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A multiscale approach for the micropolar continuum model

Hiroshi Kadowaki1 and Wing Kam Liu2

Abstract: A method to derive governing equations and
elastic-plastic constitutive relations for the micropolar
continuum model is proposed. Averaging procedures are
operated over a surrounding sub-domain for each mate-
rial point to bridge a discrete microstructure to a macro
continuum model. Material parameters are determined
by these procedures. The size of the sub-domain repre-
sents the material intrinsic length scale, and it is passed
into the macroscopic governing equation so that the nu-
merical solution can be regularized for analyses of failure
phenomena. An application to a simple granular material
model is presented.

keyword: micropolar continuum, material parameter,
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1 Introduction

In failure phenomena of rate-independent strain-
softening materials, deformation often localizes in a very
small portion of the entire domain. The existing compu-
tational methods within the framework of conventional
continuum mechanics such as the finite element method
(FEM) are not always applicable to these problems, be-
cause one may encounter significant mesh dependence.
For example, in a one-dimensional problem, the plastic
strain localizes in one element after the failure no matter
how fine the finite element mesh is. To avoid this spuri-
ously mesh-dependent result, it is known that one of the
regularization methods is required (Belytschko, Liu, and
Moran, 2000). In addition, to capture the localized strain
distribution, very fine discretization is required. Finite
elements should be much smaller than the size of the lo-
calized region.

In the late 1980’s, regularization methods were devel-
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oped intensively and are reviewed in Belytschko, Liu,
and Moran (2000) such as the non-local model (Bažant
and Belytschko, 1985; Bažant, Belytschko, and Chang,
1984), the gradient model (Lasry and Belytschko, 1988),
the couple stress model (Mühlhaus and Vardoulakis,
1987), and the rate-dependent model (Needleman, 1988).
These regularization methods embed a length scale in
the governing equations directly or indirectly. Among
these regularization methods, the couple stress approach
is focused on in this paper. Germain (1973) formu-
lated the weak form governing equations for the mi-
cromorphic continuum model of Eringen and Suhubi
(1964). Mühlhaus and Vardoulakis (1987) derived the
shear stress invariant and the plastic shear strain invariant
including the couple stress and the micro curvature by av-
eraging the slip among the microstructure of a granular
material. De Borst (1993) generalized the J2-flow the-
ory with the couple stress and the micro curvature. This
theory has been applied to static and dynamic problems
(de Borst, 1993; de Borst, Sluys, Mühlhaus, and Pamin,
1993) . Recently, thermo-visco-elastic constitutive equa-
tions for the micropolar continuum model were derived
by Chen, Lee, and Eskandarian (2004), and an overview
of the polar theory is shown there. However, how to de-
termine the material parameters for the constitutive rela-
tions and the size of the length scale has been an open
question. In order to bridge the discrete microstructure
to the continuum, these should reflect the material mi-
crostructure which conventional continuum mechanics
cannot represent. Since the late 1990’s, it is studied by
many researchers to incorporate higher order gradient of
displacement into the continuum mechanics. For exam-
ple, Kouznetsova, Geers, and Brekelmans (2002) devel-
oped a multi-scale constitutive modeling technique using
the numerical homogenization method, and Gao, Huang,
Nix, and Hutchinson (1999) enhanced the plasticity the-
ory with strain gradients.

To decrease the computational cost, graded mesh is a
common method for the analyses of localized phenom-
ena. However, in dynamic analyses, one may encounter
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spurious wave reflection at the transition point of mesh
density. Also, the time step is restricted by the small-
est elements. To enhance the computational efficiency
without sacrificing the accuracy, a class of computational
method has been developed. Liu, Uras, and Chen (1997)
developed the so-called bridging scale method that en-
riches FEM with a meshfree method. This method has
been extended to couple molecular dynamics computa-
tions and FEM (Wagner and Liu, 2003; Wagner, Kar-
pov, and Liu, 2004; Karpov, Wagner, and Liu, 2005;
Liu, Karpov, Zhang, and Park, 2004; Park and Liu, 2004;
Park, Karpov, Liu, and Klein, 2005) . Also, coupling of
two FEM computations of different resolution, fine-scale
FEM and coarse-scale FEM, has been developed for the
micropolar continuum model using this method (Kad-
owaki and Liu, 2004). This method connects two numer-
ical analyses running simultaneously by an imposed dy-
namic interface condition. This condition is derived as-
suming the periodicity of the fine-scale FEM mesh based
on the Fourier analysis of repetitive structures (Karpov,
Stephen, and Dorofeev, 2002; Karpov, Stephen, and Liu,
2003). By this method, spurious wave reflection can be
suppressed and one can use different time steps in the
fine-scale FEM and the coarse-scale FEM.

