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Eliminating Slivers in Three-Dimensional Finite Element Models

R.H. Moore1 and S. Saigal2

Abstract: An efficient method for treating slivers and
other poorly shaped elements in finite element solutions
is presented. A major difficulty for finite element analy-
ses arises from the creation of slivers in automated mesh
generation. Sliver shaped elements can degrade the accu-
racy of a solution and are difficult to remove from a mesh.
The proposed method treats slivers by first merging them
with neighboring elements to form polyhedra and next
subdividing the polyhedra into well-shaped tetrahedral
elements. The method does not require the cumber-
some and expensive operations of addition or rearrange-
ment of nodes. The validity and accuracy of the present
method are demonstrated through the evaluation of a per-
formance metric for a set of example problems.

keyword: slivers, finite elements, Delaunay tessella-
tions, element quality.

1 Introduction

It is commonly known that mesh quality influences the
accuracy of finite element solutions. There is presently
no proven method for generating a quality mesh for com-
plex three dimensional (3D) domains. For tetrahedral
mesh generation, Delaunay tessellation (Delaunay, 1934)
is a common first step for domain partitioning. Refine-
ment steps (Shewchuk, 1998) follow to improve the ele-
ment shapes and to remove poorly shaped elements. One
challenge in mesh generation has been the removal of
slivers, which are elements whose volumes are nearly
zero, but whose edge lengths are nearly equal to each
other. Slivers are especially common in tessellations that
start on rectangular grids. These sliver elements raise
the condition number of the assembled matrix, thereby
reducing the accuracy of direct solvers and increasing
the solution times for iterative solvers. Quality three-
dimensional mesh generation remains an open problem,
although several breakthroughs have recently occurred
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(Shewchuk, (1998); Li (2000); Edelsbrunner, Li, Miller,
Stathopoulos, Talmor, Teng, Ungor, and Walkington,
(2000); Edelsbrunner and Guoy (2002); Cheng, Dey,
Edelsbrunner, Facello, and Teng (2000); Cheng and Poon
(2003); Cheng, Dey, Ramos, and Ray (2004)). Alter-
nate approaches include bypassing poor quality meshes
through the use of meshless methods, such as the meth-
ods presented by Han and Atluri (2004) and Li, Shen,
Han, and Atluri (2003). In the absence of body forces,
these meshless methods can bypass volume integrations
within a domain and instead use boundary integrations.
Thus, many of the numerical challenged caused by sliv-
ers are avoided.

One approach to treating slivers is to remove the slivers
from the mesh and has been addressed in the works by Li
(2000); Edelsbrunner, Li, Miller, Stathopoulos, Talmor,
Teng, Ungor, and Walkington, (2000); Edelsbrunner and
Guoy (2002); and Cheng, Dey, Edelsbrunner, Facello,
and Teng (2000). However, sliver removal methods are
computationally expensive and involve the addition and
rearrangement of nodes. An alternative approach to treat-
ing slivers is due to Calvo, Idelsohn, and O˜nate (2003)
and Idelsohn, O˜nate, Calvo, and Del Pin (2003) and
uses extended Delaunay tessellation, where elements that
share nearly the same circumsphere are joined into one
new polyhedron “element.” Since finite element shape
functions do not exist for arbitrary polyhedrons, the Nat-
ural Element Method (NEM) shape functions from Suku-
mar, Moran, Semenov, and Belikov (2001) were used to
integrate the stiffness matrices for these polyhedron el-
ements. This approach does not involve the addition or
rearrangement of nodes, yet it effectively treats slivers
in a 3D mesh. Its use of natural element method shape
functions is, however, computationally expensive. Ad-
ditionally, the NEM do not yet rest upon the same solid
foundations as the finite element methods in terms of the-
oretical proofs for uniqueness, error bounds, and conver-
gence rates. A method that allows the use of standard
finite element shape functions would be more desirable.
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The present paper demonstrates the use of standard fi-
nite elements in conjunction with extended Delaunay
tessellation, where nearby elements may be joined to-
gether into polyhedra. A modified joining approach to
merge slivers into nearby polyhedra is proposed. The
advantages over the NEM based approach include faster
computing times, possibly higher accuracy, less complex
coding, and the retention of most of the theoretical de-
velopments and proofs of the finite element method. Un-
like the sliver removal approach of Li (2000); Edelsbrun-
ner, Li, Miller, Stathopoulos, Talmor, Teng, Ungor, and
Walkington, (2000); Edelsbrunner and Guoy (2002); and
Cheng, Dey, Edelsbrunner, Facello, and Teng (2000), the
proposed approach does not require the addition or rear-
rangement of nodes. Thus, the technique presented here
can be directly employed within existing FEM codes.

