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Finite Element Analysis of Carbon Nanotubes with Stone-Wales Defects
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Abstract: Like any other geometric structure or build-
ing, carbon nanotubes may break down due to either
material failure or structural failure. In this paper, it is
shown that the failure mechanism of carbon nanotubes
not only depends on the type and direction of loading
but also on the location and number of defects. For the
finite element simulations we use a new 4-node finite ele-
ment without rotational degrees of freedom based on the
force field method. For the examples shown here, mainly
a single-walled (10,10) armchair nanotube with different
Stone-Wales defects, the material parameters are directly
taken from the DREIDING force field.
For carbon nanotubes subject to tension a kind of mate-
rial failure, i. e. a breaking of bonds, can be observed.
For carbon nanotubes subject to bending, an interesting
question is whether they fail due to a breaking of bonds
in the tension zone, which would be similar to the ten-
sion experiment, or due to a snap-through of bonds in the
compression zone. From our FE simulations, it can be
concluded that neither of these two failure mechanisms,
but local buckling in the compression zone can be ob-
served. From a mechanical point of view, however, it is
not a pure bifurcation problem because the buckles are
formed relatively slowly which corresponds more to a
snap-through problem. For carbon nanotubes subject to
torsion, we have to distinguish between bifurcation prob-
lems which are the case for defect-free nanotubes and
snap-through problems which can be observed for those
with defects. In all cases the Stone-Wales defects are
responsible for a reduction of the maximum load, about
10 % for tension and bending, and up to 30 % for torsion.
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1 Introduction

From a continuum-mechanical point of view, a predic-
tion of material behavior is based on the assumption that
the systems under consideration include enough particles
allowing for averaging processes. As a result, numerous
experimental observations like damping behavior cannot
be readily explained. Thus, there is a considerable effort
to find descriptions for strength and failure properties of
materials, taking into account their atomic structure, see
e. g. [Ghoniem and Cho (2002)].

Finite element methods proved themselves for decades
as a high-performance procedure especially for the sim-
ulation of physical processes in the framework of contin-
uum mechanics. Nevertheless, this method can also be
applied efficiently to atomistic processes if adequate el-
ements were formulated taking into account the discrete
structure of systems. Force fields provide a solid basis
for the development of such elements which describe the
atomic interactions like bond stretching, bond bending
and bond torsion with general force constants and geo-
metric parameters.

To reduce numerical costs, often only a small part of a
structure is simulated using molecular dynamics while
other parts are assumed to be homogeneous so that con-
tinuum mechanics is applied. This leads to multiscale
simulations coupling molecular dynamics (MD) and con-
tinuum mechanics. Shen and Atluri (2005) propose the
use of meshless local Petrov-Galerkin (MLPG) meth-
ods [see also Atluri (2004)] to derive stiffness matri-
ces as a link between continuum and MD calculations.
Another possibility is the use of a lattice statics-based
tangent-stiffness method proposed by Chung, Namburu,
and Henz (2003). The advantage of the present FE ap-
proach for the atomic simulation via finite elements in-
stead of the classical MD method is that it combines
atomic and continuum simulation in one method. Us-
ing these approaches, the behavior of several types of
nanostructures can be predicted. For an overview of the
various applications and potentials in nanotechnology the
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reader is referred to the papers by Brenner, Shenderova,
Areshkin, Schall, and Frankland (2002), Srivastava and
Atluri (2002) and Srivastava, Menon, and Cho (2001).

Topological defects – in particular adjacent pen-
tagon/heptagon pairs, called Stone-Wales defects – have
been proposed to play a major role in the growth and
subsequent annealing down to the structurally ordered
ground state of carbon nanostructures. They consist of
a C-C bond rotated by an angle of 90 degrees, creat-
ing two pentagons and heptagons. Once formed, the
pentagons/hexagons could move along the structure, cre-
ating either dislocation centers in regions of positive
(pentagons) or negative (heptagons) Gaussian curvature,
which ultimately lead to the closing of the nanostruc-
ture, see Miyamoto, Rubio, Berber, Yoon, and Tománek
(2004). Moreover, Stone-Wales defects appear at the
core of many relevant structural transformations gov-
erning, for example, the coalescences of nanotubes, the
formation of pure intramolecular junctions for isoelec-
tronic devices, and the onset of either plastic or brit-
tle response of nanotubes subject to mechanical strain.
Furthermore, the study of defect formation is motivated
by the importance of their role in the electron transport
properties of carbon nanotubes, see Buongiorno Nardelli,
Yakobson, and Bernholc (1998b). The Stone-Wales de-
fects also have a strong influence on large-scale structural
rearrangements in graphite networks [Yoon, Han, Kim,
Lee, Berber, Osawa, Ihm, Terrones, Banhart, Charlier,
Grobert, Terrones, Ajayan, and Tománek (2004)].