In this study, an approach taken to determine material
parameters for the micropolar continuum is proposed
and example problems are computed by the bridging
scale method with two FEM meshes (Kadowaki and Liu,
2004). The main focus is on the approach to determine
the material parameters. It is based on some of the ex-
isting works mentioned above. The major distinction is
that both the governing equations and the constitutive re-
lations of the proposed model are derived by averaging
over a surrounding sub-domain which is motivated by
the approach of Gao, Huang, Nix, and Hutchinson (1999)
and Mühlhaus and Vardoulakis (1987). Both the virtual
internal power and invariants for plastic deformation at a
macroscopic material point are expressed by the average
over the surrounding sub-domain, which represents the
extent of the influence from neighboring material points.
Thus, this sub-domain is called the domain of influence
(DOI). The main advantage of this approach is that the
formulation embeds the size of the DOI into the govern-
ing equations, yields the relationship between the elastic
parameters, and determines the parameters for the plastic
constitutive relations.

In section 2, the micropolar continuum model and the

generalized J2-flow theory are reviewed. In section 3, the
proposed multiscale approach is explained. In section 4,
an elastic-plastic constitutive relation is presented for a
simple granular material model. In section 5, numerical
examples are presented. In section 6, concluding remarks
are made.

2 Review of the micropolar continuum model and
the generalized J2-flow theory

2.1 Governing equations

Let ui and u̇i denote the displacement field and the ve-
locity field, respectively. A superposed dot denotes the
material time derivative. The micropolar continuum
model includes a skew-symmetric second order tensor
ω̇i j which is called micro-spin. Both u̇i and ω̇i j are func-
tions of the material coordinate X and time t. Let Ω and Γ
denote the current domain and its boundary, respectively.
The current position of a material point X is denoted by x.
Consider a virtual velocity field δu̇i and a virtual micro-
spin field δω̇i j. Following Germain (1973), the virtual
kinetic power of the micropolar continuum model δP kin

can be written as follows:

δP kin =
∫

ρüiδu̇i +ρIω̈i jδω̇i jdΩ (1)

where ρ and ρI denote the density and the inertia of the
micro-rotation per unit volume. The derivation of the vir-
tual kinetic power is shown in the appendix.

Let Li j denote the macro-velocity gradient defined as

Li j =
∂u̇i

∂x j
(2)

where xi denotes the spatial coordinate. Let the symmet-
ric part and the skew-symmetric part of Li j be denoted
by Di j and Wi j, respectively. The virtual internal power
δP int is assumed to be linearly dependent on the macro-
velocity-gradient, the micro-spin, and the gradient of the
micro-spin as

δP int =
∫

σS
jiδDi j +σA

ji (δω̇i j −δWi j)+τk jiδω̇i j,kdΩ (3)

where a comma in a subscript denotes the spatial deriva-
tive. The stress measures σS

ji, σA
ji, and τk ji are called the

macro-stress, the micro-stress, and the couple stress re-
spectively. Note that because of the symmetric or skew-



Manuscript Preparation for CMES 271

symmetric properties of these stress measures,

σS
ji = σS

i j

σA
ji= −σA

i j (4)

τk ji= −τki j

It is also assumed that the virtual external power δP ext

can be written as

δP ext =
∫

biδu̇i +Φ jiδω̇i jdΩ+
∫

tiδu̇i +Tjiδω̇i jdΓ (5)

Body force and body couple are denoted by bi and Φ ji,
respectively. Surface traction and surface moment are de-
noted by ti and Tji, respectively. The first terms in each
integration on the right hand sides of Eq. (1), Eq. (3), and
Eq. (5) are the same as those of conventional continua.
Additional terms are introduced by the micropolar con-
tinuum model.

Define boundaries Γu, Γt , Γω, and ΓT as the boundary
of prescribed velocity, traction, micro-spin, and surface
moment, respectively, such that

Γu ∪Γt = Γ , Γu ∩Γt = 0
Γω ∪ΓT = Γ , Γω ∩ΓT = 0

(6)

The essential boundary conditions can be written as

u̇i = u̇0
i on Γu

ω̇i j = ω̇0
i j on Γω (7)

where u̇0
i and ω̇0

i j are the prescribed velocity and micro-
spin on the boundaries, respectively. Assume that the
condition for the trial functions u̇i, and ω̇i j are as follows:

u̇i (X, t) ∈ U
U =

{
u̇i (X, t)| u̇i ∈ C0 (X) , u̇i (X, t) = u̇0

i (t) on Γu
}

ω̇i j (X, t) ∈ V
V =

{
ω̇i j (X, t)

∣∣ ω̇i j ∈C0 (X) , ω̇i j (X, t) = ω̇0
i j(t) on Γω

}
(8)

Similarly, assume the condition for the test functions δu̇i

and δω̇i j as follows:

δu̇i (X) ∈ U0

U0=
{

δu̇i (X)| u̇i ∈ C0 (X) ,δu̇i = 0 on Γu
}

δω̇i j (X, t) ∈ V0

V0=
{

ω̇i j (X, t)
∣∣ ω̇i j ∈C0 (X) ,δω̇i j = 0 on Γω}

(9)

The principle of virtual power states that

0 = δP kin (t)+δP int (t)−δP ext (t)
∀δu̇i (X) ,δω̇i j (X, t)

(10)

Integrating Eq. (10) by parts and applying the divergence
theorem, one can obtain the strong form for the govern-
ing equations and the natural boundary conditions as fol-
lows:

ρüi − (σS
ji −σA

ji), j = bi in Ω
ρIω̈i j +(σA

ji −τk ji,k) = Φ ji in Ω (11)

(σS
ji −σA

ji)n j = ti on Γt

τk jink = Tji on ΓT (12)

where ni is the unit normal vector on the boundaries. The
arguments about the material coordinate X and time t are
omitted for simplicity.