2 Current Approach

In this section, a brief overview of the approach is first
presented followed by more detailed descriptions.

A Delaunay tessellation of the three-dimensional domain
from any source, for example QHull (2004), is first ob-
tained. Although it is not necessary for all cases, sur-
face slivers are first removed from the initial mesh. Us-
ing a modification of the method of Calvo, Idelsohn, and
O˜nate (2003), all tetrahedra that have nearly the same
circumsphere are joined together into polyhedra. Any
sliver that has all four of its nodes contained in an ad-
jacent polyhedron is merged into this adjacent polyhe-
dron. A temporary node is next added to the centroids of
the non-tetrahedral polyhedra generated by this process.
Each polyhedron is then subdivided into a collection of
local tetrahedra by connecting the temporary centroidal
node to all of the external triangular facets of the poly-
hedron. The polyhedron stiffness matrix is generated by
computing and assembling the stiffness matrices of the
local tetrahedra that share the temporary centroidal node.
The temporary centroidal node then is eliminated using
static condensation. The resulting stiffness matrix is as-
sembled into the global stiffness matrix. The standard
FEM approach is used from there on, although it is pos-
sible to return to the polyhedron approach for the evalua-
tion of the displacements and strains within a polyhedron
if desired. These steps are discussed in more details in
the following sections.

2.1 Detecting slivers

An important and first step in handling poorly shaped el-
ements is detecting them. Shewchuk (2002) recently pro-
posed a scale-invariant quality metric that applies best for
elements used to solve the Poisson equation and is given
as

Q =

V

(
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/
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i j +6 |V |max i ∑ j �=i A j li j

)
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4
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where Ai and li j are the face areas and edge lengths, re-
spectively, of the tetrahedron; and V is the volume. This
quality metric, Q, is based on the error between the re-
spective gradients of the true and interpolated solutions
‖∇uexact −∇uinterpolated‖∞. It has a high magnitude for
high quality elements, is zero for poor elements, and is
negative for incorrectly numbered elements or elements
with negative volume. For reference, consider a regular
tetrahedron whose faces are all equilateral triangles. The
quality metric, Q, for the regular tetrahedron is 0.104103.
Also, a flat square tetrahedron sliver of unit edge length
with one corner raised by 0.021 units has a quality met-
ric, Q, equal to 0.002. The volume of this element for
this case is also nearly 0.002. Such a sliver is of an un-
desirable shape for use in finite element analyses. For
convenience, we will consider elements with a quality
metric, Q, less than 0.002 to be considered as poor qual-
ity elements. This value of quality metric, Q, will be used
as a basis to flag poorly shaped elements and to compare
alternative shapes.

2.2 Element Joining

The extended Delaunay tessellation by Calvo, Idelsohn,
and O˜nate (2003) and Idelsohn, O˜nate, Calvo, and Del
Pin (2003) partitions a domain into polyhedron regions
by first partitioning the domain into a standard Delaunay
tessellation of tetrahedra. In the next step, the tetrahe-
dra are joined together when they share nearly the same
circumsphere. Calvo, Idelsohn, and O˜nate (2003) join
tetrahedra when the centers of the neighboring tetrahedra
are close to each other and within a small fraction of their
radii as

‖c1 −c2‖ < δrrms (2)
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where c1 and c2 are the circumcenters of two adjacent
tetrahedra; rrms is the root mean square radius; and δ is a
small tolerance factor, which may be set as 0.1 or 0.01.

Consider a cube, as shown in Fig. 1, where each of the
eight nodes falls on the surface of a single sphere. One
possible partition of this cube comprises seven tetrahe-
dra, as shown in the exploded view in Fig. 2. Since
all nodes of this cube fall on the surface of the same
sphere, the circumsphere for each of the 7 tetrahedra is
one and the same. If each of the corner nodes of the cube
is slightly perturbed, it may result in 7 different circum-
spheres, each corresponding to one of the seven tetrahe-
dra. These circumspheres will, however, lie very close
to each other and satisfy the criterion shown in Equation
(2). For both these cases of the cube example, the ap-
proach of Calvo, Idelsohn, and O˜nate (2003) results in
joining all 7 tetrahedra together and creating a polyhe-
dron with a cubic shape. Thus, the sliver, such as the
top element shown in Fig. 2, is successfully joined with
other polyhedra in this approach. While this formulation
works for a large class of slivers, it is not effective for
all cases leading to significant numerical instabilities for
these cases.