Wei, Cho, and Srivastava (2003) found that the yielding
or failure of carbon nanotubes is mainly dependent on
the activation and propagation of defects, such as Stone-
Wales bond rotation or graphitic sp2 to sp3 diamond-
like bonding transitions at the location of collapse. The
former has been mainly formed on tensile strained car-
bon nanotubes, whereas the latter has been mainly ob-
served on axially compressed tubes. Theoretical and nu-
merical simulation studies have shown that, under large
tensile strain, Stone-Wales bond rotations result in the
formation of pentagon-heptagon pair 5-7-7-5 defects on
the nanotubes, which are energetically favorable at ten-
sile strain larger than 5 %. Zhang, Lammert, and Crespi
(1998) found that under an external force above the plas-
tic threshold, proliferation of bond rotation defects is
eventually halted by a repulsive defect-defect interaction.

Goal of this paper is to investigate the failure mechanism
of carbon nanotubes with different kinds of Stone-Wales

defects when subject to tension, bending and torsion. For
our finite element simulations we use a new 4-node finite
element based on the force field method which is intro-
duced in the following section.

2 Formulation of a force field based finite element
method

2.1 DREIDING force field

The potential energy of molecular systems like carbon
nanotubes can be calculated with the force field method.
A common approach for the calculation of carbon nan-
otubes is the use of the Tersoff-Brenner potential, see
e. g. Yang, Han, Anantram, and Jaffe (2002) and Wei,
Srivastava, and Cho (2002). We apply the DREIDING
approach which is described by Mayo, Olafson, and
Goddard (III) (1990), among others. Neglecting inver-
sion and non-bonded interactions, the potential energy of
this generic force field is of the form

E = EB +EA +ET . (1)

Nonbonded
interaction

Bond stretch

Angle bend

Torsion

Figure 1 : Atomic interactions according to force field
method

The different kinds of atomic interactions are shown in
Fig. 1. The bond between two atoms I and J can be de-
scribed by the Morse function [Morse (1929)]

EB = De
[
exp(−βR̃IJ)−1

]2
(2)

with R̃IJ := RIJ −Re and β := αn.

The first and second derivatives of Eq. 2 with respect
to RIJ lead to the corresponding spring force

FB = −2βDe
[
exp(−2βR̃IJ)−exp(−βR̃IJ)

]
(3)
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and the nonlinear spring constant

cB = 4β2De

[
exp(−2βR̃IJ)− 1

2
exp(−βR̃IJ)

]
, (4)

respectively. Fig. 2 shows the bond stretching energy EB

(Eq. 2), the bond stretching force FB (Eq. 3) and the bond
stretching spring constant cB (Eq. 4) for an interatomic
range 1Å ≤ RIJ ≤ 2Å.
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Figure 2 : Bond stretching energy EB, bond stretching
force FB and bond stretching spring constant cB accord-
ing to DREIDING force field

The C-C bond length of graphite is 1.42 Å [Desch
(1934)]. In the case of carbon nanotubes, the C-C bond
length is known to be slightly larger than graphite: 1.44 Å
[Saito, Dresselhaus, and Dresselhaus (1998)]. The in-
crease of bond length reveals that even undeformed car-
bon nanotubes contain potential energy. According to
Mayo, Olafson, and Goddard (III) (1990), the distance
between two carbon atoms I and J is Re = 1.39 Å at the
equilibrium state. For carbon, the bond order is n = 1.5.
Further, α = 1.491 1

Å
and De = 105 kcal

mol .