2.2 Constitutive relation with the generalized J2-flow
theory

Similar to the generalized J2-flow theory of de Borst
(1993), the elastic constitutive law is assumed to have
the following forms:(

σS
ji

)∇
= CjiklD

e
kl (13)(

σA
ji

)∇
= µ(ω̇e

i j−W e
i j)(

τk ji/�
)∇ = µcω̇e

i j,k �

where Cjikl , µ, and µc are elastic material parameters and
� is a length scale to match the dimensions. Superposed
∇ represents the Jaumann rate of the stress measures
(Mühlhaus and Vardoulakis, 1987). Superscripts e on the
strain-rate measures indicate their elastic contributions.

The plastic constitutive law is also assumed to have the
form of the associated flow theory with the yield function
f expressed as follows:

f =
√

3J2 −σ (γ) (14)

where σ is the yield stress and is a function of a plastic
strain invariant γ. The generalized shear stress invariant
J2 and the generalized plastic shear strain-rate invariant γ̇
are defined as follows:

J2 = (a1 +a2) si jsi j +(a1−a2)σA
i jσ

A
i j +2a3τk jiτk ji/�2

γ̇2 = (b1 +b2)ep
i je

p
i j +(b1−b2)

(
ω̇p

i j −W p
i j

)(
ω̇p

i j −W p
i j

)
+

b3

2
ω̇p

i j,kω̇p
i j,k�

2 (15)
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The deviatoric part of the macro-stress σS
i j is denoted by

si j. Superscripts p on the strain-rate measures indicate
their plastic contributions. The deviatoric part of Dp

i j is
denoted by ep

i j . The coefficients a1, a2, a3, b1, b2, and
b3 are determined by the requirements explained below.

The first requirement is that these invariants should be
consistent with the conventional J2 -flow theory. There-
fore it is required that

a1 +a2 =
1
2

(16)

b1 +b2 =
2
3

The second requirement is that, in the J2-flow theory, the
plastic flow parameter λ̇ should be equal to the invariant
of the plastic strain-rate (de Borst, 1993). Thus,

γ̇ = λ̇ (17)

This results in

(a1 −a2) (3(a1 −a2)(b1 −b2)−1) = 0
a3 (3a3b3 −1) = 0

(18)

Note that if a1 = a2 and a3 = 0, this model reduces to
the standard J2-flow theory. Therefore, it is assumed that
a1 �= a2 and a3 �= 0 from now on. In this case, Eq. (18)
can be written as follows:

3(a1 −a2) (b1 −b2) = 1
3a3b3 = 1

(19)

3 Multiscale approach for the expression of the vir-
tual internal power

In order to apply the previously reviewed micropolar
continuum to practical problems, the parameters �, Cjikl ,
µ, µc, a1, a2, a3, b1, b2, and b3 in the constitutive rela-
tions need to be determined. Additional requirements are
proposed by de Borst (1993) which are derived from the
point of view of fast convergence in the return mapping
procedure. In this paper, a multiscale approach is em-
ployed to determine some of these unknown parameters.

Define a local coordinate system zi whose origin is lo-
cated at the current position of a given macro-scale ma-
terial point x = x

(
X, t
)
. Define a sub-domain of char-

acteristic length �z surrounding x. This domain is called
the domain of influence (DOI) and is denoted by Ωz. A

typical square DOI is shown in Fig. 1. Define a weight
function wz whose support is the same as Ωz such that

wz �= 0 , zi ∈ Ωz

wz = 0 , zi /∈ Ωz
(20)

and it is normalized as∫
Ωz

wzdΩ = 1 (21)

Assuming that the geometrical center of Ωz is located at
x, one can obtain∫

Ωz

wzzidΩ = 0 (22)

For later use, define the second moment of the weight
function as

Bi j=
∫

Ωz

wzziz jdΩ (23)

For example, if the weight function is a hat function:

wz = 1
Vz

, zi ∈ Ωz

wz = 0 , zi /∈ Ωz
(24)

where Vz is the volume of the DOI, the second moment is

Bi j =

{
�2

z
12δi j for a 2D square DOI
�2

z
16δi j for a 2D circular DOI

}
(25)

where δi j denotes the Kronecker delta function. For later
use, define a scalar parameter B as

B =
{ 1

12 for a 2D square DOI
1
16 for a 2D circular DOI

}
(26)

The size of the DOI �z represents the extent of influence
of microstructural features, and the weight function wz

represents the intensity of the influence. Therefore, �z

and wz have to be determined by theoretical, experimen-
tal, or numerical approaches which can directly deal with
the discrete microstructure. In most of the example prob-
lems of granular medium shown later, the characteristic
length of densely packed soil introduced in Gaspar and
Koenders (2001) is selected. That is �z = 10R where R is
the radius of the grains.