Figure 1 : A cube with a single circumsphere

Consider for example, the sliver A lying at the top of the
cube B as shown in Fig. 3. A desirable outcome of the
joining criterion would be that the sliver A is merged with
the cube B. However, the circumspheres for sliver A and

Figure 2 : A cube partitioned into seven tetrahedra.
Tetrahedron 7 is a sliver.

Figure 3 : A sliver with a small circumsphere

cube B are significantly different and their circumcenters
are relatively far apart. The circumcenter for sliver A is at
the top of the cube where the equator of its circumsphere
is shown passing through the top four nodes of the cube.
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Figure 4 : Boundary slivers with four different sized circumspheres (a) The sliver shares the circumsphere of the
cube (b) The sliver has a small circumsphere whose circumcenter is co-planar with the sliver. (c) The sliver has a
large circumsphere whose circumcenter is far above the sliver. (d) The sliver on the bottom of a domain has a large
circumsphere whose circumcenter is far below the sliver.

The circumcenter for the cube B, on the other hand, is
at the centroid of the cube. For this case, the locations
of the centers are too far apart and the joining criterion
of Equation (2) will not be satisfied. The sliver A, thus
will not be joined with the cube B. This failure to join
slivers affects slivers embedded within a domain as well
as slivers on the outside boundaries of a domain.

Four common examples of boundary slivers are shown in
Fig. 4. The desired circumsphere for a cube with a top
surface sliver is shown in Fig. 4a. If the sliver shares
the circumsphere of the cube, it will join properly. In
Fig. 4b, the top surface sliver is shown with a circum-
sphere whose circumcenter is on the same plane as the
sliver. This case is the same as the one shown in Fig. 3

and has the same undesirable result that the sliver is not
joined with the cube. For clarity, the cube and its cir-
cumsphere are omitted from Figs. 4b-d. Surface slivers
that are nearly co-planar may also have nearly infinite
circumspheres, as shown in Figs. 4c and 4d, where the
circumcenters are far above and far below the cube cen-
ter, respectively. The circumcenter for the sliver shown
in Fig. 4c is far above the circumcenter of the cube, so
that this sliver will not join with the cube. Similarly, the
sliver shown in Fig. 4d may be located at the bottom
boundary of the domain and its circumcenter may be far
away from the domain, so that this sliver will also not
join. The present study is aimed at addressing these lim-
itations of the existing methodologies available for the
treatment of slivers.
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To address these limitations, a modified joining criterion
has been developed as follows:

1. Flag all slivers or tetrahedra that have a poor quality
metric, for example a quality metric, Q < 0.002.
These elements are termed poor elements or slivers,
although they may have shapes other than a sliver.

2. Join all adjacent tetrahedra using the criterion stated
in equation (2). Two tetrahedra or polyhedra are ad-
jacent if they share at least one surface face. Con-
sider tetrahedra separated by poor elements as adja-
cent tetrahedra.

3. Test each remaining sliver against all polyhedra that
share at least one face with this sliver. If all four
nodes of a sliver are shared with a polyhedron, then
the sliver is merged with the polyhedron. The sliver
A at the top of Fig. 3, for example, shares two
faces with the cube B below it. Additionally, all
four nodes of sliver A are also part of cube B. Sliver
A, therefore, will be merged with cube B when this
test is applied.

The slivers shown in Figs. 3 and 4b-d will all be joined
with their adjacent elements by the test described in step
3 above. This is because all four nodes of each of these
slivers are contained in the adjacent polyhedron, which
is a cube for these examples. Step 3 is effective both
for slivers internal to the domain and for slivers on the
boundary. This modified joining process was able to join
all internal slivers, including the ones that are missed
with the simple center proximity test stated in equation
(2). The joining process is a local process and should
have a computational cost proportional to the number of
elements.