For two bonds IJ and JK sharing a common atom, the
three-body angle bend terms are of the harmonic cosine
form

EA =
1
2

CIJK
[
cosΘIJK −cosΘ0

J

]2
(5)

where ΘIJK is the angle between bonds IJ and JK and
CIJK is the corresponding bending stiffness, see Fig. 3.
The equilibrium angle Θ0

J is assumed to be independent
of I and K, see Mayo, Olafson, and Goddard (III) (1990).
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Figure 3 : Change of bond angle ΘIJK illustrated by
means of a planar deformation of a graphite layer

Derivation of Eq. 5 with respect to ΘIJK yields the bend-
ing moment

MA = −CIJK
[
cosΘIJK −cosΘ0

J

]
sinΘIJK . (6)

The second derivative of Eq. 5 with respect to ΘIJK re-
sults into the nonlinear spring constant

cA = CIJK [cosΘ0
J cosΘIJK −cos(2ΘIJK)] . (7)

Fig. 4 shows the bond bending energy EA (Eq. 5), the
bond bending moment MA (Eq. 6) and the nonlinear bond
bending spring constant cA (Eq. 7) for Θ0

J = 120◦ and
CIJK = 133.3 kcal

mol rad2 .

The torsion interaction for two bonds IJ and KL con-
nected via a common bond JK is of the form

ET =
1
2

VJK
[
1−cos

[
nJK(ϕIJKL −ϕ0

JK)
]]

(8)

where ϕIJKL is the dihedral angle (angle between the IJK
and JKL planes), nJK is the periodicity (an integer), VJK

is the barrier to rotation (always positive), and ϕ0
JK is the

equilibrium angle, see Mayo, Olafson, and Goddard (III)
(1990).

The first derivative of Eq. 8 with respect to ϕIJKL yields
the torsional moment

MT =
1
2

VJK nJK sin
[
nJK(ϕIJKL −ϕ0

JK)
]

. (9)

Finally, the second derivative of Eq. 8 with respect to
ϕIJKL results into the nonlinear torsion spring constant

cT =
1
2

VJK n2
JK cos

[
nJK(ϕIJKL −ϕ0

JK)
]

. (10)
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Figure 4 : Bond bending energy EA, bond bending mo-
ment MA and bond bending spring constant cA according
to DREIDING force field

Fig. 5 shows the bond torsion energy ET (Eq. 8), the bond
torsion moment MT (Eq. 9) and the nonlinear bond tor-
sion spring constant cT (Eq. 10) for ϕ0

JK = 0◦ and 180◦,
nJK = 2 and VJK = 25 kcal

mol rad2 .
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Figure 5 : Bond torsion energy ET, bond torsion mo-
ment MT and bond torsion spring constant cT according
to DREIDING force field

The force field method provides a suitable interface
between physically accurate quantum-mechanical ap-
proaches, on the one hand, and numerically efficient
continuum-mechanical approaches, on the other hand.
Force fields adequately describe the real physics of
nanostructures which makes them attractive as a tool to

analyze material properties like damping behavior, fa-
tigue cracking or fracture behavior. In addition, force
fields provide an excellent theoretical basis for the appli-
cation of the finite element method due to the analogy
to multi-body systems with atoms as mass points and
the different kinds of bonds as spring elements. Finite
element programs offer comprehensive pre- and postpro-
cessing tools as well as sophisticated solvers which allow
for the modelling, calculation and visualization of com-
plex structures.

2.2 The new 4-node finite element

A simulation of the mechanical behavior of nanostruc-
tures using finite elements with rotational degrees of free-
dom, i. e. beam or shell elements, results in fundamental
difficulties. As shown by Nasdala and Ernst (accepted),
the parameter identification is ambiguous and the rota-
tional degrees of freedom lead to incorrect deformations.

An atom as a point object has no rotational degrees of
freedom which must be taken into account by an ap-
propriate finite element model. This section contains a
brief description of a new 4-node finite element shown in
Fig. 6 which overcomes the disadvantages of beam and
shell elements because it uses only translational degrees
of freedom.
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Figure 6 : Four-node finite element consisting of three
tension, two bending and one torsion subelements

The new element has four nodes with the position vectors
xI, xJ, xK and xL as primary unknowns. For the bond
between the two atoms I and J the DREIDING force field
described in section 2.1 yields the bond stretching force

FIJ = −2β
De

12

[
exp(−2βR̃IJ)−exp(−βd̃IJ)

]
(11)
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with R̃IJ = |xI −xJ |−Re. Similar expressions can be de-
rived for the bonds between the two atoms J and K and
K and L, respectively:

FJK = −2β
De

12

[
exp(−2βR̃JK)−exp(−βR̃JK)

]

FKL = −2β
De

12

[
exp(−2βR̃KL)−exp(−βR̃KL)

]
.