Because of the local support of the weight function, the
internal power density at x is only affected by the points
inside the DOI. As it is shown later, the size of the DOI
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plays an important role in determining the deformation
which occurs after failure. It should be changed accord-
ing to the deformation or other state variables. Also,
there should be higher order variation of velocity u̇i and
the micro-spin ω̇i j inside the DOI.

However, this paper concentrates on the simplest case in
order to make the analyses clear. The size of the DOI and
the weight function are kept constant over the entire do-
main and over the entire analysis period. Also, when the
virtual internal power is evaluated, only the linear varia-
tion inside the DOI according to the relative position zi is
considered for the velocity and the micro-spin. By the as-
sumptions above, the macro-velocity gradient Li j is kept
constant in the DOI and it is only a function of X, while
the micro-spin ω̇i j is a function of both X and z. Let

DOI

z

1x

2x x
z

z

L

1z

2z
Macro Scale

DOI

Figure 1 : A square domain of influence.

ėint
(
X,z

)
denote the microscopic internal power density

at a point in the DOI. Expanding it in terms of ω̇i j
(
X,z

)
around ω̇i j

(
X,z

)
= Wi j

(
X
)

and truncating at the second
order, one has

ėint (X,z
)

= ėint (X,z
)∣∣

ω̇i j=Wi j

+β ji
(
X,z

)(
ω̇i j
(
X,z

)−Wi j
(
X
))

(27)

where β ji
(
X,z

)
is defined as the gradient of the micro-

scopic internal power density in terms of the micro-spin:

β ji
(
X,z

)≡ ∂ėint
(
X,z

)
∂ω̇i j

∣∣∣∣∣
ω̇i j=Wi j

(28)

Note that β ji
(
X,z

)
has a unit of stress, and it generates

internal power with the relative spin between the micro-
spin and the macro-spin.

Assume a situation where deformation in the DOI is ho-
mogeneous. In this situation, the micro-spin is equal
to the macro-spin and constant everywhere in the DOI.
The microscopic internal power density of this state can
be expressed by the macro-stress σS

ji

(
X
)

and the macro

rate-of-deformation tensor Di j
(
X
)

as

ėint (X,z
)∣∣

ω̇i j=Wi j
= σS

ji

(
X
)

Di j
(
X
)
, ∀z ∈ Ωz (29)

Using Eq. (29), Eq. (27) becomes

ėint (X,z
)

=σS
ji

(
X
)

Di j
(
X
)

+β ji
(
X,z

)(
ω̇i j
(
X,z

)−Wi j
(
X
))

(30)

The proposed method expresses the macro internal power
density at a given macro-scale material point X by the
weighted average of the microscopic internal power den-
sity over the DOI as

˜̇eint(X) =
∫

Ωz

wz (z) ėint (X,z
)

dΩ (31)

This operation puts the length-scale �z into the expres-
sion of the macroscopic internal power, thus non-local
characteristics are included in the governing equations.
Since the micro-spin is assumed to be linearly dependent
on the relative position zi, one has

˜̇eint (X)=σS
ji

(
X
)

Di j
(
X
)
+σA

ji

(
X
)
(ω̇i j

(
X
)−Wi j

(
X
)
)

+τk ji
(
X
)

ω̇i j,k
(
X
)

(32)

where σA
ji and τk ji are defined as the zeroth and the first

moment of β ji
(
X,z

)
as follows:

σA
ji

(
X
)≡ ∫

Ωz

wz(z)β ji
(
X,z

)
dΩ (33a)

τk ji
(
X
)≡ ∫

Ωz

wz(z)zkβ ji
(
X,z

)
dΩ (33b)

The total internal power for the entire domain is obtained
by integrating Eq. (32) over the entire domain. It gives
the same expression as Eq. (3). A major difference from
the past work is that this formulation derives the micro-
stress and the couple stress from the moments of β ji.

4 Constitutive relations for a granular material

4.1 Elastic constitutive relation

When considering the evolution of β ji according to the
deformation, it is natural to relate β ji to the elastic portion
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of the difference between the micro-spin and the macro-
spin so that it acts to decrease the relative spin. A simple
elastic response is assumed such that

(
β ji
(
X,z

))∇ = µc

(
ω̇e

i j

(
X,z

)−W e
i j

(
X
))

(34)

where µc is the rotational elastic modulus which is as-
sumed to be constant in the DOI. By the definitions in
Eq. (33) and by the assumption that ω̇i j is linearly dis-
tributed in the DOI, one can obtain

(
σA

ji

(
X
))∇

= µc
(
ω̇e

i j

(
X
)−W e

i j

(
X
))

(35a)(
τk ji
(
X
))∇ = µcBknω̇e

i j,n

(
X
)