2.3 Element Sub-Partitions

After employing the step of Element Joining, the domain
is partitioned into a set of tetrahedra and polyhedra. The
stiffness matrices generated for the tetrahedra are assem-
bled into the global FEM equations the same way as is
done in standard finite elements. However, the polyhedra
cannot be assembled using standard finite element pro-
cedures, since there are no general shape function defi-
nitions for general polyhedra. To address this limitation,
these polyhedra are subdivided into better shaped tetrahe-
dra for corresponding finite element treatment. To subdi-
vide a polyhedron, we first compute its centroid and then

form a set of tetrahedra by connecting the outside faces
to this centroid as follows.

The centroid of a polyhedron, which is formed by joining
nT number of tetrahedra including poorly shaped slivers,
may be computed using the formula for composite bodies
as

CentroidP =
nT

∑
T=1

VolumeT CentroidT

/
nT

∑
T=1

VolumeT

(3)

where VolumeT and CentroidT are the volume and cen-
troid, respectively, of the tetrahedron T. A new set of sub
partitions is now constructed by connecting each outer
face triangle of the polyhedron to this centroid. The outer
face triangles are quickly found by identifying the faces
of the nT tetrahedra that are not shared by another tetra-
hedra. All matched faces are internal and are ignored in
this process of subdivision. The outside face could be
considered as the base of a tetrahedron, and the centroid
as its tip.

2.4 Local Stiffness Matrix and Force Vector

The polyhedron has a local stiffness matrix and a local
force vector that are assembled the same way as corre-
sponding quantities in standard finite elements. For ex-
ample, let the polyhedron comprise nSubTets number of
tetrahedral sub partitions. Further, let each tetrahedral
sub partition have a stiffness matrix [K]e. The local stiff-
ness matrix for the polyhedron is then given as

[K]Local =
nSubTets

A
e=1

[K]e (4)

where A is the assembly operator. Since the original
mesh did not contain the temporary centroidal node, it
is desirable in many instances to remove it. Let the local
assembled stiffness and force relationship be given as[

Krr Kre

Ker Kee

]{
ur

ue

}
=

{
Fr

Fe

}
(5)

where ue represents the degrees of freedom associated
with the centroidal node, and ur the degrees of freedom
associated with the rest of the nodes. Following the static
condensation procedure (Cook, 1981), the condensed fi-
nite element equations may be written as

[Kc
r ]{ur} = {Fc

r } (6)
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where [Kc
r ] =

[
[Krr]− [Kre] [Kee]

−1 [Ker]
]
; and {Fc

r } =

{Fr}− [Kre] [Kee]
−1 {Fe}. The local stiffness matrix and

force vector of equation (6) are assembled into the global
stiffness matrix and force vector using standard finite el-
ement procedures.

In summary, the approach proposed above modifies a De-
launay tessellation by merging poorly shaped elements
with adjacent elements to generate polyhedra that are
then locally subdivided into better shaped tetrahedra. No
nodes are rearranged in this process. Static condensation
is used so that no new degrees of freedom are added to
the global system of equations.

3 Results

The underlying goal of mesh quality improvement is im-
proved accuracy of the desired analysis. It is shown
through a series of examples considered here that not
only does the proposed method improve the quality of the
element shapes, but more importantly, it also improves
the assembled matrix condition number and reduces the
level of error in subsequent analyses.

3.1 Shape Quality

Element shape quality is an important topic for the mesh-
ing community, where meshes are refined to improve the
quality factors associated with the worst elements in a
given mesh. There are several quality factor definitions
available in the literature, and most of these are targeted
to a specific class of problems. As mentioned earlier,
Shewchuk (2002) proposed a scale-invariant quality met-
ric, Q, that is targeted towards the solution of the Poisson
equation,−∇2u(x,y, z)= b(x,y, z). This metric was listed
in Equation 1 and relates to the interpolation error of the
solution gradients as ‖∇uexact −∇uinterpolated‖∞.

The quality metric, Q, for a sliver approaches zero, which
indicates that the solutions obtained by using slivers in a
mesh will have errors with large gradients. The joined
tetrahedra approach proposed above yielded elements
with quality numbers of 0.084 for all the analyses per-
formed on a set of test problems and reported below in
this paper. Recall that a regular tetrahedron has a quality
measure of 0.104103. For domains with nodes arranged
along a regular cubic grid, the joining method will yield
cubic polyhedra that are subdivided into similarly shaped
tetrahedra, as shown in Fig. 5. Each tetrahedron shown
in Fig. 5 is expected to have a quality metric of 0.084.

