that, itself and its first and second
derivatives, vanish over Ls. Such test functions are given
in (20) and (21). Then equation (90) can be rewritten as

nx [qv]Γsu
−nx

[
zv′

]
Γsu′

+nx
[
gv′′

]
Γsu′′

+
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uvdx−
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vdx−nx [qv]Γsu′′′
+nx

[
zv′

]
Γsu′′

−nx
[
gv′′

]
Γsu′

(91)

With the interpolations (5) and (78), one may discretize
the local weak form (91) as

N

∑
I=1

nx
[
φI (x)v

]
Γsu

q̂I −
N

∑
I=1

nx
[
φI (x)v′

]
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+
N

∑
I=1

nx
[
φI (x)v′′

]
Γsu′′

ĝI

+
N

∑
I=1

∫
Ωs

φI (x)
[
ûIv− ĝI v

′′′]dx

=
∫

Ωs

vdx−nx [qv]Γsu′′′
+nx

[
zv′

]
Γsu′′

−nx
[
gv′′

]
Γsu′

(92)

The collocation method is used to impose the boundary
condition as in equation (52). Substituting equation (85)
into equation (92), one can obtain a linear algebraic equa-
tion system of ûI.

The collocation method is used to impose the boundary
conditions, as in equation (43).

To illustrate the effectiveness of this method, we consider
the same numerical example again. Similarly, we start
with the cubic basis, i.e. m=4, in the MLS interpolation.
The weight function in MLS is taken to be equation (20),
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Figure 38 : The influence of the test domain size (41
nodes).

while the test function in LWF (49) is chosen to be equa-
tion (21). 41 nodes are used (h=0.025). Fig. 38 shows
the influence of the radius of the test domain on the errors
e0 and e1, where the radius of the trial function domain is
taken to be 4.5h. From this figure, it can be found that the
accuracy of the function u, as well as its first derivative,
is very high when the test function domain is big enough
(> h). The relative errors e0 and e1 are less than 0.1%,
when the radius of the test domain is greater than 1.5h.
It is noticed that the accuracy is not sensitive to the ra-
dius of the test domain from 1.5-5h. Fig. 39 shows the
influence of the radius of the trial domain on the errors e0

and e1, where the radius of the test domain is taken to be
3.5h. The results for the function u and its first derivative
are high accurate. The relative errors e0 and e1 are not
sensitive to the radius of the trial function domain from
3.5-7h. For the linear (m=2) basis, the same trends can
be observed. In this method, for m=2, the requirement of
a larger radius of the trial function domain is not needed
either.

The convergence rate is investigated with three nodal
configurations: 11, 21, and 41 nodes. We also consider
the effects of the basis functions: linear (m=2) and cu-
bic (m=4) bases are used in this investigation. For cubic
(m=4) basis, the radius of the test domain is taken to be
4h, and the radius of the trial domain is taken to be 5h.
For linear (m=2) basis, the radius of the test domain is
taken to be 3.5h, and the radius of the trial domain is

taken to be 4.5h. The relative errors e0 and e1 and the
convergence rates R of the displacement and first deriva-
tive are depicted in Fig. 40, for both m=4 and m=2. The
convergence rates R of the relative errors e2, e3 and ep

for the second, third derivatives and the energy, are plot-
ted in Fig. 41 only for m=4. It can be seen that the present
mixed MLPG method has very high rates of convergence
for norms e0, e1, e2, and ep, and gives very accurate re-
sults for the unknown variable, its first and second deriva-
tives, and the energy. The results from the cubic (m=4)
basis are more accurate, and are of higher convergent rate
than those from the linear (m=2) basis, although in this
method the results from m=2 are already very accurate.
However, the results for the third derivative are not very
accurate, while the convergence rate for the relative error
e3 is very high.

Compared to the corresponding primal MLPG method
based on the local weak form (48), this mixed MLPG
method requires less Gaussian points, is more stable, and
the results is of two-orders higher accuracy. This mixed
MLPG method is more accurate, cheaper and faster.

5.4 The local weak form 4

By using the auxiliary functions (75), the local weak
form (53) can be rewritten as
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∫
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(u−1)vdx = 0 (93)

Compared to the local symmetric weak form (53), the
LWF (93) has no derivative of the trial function in either
domain integration or local boundary integration.

Imposing the boundary conditions (29) and (30), one ob-
tains
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Figure 39 : The influence of the trial domain size (41
nodes).