(35b)

For the symmetric stress σS
ji, the conventional elastic

constitutive relation is applied. In the two-dimensional
plane strain condition, because of the symmetric and
skew-symmetric properties of the stress measures and the
strain-rate measures, one can define a generalized stress
vector and a generalized strain-rate vector with the size
of DOI �z as

σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σS
xx

σS
yy

σS
zz

σS
xy

σA
xy

τxxy/�z

τyxy/�z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, ε̇ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dxx

Dyy

0
2Dxy

2(ω̇yx −Wyx)
2�zω̇yx,x

2�zω̇yx,y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(36)

With this expression, the elastic response of this material
can be written as follows:

σσσ∇ = C ε̇εεe (37)

where

C=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 C2 C2 0 0 0 0
C2 C1 C2 0 0 0 0
C2 C2 C1 0 0 0 0
0 0 0 µ 0 0 0
0 0 0 0 µc 0 0
0 0 0 0 0 Bµc 0
0 0 0 0 0 0 Bµc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

C1 =
2µ(1−ν)

1−2ν
, C2 =

2µν
1−2ν

(39)

and Poisson’s ratio and the elastic shear modulus are de-
noted by ν and µ, respectively.

4.2 Plastic constitutive relation

The plastic constitutive relation is developed for a simple
granular material model in a similar manner as the cou-
ple stress approach of Mühlhaus and Vardoulakis (1987).
The generalized strain-rate invariant γ̇ is expressed by the
average of the inter-particle slip. The distinction of the
proposed method is that γ̇ is derived from the spatial av-
eraging over the same DOI as that for the virtual internal
power.

Suppose the material microstructure is represented by an
aggregation of rigid circular particles of the same radius
R in the plane strain condition. Let x, zA and zB denote
the current position of the center of the DOI and the cen-
ter of two particles, respectively (Fig. 2). The velocity of
the center of these particles are denoted by u̇i

(
zA
)

and
u̇i
(
zB
)
. Assuming that the plastic contribution of the

macro-velocity gradient Lp
i j is constant in the DOI, one

can write

u̇i
(
zA
)

= u̇i (x)+Lp
i j (x) zA

j

u̇i
(
zB
)

= u̇i (x)+Lp
i j (x) zB

j
(40)

Let u̇A
i (zc) and u̇B

i (zc) denote the velocity at the contact

A( )u z

B( )u z

p A( )ij z

p B( )ij zParticle A

Particle B

x

n

2R

1z

2z

Az
Bz

Figure 2 : Microstructure of a granular material

point on each particle, respectively, where zc is the po-
sition of the contact point. Since the particles are rigid,
these velocities can be written with the micro-spin ω̇p

i j as
follows:

u̇A
i (zc) = u̇i

(
zA
)
+Rω̇p

i j

(
zA
)

n j

u̇B
i (zc) = u̇i

(
zB
)−Rω̇p

i j

(
zB
)

n j
(41)
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where n j denotes the unit vector normal to the contact
surface. The relative velocity at the contact point ∆u̇i is

∆u̇i (zc) = u̇B
i (zc)− u̇A

i (zc)

= 2R

(
Lp

i j (x)− ω̇p
i j

(
zA
)
+ ω̇p

i j

(
zB
)

2

)
n j (42)

Since the micro-spin field is assumed to be linearly dis-
tributed in a DOI and zc= zA+zB

2 , one can write

∆u̇i (zc) = 2R
(

Lp
i j (x)− ω̇p

i j (z
c)
)

n j (43)

Let the relative velocity normal to and tangential to the
contact surface be denoted by ∆u̇n

i (zc) and ∆u̇t
i (zc) , re-

spectively. They can be written as follows:

∆u̇n
i (zc) = ∆u̇l (zc)nlni

∆u̇t
i (zc) = ∆u̇i (zc)−∆u̇n

i (zc) (44)

= 2Rn j

(
Lp

i j (x)− ω̇p
i j (z

c)−Lp
l j (zc)nlni

)
Define a quantity called slip as the relative velocity tan-
gential to the contact surface normalized by 2πR. Let
s (zc,n) denote the square of the slip at a contact point
located at zc and whose direction of contact is n j such
that

s (zc,n) = ∆u̇t
i (z

c)∆u̇t
i (zc) (2πR)−2

= 4R2n jns (2πR)−2 Qi j (x,zc)Qis (x,zc)

−4R2n jns (2πR)−2 Lp
l j (x)Lp

ts (x)nlnt (45)

where

Qi j (x,zc) =
(

Lp
i j (x)− ω̇p

i j (z
c)
)

(46)

In the proposed method, γ̇ is defined as the square root of
the double average of s (zc,n) in terms of the direction of
n j and over the volume of the DOI as

γ̇2 ≡ A∑
c

wc

(∫ 2π

0
wθ (θ) s (zc,n)dθ

)
(47)

where wθ (θ) is the weight function for the contact di-
rection θ, and wc is the weight for each contact pair. A
constant A is a factor determined later. The summation
about c is done over all the contact points in the DOI.
When there are many particles in a DOI, one can approx-
imate the summation by an integration as