Figure 5 : A cube partitioned into 12 similarly-shaped
tetrahedra

In the course of analyzing the set of examples, we de-
tected that between 0.3% and 16% of the total tetrahe-
dral elements generated by an initial Delaunay tessella-
tion have a quality metric less than 0.002. The analy-
sis results were significantly affected by the poor quality
elements, even for the case with 0.3% poor quality ele-
ments. The present joining approach never had a quality
factor less than near the expected value of 0.084. These
results indicate that the present joining method improves
the quality of the worst shape elements.

3.2 Condition Number

As a sliver approaches zero volume, the derivatives of
the shape functions employed for the slivers approach
infinity. Compared with a well-shaped element, the sliv-
ers exhibit much stiffer characteristics. When slivers are
assembled into a global stiffness matrix, there may be
several orders of magnitude difference between the re-
spective diagonal terms. Past experience has shown that
these differences in diagonal terms can lead to signifi-
cant solution errors. The condition number is a measure
of the sensitivity of a matrix to small errors. Matrices
with large condition numbers are termed ill-conditioned.
Ill-conditioned matrices reduce the accuracy for direct
solvers and often require longer solution times for iter-
ative solvers (Golub and Van Loan, 1996). Precondition-
ing may accelerate the solution times, but it is preferable
to have a well-conditioned matrix to start with.
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A common measure of the condition number, κ, for
a stiffness matrix, [K], is κ = ‖K‖ ∥∥K−1

∥∥. For sym-
metrical matrices that are often encountered in the fi-
nite element method, the matrix norm, ‖K‖, is related
to the spectral radius of the matrix, ρ(K), which is the
largest eigenvalue (Golub and Ortega, 1992) of the stiff-
ness matrix. The condition number is then given as
κ = ρ(K)ρ(K−1). Note that this measure for the condi-
tion number is computationally expensive, since a matrix
inverse and two eigenvalue solutions are required. A less
expensive approach can be expressed in terms of the ra-
tio of the largest to smallest eigenvalues of the original
stiffness matrix as

κR =
λmax

λmin
(7)

The stiffness matrix [K] is often pre-scaled using a diag-
onal matrix to increase its usefulness (Cook, 1982) as

[Kscaled] = [S] [K] [S] (8)

where Sii = 1√
Kii

.

As a simple example, consider a unit cube partitioned
equally into 8 sub-cubes with its nodes initially spaced
uniformly on a 3x3x3 grid. The nodes are then perturbed
randomly in all three spatial coordinates up to an amount
of +/-0.5x10−7 so that a unique Delaunay tessellation can
be generated. One internal sliver element was generated
by this procedure and had the nodal coordinates of (0,
0.5, 0.5), (0, 0.5, 0), (0.5, 0.5, 0), and (0.5, 0.5 + ε, 0.5)

where the value of ε was varied from 10−16 to 10−8, as
illustrated by the inset sketch in Fig. 6. Consider the
case where the fourth sliver node is perturbed by a small
amount, ε, in the y-direction to provide a small positive
volume. As shown in Fig. 6, both measures for the con-
dition number are similarly reduced as the point is per-
turbed towards creating greater volumes for the sub-cube.
The double precision calculations presented here are not
able to compute volumes for perturbations smaller than
10e-16. If the sliver truly had a zero volume, then the
derivatives of the finite element shape functions for the
sliver will be infinite and the system will not be solvable.

The present approach for joining elements produced a
matrix condition number less than 6 (six) in all cases, in-
cluding cases when slivers with truly zero volume were
merged into nearby elements. Thus, merging slivers
into nearby elements allows solutions that could not be

obtained otherwise, reduces the condition number, may
speed iterative solutions, and improves the accuracy of
direct solvers.

3.3 Error and Accuracy

While the previous two sections show that merging
poorly shaped elements into polyhedra improves the
mesh quality and reduces the condition number of the as-
sembled stiffness matrix, this section demonstrates that
the present merging procedure significantly improves the
accuracy of the desired solution.
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Figure 6 : Effect of sliver height on matrix condition
Number. ε is the perturbation magnitude and K is the
condition number.