0.000001

0.00001

0.0001

0.001

0.01

0.1

0.025 0.05 0.075 0.1

Nodal distance (h)

R
e
la

ti
v
e
 e

rr
o

rs

e0 (m=4) R=5.25

e1 (m=4) R=4.88

e0 (m=2)

e1 (m=2)

Figure 40 : Convergence rate in relative errors e0 and e1.

In order to simplify the above equation, we can select a
test function v such that it and its first, second and third
derivatives vanish over Ls. Such a test function is given
in (21). Then, equation (94) can be rewritten as
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Figure 41 : Convergence rate in relative errors e2, e3, and
ep.
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(95)

With the interpolations (5) and (78), one may discretize
the local symmetric weak form (95) as

N
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dxûI

=
∫

Ωs

vdx−nx [qv]Γsu′′′
+nx

[
zv′

]
Γsu′′

−nx
[
gv′′

]
Γsu′

+nx
[
uv′′′

]
Γsu

(96)

Substituting equation (85) into equation (96), one can ob-
tain a linear algebraic equation system of ûI .

Again, the same numerical example is considered to il-
lustrate the effectiveness of this method. We also start
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Figure 42 : The influence of the test domain size (41
nodes).

with the cubic basis, i.e. m=4, in the MLS interpolation.
The weight function in MLS is taken to be equation (20),
while the test function in LWF (95) is chosen to be equa-
tion (21). 41 nodes are used (h=0.025). Fig. 42 shows
the influence of the radius of the test domain on the errors
e0 and e1, where the radius of the trial function domain is
taken to be 4.5h. From this figure, it can be found that the
accuracy of the function u and its first derivative is high
when the trial function domain is big enough (≥ 2.5h).
Similarly, it is noticed that the accuracy is not sensitive to
the radius of the test domain from 3-6h, and the relative
errors e0 and e1 are less than 1%. Fig. 43 shows the influ-
ence of the radius of the trial domain on the errors e0 and
e1, where the radius of the test domain is taken to be 4h.
The results for the function u and its first derivative are of
high accuracy. The relative errors e0 and e1 are not sen-
sitive to the radius of the trial function domain. For the
linear (m=2) basis, the same trends can be observed. In
this method, for m=2, the requirement of a larger radius
of the trial function domain is no longer needed.

Similarly, the convergence rate is investigated with three
nodal configurations: 11, 21, and 41 nodes. We also con-
sider the effects of the basis functions: linear (m=2) and
cubic (m=4) bases are used in this investigation. For cu-
bic (m=4) basis, the radius of the test domain is taken to
be 4h, and the radius of the trial domain is taken to be 5h.
For linear (m=2) basis, the radius of the test domain is
taken to be 4h, and the radius of the trial domain is taken
to be 6.5h. The relative errors e0 and e1 and the conver-

gence rates R of the displacement and first derivative are
depicted in Fig. 44, for both m=4 and m=2. The con-
vergence rates R of the relative errors e2, e3 and ep for
the second, third derivatives and the energy, are plotted
in Fig. 45 only for m=4. It can be seen that the present
mixed MLPG method has very high rates of convergence
for norms e0, e1, e2, and ep, and gives very accurate re-
sults for the unknown variable, its first and second deriva-
tives, and the energy. However, the results for the third
derivative are not very accurate, while the convergence
rate for the relative error e3 is very high. In this method
the results from m=2 are also very accurate.

Compared to the corresponding primal MLPG method
based on the local weak form (39), this mixed MLPG
method requires less Gaussian points, is more stable and
accurate. This mixed MLPG method is also more accu-
rate than the corresponding first kind of mixed MLPG
method. This mixed MLPG method possesses very high
convergence rates for the displacement and its first to
third derivatives.

6 Conclusions

Both the primal and mixed MLPG methods are pre-
sented fro the 4th order ordinary differential equations.
Various local weak forms are developed. In the first
kind of mixed MLPG methods, both the displacement
and its second derivative are interpolated independently
through the moving least squares interpolation scheme.
In the second kind of mixed MLPG methods, the dis-
placement, its first derivative, the second derivative and
the third derivative are all interpolated independently
through the moving least squares interpolation scheme.
The mixed MLPG methods avoid the occurrence of high
order derivatives of the primary trial function, in the local
weak forms, and thus reduce the continuity-requirement
on the trial function. The mixed MLPG methods are far
more efficient than the primal MLPG methods. The nu-
merical examples demonstrate that both the primal and
mixed MLPG methods obtain accurate results and pos-
sess excellent rate of convergence for the displacement,
its first and second derivatives, and the energy. However,
among them, the second kind of mixed MLPG methods
give more stable and accurate results, and possess very
high convergence rates, even for the third derivative.
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