γ̇2 = A
∫

Ωz

wz (z)
(∫ 2π

0
wθ (θ)s (z,n)dθ

)
dΩ (48)

In the two-dimensional plane strain condition, ni can be
written as

n1 = cos (θ)
n2 = sin(θ)

(49)

To make the analysis simple, it is assumed that the direc-
tion of contact is distributed completely randomly. Thus
a constant weight function wθ = 1

2π is employed. Using
the identities:∫ 2π

0

1
2π

nin jdθ =
1
2

δi j (50)
∫ 2π

0

1
2π

nin jnknldθ =
1
8

(
δi jδkl +δikδ jl +δilδ jk

)
(51)

Eq. (48) becomes

γ̇2 =
A
π2

∫
Ωz

1
2

Qi j (x,zc)Qi j (x,zc)wz (z)dΩ

− A
π2

∫
Ωz

1
8

(
Lp

i j (x)Lp
i j (x)+Lp

i j (x)Lp
ji (x)

)
wz (z)dΩ

− A
π2

∫
Ωz

1
8

Lp
ii (x)Lp

j j (x)wz (z)dΩ (52)

Decompose the macro-velocity gradient into the volu-
metric, the deviatoric, and the skew-symmetric parts as

Lp
i j (x) = ėp

i j (x)+Dpv (x)δi j +W p
i j (x) (53)

where ėp
i j (x) and Dpv (x) denote the deviatoric part and

volumetric part of the plastic rate-of-deformation at the
macro-scale. Substituting Eq. (53) into Eq. (52) yields

γ̇2 =
A

4π2

∫
Ωz

ėp
i j (x) ėp

i j (x)wz (z)dΩ

+
A

4π2

∫
Ωz

2∆ω̇p
i j (x,z)∆ω̇p

i j (x,z)wz (z)dΩ (54)

where

∆ω̇p
i j (x,z) =

(
ω̇p

i j (z)−W p
i j (x)

)
(55)

Because ω̇p
i j (z) is linearly dependent on zi as

ω̇p
i j (z) = ω̇p

i j (x)+ ω̇p
i j,k (x) zk (56)

and a constant weight function 1
Vz

is assumed for wz (z),
substituting Eq. (56) into Eq. (54) yields

γ̇2 =
A

4π2Vz

∫
Ωz

ėp
i j (x) ėp

i j (x)+2∆ω̇p
i j (x)∆ω̇p

i j (x)dΩ

+
A

4π2Vz

∫
Ωz

(
2ω̇i j,k (x) ω̇i j,l (x) zkzl

)
dΩ (57)
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Using Eq. (22) and the definition of Bi j in Eq. (23), one
can obtain

γ̇2 =
A

4π2 ėp
i j (x) ėp

i j (x)

+
A

4π2

(
2∆ω̇p

i j (x)∆ω̇p
i j (x)+2Blkω̇p

i j,k (x)ω̇p
i j,l (x)

)
(58)

In order to coincide with the shear strain-rate invariant of
the conventional continuum, A is chosen as 8π2

3 . The final
form for the shear strain-rate invariant is

γ̇ =

√
2
3

ėp
i j ė

p
i j +

4
3

∆ω̇p
i j∆ω̇p

i j +
4Blk

3
ω̇p

i j,kω̇p
i j,l (59)

where the argument x is omitted since all the terms are a
function of x only. Since the length scale � is defined as
� = �z in the previous sub-section, comparing Eq. (59) to
Eq. (15) yields

b1 = 1

b2 = −1
3

(60)

b3 =
8B
3

The parameters a1, a2, and a3 are determined by the re-
quirements in Eq. (16) and Eq. (19) as follows:

a1 =
3
8

a2 =
1
8

(61)

a3 =
1

8B

5 Numerical examples

The weak form governing equations Eq. (10) are dis-
cretized by the FEM in the one-dimensional pure shear
condition and in the two-dimensional plane strain condi-
tion. The finite element formulation for the micro polar
material of de Borst (1993) is employed. The discretized
momentum equation is solved with the proposed con-
stitutive relation by the central-difference explicit time-
integration method (e.g. section 6.2 in (Belytschko, Liu,
and Moran, 2000) ) and the semi-implicit stress update
method of Moran, Ortiz, and Shih (1990).

For two-dimensional examples, the bridging scale
method for the micropolar continuum (Kadowaki and

Liu, 2004) is employed to enhance the efficiency. This
method first discretizes the entire domain by a finite ele-
ment mesh which is coarse enough to complete the com-
putation at an affordable cost. Additionally, another fine
element mesh, which is fine enough to capture localized
deformation in the shear bands, is utilized. This fine
mesh is defined only around the localized region. Fi-
nite element computations are operated with these two
meshes simultaneously interacting each other. Since the
improvement of computational efficiency is out of the
scope of this paper, explanation of the detailed formu-
lation for this method is avoided.