The example of Poisson’s equation on a unit cube with an
internal energy source from Calvo, Idelsohn, and O˜nate
(2003) and Idelsohn, O˜nate, Calvo, and Del Pin (2003)
is studied here with the energy source b(x,y,z) given as

b(x,y, z) =
−e(kxyz(1−x)(1−y)(1−z))

1−e(k/64)

( 2kxy(1−x) (1−y)− [kxy (1−x) (1−y) (1−2z)]2

+2kxz (1−x) (1− z)− [kxz (1−x) (1− z) (1−2y)]2

+2kyz (1−y) (1− z)− [kyz (1−y) (1− z) (1−2x)]2) (9)
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The exact solution for this system is obtained as

u(x,y, z) =
1−e(k x y z (1−x) (1−y)(1−z))

1−e(k/64) (10)

It is noted that there was a typographical error in Calvo,
Idelsohn, and O˜nate (2003) and Idelsohn, O˜nate, Calvo,
and Del Pin (2003) for the internal source term b(x,y,z).
The error has been duly corrected here.

The energy source problem of equation (9) was consid-
ered using a constant k=200 on a unit cube with three
different values of nodal spacing. The cube was dis-
cretized into a uniform 3D grid with 5, 9, and 17 nodes
on an edge. Since a Delaunay tessellation of a uniform
cubic grid will produce slivers with zero volumes, the
non-corner nodes of the grid were perturbed in all three
directions by a random amount with up to three differ-
ent tolerances of 10−4, 10−3, and 10−2, respectively. The
resulting Delaunay tessellation still contains slivers, but
the slivers have non-zero volumes. The Delaunay tessel-
lation was generated using the commonly available al-
gorithm QHull (2004). Since the QHull program may
further perturb the nodes of an input grid, the perturbed
nodes were read back from the QHull output to assure
that the correct geometry was used in subsequent analy-
ses. For the Element Joining procedures, a tolerance con-
stant, δ=0.01, was employed for comparing the closeness
of the centers of adjacent elements according to equation
(2).

The L2 error employed in the present study is defined as

L2 =

⎧⎨
⎩

∫
Ω

(uexact −uapproximate)
2 dΩ

⎫⎬
⎭

1
2

(11)

The L2 error is plotted in Fig. 7 for 3 different sized
meshes for the joined and unjoined partitions, respec-
tively. The joined approach had the expected conver-
gence rate (slope of 2 on the log-log plot), whereas
the unjoined approach converged more slowly and had
higher errors overall. The perturbation magnitude clearly
affects the element quality as shown in Fig. 7, where
larger values of the perturbation generate better quality
elements and have lower error. Note that the unjoined
approach failed for perturbations of 10−5, since some el-
ements were of such poor quality, that the stiffness ma-
trix could not be computed using double precision. The
joined approach has essentially the same magnitude of
error, regardless of the amount of perturbation.

The results from the present approach are shown in Fig.
7 and are seen to be slightly better than the results pre-
sented by Calvo, Idelsohn, and O˜nate (2003) and Idel-
sohn, O˜nate, Calvo, and Del Pin (2003), who employed
the shape functions of the NEM. Presumably, the numer-
ical integrations for computing the stiffness matrix inte-
grals are more accurate for the finite element solutions,
since the shape functions are polynomials and can be in-
tegrated exactly using one point gauss integration. The
NEM shape functions are non-polynomials and may re-
quire more integration points for the same accuracy.
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Figure 7 : L2 convergence rates for joined analyses and
analyses with slivers. h is the distance between nodes
along an edge.

4 Summary and conclusions

A method for handling slivers and low quality tetrahe-
dron elements has been presented. The method starts
with a Delaunay tessellation. Poor quality tetrahedra are
then joined together with adjacent tetrahedra to create
polyhedra. A temporary node is next added to the cen-
troids of the non-tetrahedral polyhedra generated by this
process. Each polyhedron is then subdivided into a col-
lection of local tetrahedra by connecting the temporary
centroidal node to all of the external triangular facets of
the polyhedron. The polyhedron stiffness matrix is gen-
erated by computing and assembling the stiffness matri-
ces of the local tetrahedra that share the temporary cen-
troidal node. The temporary centroidal node is elimi-
nated using static condensation. The resulting stiffness
matrix is assembled into the global stiffness matrix.
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The method reduces the matrix condition number, in-
creases the element quality for the lowest quality ele-
ments, allows solutions for truly poor quality slivers, and
provides the theoretically expected L2 error convergence
rates when slivers are present. The method neither adds
nor rearranges points. Sliver exudation is also not nec-
essary. The joining process is a local process and has
a computational cost proportional to the number of ele-
ments. The method retains the power, speed, and conver-
gence rates of the standard finite element procedures.
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