5.1 One-dimensional shear localization problem

A one-dimensional shear localization problem is solved
with the micropolar continuum with the proposed ma-
terial parameters. A horizontal bar of length 0.2m is
sheared by the prescribed impact velocity in the y direc-
tion u0y = ±0.9m/s at both ends. The problem state-
ment is shown in Fig. 3. In this calculation, displacement
in the x direction is constrained to zero over the entire
domain. At both ends of the bar, the boundary condition
ωyx = 0 is applied. On the top and the bottom boundary,
periodic boundary conditions are applied.

Material parameters used in this calculation are: Young’s
modulus E = 60.0MPa, ν = 0.45, µc = 4.00MPa, and
ρ = 2.00× 103 kg/m3. The radius of a grain is set as
R = 0.4× 10−3 m. The length scale of the DOI is set
as �z = 10R . The inertia of micro-rotation and the initial
yield stress are set as ρI = ρ�2

z /300 and σ0 = 600kPa, re-
spectively. Note that to avoid the restriction of time step
size due to the inertia of micro-spin, the rotational inertia
is set larger than the theoretical value written in the ap-
pendix. The yield stress decreases with the generalized
plastic shear strain invariant γ.

In the x direction the domain is uniformly discretized by
various numbers of elements, whereas there is only one
element in the y direction. For this calculation, the ma-
terial parameters derived by a square DOI are employed.
Those are: a1 = 3

8 , a2 = 1
8 , a3 = 3

2 , b1 = 1, b2 = −1
3 , and

b3 = 2
9 . Fig. 4 shows the distribution of the generalized

plastic shear strain invariant γ which is obtained at 0.002
seconds. As the mesh is refined, the width of the shear
band and the strain distribution inside it converge to one
solution. The thickness of the shear band is around ten
times the diameter of the particle.
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Figure 3 : One-dimensional shear localization problem.
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Figure 4 : Convergence test with a one-dimensional
shear localization problem.

5.2 Comparison to the existing material models

The example problem presented in the previous sub-
section is analyzed with existing material models. In Tab.
1, plastic parameters proposed in this study and those
proposed by de Borst (1993) and Vardoulakis (1989) are
shown. Other material parameters are the same as the
previous example. Although the length scale which is
used in the invariants J2 and γ̇ is equal to R in the model
of Vardoulakis (1989), it is replaced by 10R in this ex-
ample in order to compare the effect of the plastic pa-
rameters. The effect of the length scale is examined in
section 5.4. In Fig. 5, the generalized plastic shear strain
invariant γ inside the shear-band is plotted for these three
sets of material parameters. The proposed material pa-

rameters yield almost the same shear-band width, but it
has a sharper strain profile inside the shear-band.

Table 1 : Comparison of the material parameters.
a1 a2 a3 b1 b2 b3

Proposed 3/8 1/8 3/2 1 −1/3 2/9
Vardoulakis 1989 3/8 1/8 1/4 3 −1 4
De Borst 1993 1/4 1/4 1/2 1/3 1/3 2/3
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Figure 5 : Comparison to the existing models.

5.3 Two-dimensional shear localization problem

Two-dimensional compression examples are computed
in the plane strain condition with the conventional con-
tinuum model and the micropolar continuum model with
the proposed material parameters. The length of the
bar is 0.4m and the width is 0.04 m (Fig. 6). Im-
pact compressive velocity conditions are applied at both
ends of the bar. Material parameters are the same as
the one-dimensional example in section 5.1. Because
very fine discretization is required to capture the shear-
localization, the entire domain is first discretized by
8 × 80 coarse FEM elements. In addition, a fine FEM
mesh is attached on the central portion and these two
sets of FEM computations are coupled by the bridging
scale method (Wagner and Liu, 2003; Wagner, Karpov,
and Liu, 2004; Karpov, Wagner, and Liu, 2005; Kad-
owaki and Liu, 2004). Both the coarse-scale FEM and
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fine-scale FEM run simultaneously interacting with each
other. Three fine FEM meshes with various numbers of
elements are prepared and they are named mesh A, B,
and C. Representative element sizes of mesh A, B, and
C are 2.0×10−3 m, 1.0×10−3 m, and 0.5×10−3 m, re-
spectively. Fig. 7 shows the coarse-scale mesh and the
fine-scale mesh, A. Fig. 8 to Fig. 13 show the distribu-
tion of the generalized plastic shear strain invariant after
0.003 seconds in the fine-scale meshes. The lines of the
elemet boundary are ommited for the mesh C (Fig. 10
and Fig. 13), since the elements are too small to be shown
in the figures. The micropolar continuum with the pro-
posed material parameters yields almost the same result
with mesh B and C, whereas the deformation is signifi-
cantly affected by the size of the element with the con-
ventional continuum model.

0u 0u

0.04m

0.4m

0 1.0

0.90

time (ms)

0u
Prescribed velocity (m/s)

0/

0 0.10

1.0

0.4

Strain softening curve

Figure 6 : Two-dimensional shear localization problem.

Figure 7 : The coarse-scale mesh and the fine-scale mesh
A.

Figure 8 : Conventional continuum with mesh A.

Figure 9 : Conventional continuum with mesh B.

Figure 10 : Conventional continuum with mesh C.
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Figure 11 : Micropolar continuum with the proposed
material parameters with mesh A.

Figure 12 : Micropolar continuum with the proposed
material parameters with mesh B.

Figure 13 : Micropolar continuum with the proposed
material parameters with mesh C.

5.4 Effect of the size of DOI

The effect of the size of the DOI is examined in this sub-
section. The simulated problems are the same as that of
the micropolar continuum model with the proposed ma-
terial parameters with mesh C in section 5.3. However,
three different sizes of DOI are compared. Those are
�z = 2R, 5R, and 20R. Fig. 14, Fig. 15, and Fig. 16 show
the generalized plastic shear strain invariant after the fail-
ure. Comparing to Fig. 13 (�z = 10R), it is clear that the
size of the DOI affects the results significantly. Smaller
DOI results in narrower and sharper shear bands.

Figure 14 : Generalized plastic shear strain invariant pro-
file for �z = 2R

Figure 15 : Generalized plastic shear strain invariant pro-
file for �z = 5R

6 Conclusions

A multiscale approach to derive material parameters for
the micropolar continuum model is proposed. The pa-
rameters are determined considering the microstructure
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Figure 16 : Generalized plastic shear strain invariant pro-
file for �z = 20R

through averaging operations over the DOI. The length
scale in the governing equation and the constitutive rela-
tions is defined as the size of the DOI, i.e. the extent of
the interaction within the microstructure. This concept
can at least limit the arbitrariness of this parameter. The
elastic modulus for the couple stress is obtained by av-
eraging the internal power over the DOI. Plastic param-
eters are determined through averaging inter-particle slip
among the microstructure. The proposed model yields
similar results as the existing couple stress models and
successfully regularizes the solution for failure phenom-
ena of a strain-softening rate-independent material.

Limitations of this study are listed below and further
studies are expected for them.

• Evolution law for the DOI should be incorporated.

• The effects of higher order variation of velocity and
micro-spin inside the DOI should be examined.

• There is still arbitrariness for the elastic constant µc

and the length scale �z. This study can limit the
order of �z to the same order of the characteristic
length of the microstructure, but can not exactly de-
termine it.

• Volumetric plastic deformation should be included
in the model for both macro-material model and
micro-material model.
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Appendix A: The virtual kinetic power

In this paper, the virtual kinetic power is derived in a sim-
ilar manner as Germain (1973). Consider a rigid parti-
cle translating with the velocity u̇i and rotating with the
micro-spin ω̇i j . Let yi denote the position of a micro-scale
material point on the particle relative to the mass center
of the particle. The total velocity of this material point u̇′i
is expressed by

u̇′i = u̇i + ω̇i jy j (62)

Let ρ′ denote the microscopic mass density. The mass of
a particle m is

m =
∫

Ωy

ρ′dΩ (63)

where Ωy is the domain of the particle. Note that m is a
constant with respect to time. For later use, define Ii j as

Ii j =
1
m

∫
Ωy

ρ′yiy jdΩ (64)

The virtual kinetic power of this particle δpkin is defined
as

δpkin =
∫

Ωy

ρ′ü′iδu̇′idΩ

=
∫

Ωy

ρ′ (üi + ω̈i jy j + ω̇ipω̇p jy j) (δu̇i +δω̇ikyk)dΩ

(65)

Since the origin of the local coordinate yi is located at the
mass center of the particle∫

Ωy

ρ′yidΩ = 0 (66)
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Also, because of the skew-symmetric property of ω̇i j

ω̇ipω̇p jδω̇ik = 0 (67)

Using these properties, one can obtain

δpkin = müiδu̇i +mIjkω̈i jδω̇ik (68)

In order to derive the continuum expression of the virtual
kinetic power, consider an aggregation of identical parti-
cles and a point among them. Let a small volume around
this point be denoted by ∆V . The macro density ρ of this
point is defined as

ρ =

c
∑m
∆V

where c is the number of particles included in ∆V . Note
that ∆V should be smaller than the DOI so that one can
neglect the variation of velocity and micro-spin inside it.
Similarly, the continuum expression of the virtual kinetic
power δėkin is defined as

δėkin =

c
∑δpkin

c

∆V
= ρüiδu̇i +ρI jkω̈i jδω̇ik (69)

where δpkin
c is the virtual kinetic power of each particle

included in ∆V . The macro virtual kinetic power can be
obtained by integrating δėkin over the entire domain as

δP kin =
∫

Ω
ρüiδu̇i +ρI jkω̈i jδω̇ikdΩ (70)

When the particle is assumed to be a circular disk in the
plane-strain condition, one can write

Ii j = Iδi j (71)

Therefore, one can obtain

δP kin =
∫

Ω
ρüiδu̇i +ρIω̈i jδω̇i jdΩ (72)