(12)

For two bonds IJ (JK) and JK (KL) sharing a common
atom, the three-body angle bend terms corresponding to
Eq. 6 are

FIJK = −CIJK

4Re

[
cosΘIJK −cosΘ0

J

]
sinΘIJK

FJKL = −CJKL

4Re

[
cosΘJKL −cos Θ0

K

]
sinΘJKL .

(13)

According to Eq. 9 the torsion interaction for two bonds
IJ and KL connected via a common bond JK yields the
moment

FIJKL =
VJK

4
√

3Re
nJK sin

[
nJK(ϕIJKL −ϕ0

JK)
]

. (14)

The bending angles ΘIJK = ΘIJK(xI,xJ,xK) and ΘJKL =
ΘJKL(xJ,xK ,xL) as well as the torsion angle ϕIJKL =
ϕIJKL(xI,xJ,xK,xL) depend on the coordinates xI, xJ, xK

and xL.

Each carbon atom is neighbored by three other carbon
atoms. Thus when superposing all four-node elements,
this results in twelve normal spring subelements being
placed between the atoms J and K, four bending subele-
ments between three atoms I, J and K and four torsional
spring subelements between two atoms J and K. For this
reason, Eq. 3, Eq. 6 and Eq. 9 are premultiplied by the
factors 1/12, 1/4 and 1/4, respectively, which leads to
Eqs. 11 to 14. Furthermore, Eqs. 13 and 14 take into ac-
count the lever arms Re and

√
3Re/2 of the bending and

torsional moments. The element formulation takes into
account finite deformations which allows for simulating
fracture processes in carbon nanotubes.

Assembling the nodal forces to the global residuum vec-
tor R leads to a system of nonlinear equations

R(x) = 0 (15)

with x as global position vector of the current coordi-
nates. The solution of these equations is achieved using
a Newton-Raphson iterative procedure:

K(xk) ·u = −R(xk) . (16)

The stiffness matrix K is the derivative of the residual
forces with respect to the coordinates

Ki j(xk) =
∂Ri

∂x j

∣∣∣∣
xk

, (17)

see [Nasdala and Ernst (accepted)] for details. The sub-
scripts i and j denote the degree of freedom whereas
the subscript k denotes the iteration step. The constitu-
tive equations are linearized in a consistent form which
yields a quadratic convergence of the Newton-Raphson
solution procedure. The displacement increment u has to
be added to the coordinates

xk+1 = xk +u (18)

until the displacement increment or rather the residual
vector R are sufficiently small. If all forces are in equi-
librium the right hand side vector is zero.

Compared to a standard beam approach, the developed
four-node element has the advantage that only transla-
tional degrees of freedom are used in the formulation.
This corresponds to a basic assumption made in stan-
dard molecular dynamics simulations where molecules
or atoms are defined as a system of interacting mate-
rial points, whose motion is described dynamically with
a vector of instantaneous positions and velocities. Fur-
thermore, the new element is computationally efficient
because it has only three degrees of freedom per node
instead of six of a beam element.

An additional advantage of the new four-node element
compared with a standard beam element is that no pa-
rameter identification procedure is required. The param-
eters can be taken directly from the equations defining
the force field.

The vectors of the carbon atoms defining their initial po-
sitions (i. e. positions of the atoms before an external load
is applied) only have to be given approximatively. This
configuration, which in general is a non-equilibrium one,
can be equilibrated during a (numerically damped) relax-
ation step. There is no need to introduce initial strains or
stresses because the equilibrium distance Re between two
atoms as well as the equilibrium angles Θ0

j for the three-
body angle bend terms and the equilibrium angle ϕ0

JK
for the torsion interaction for two bonds IJ and KL con-
nected via a common bond JK are intrinsic parts of this
finite element.
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Furthermore the use of subelements allows for a decou-
pling of the potential energies EB, EA and ET, in con-
trast to a pure beam approach where the material param-
eters (in particular the torsional rigidity and out of plane
bending stiffness) are ambiguous since torsion energy is
caused by bending as well as by torsion.

3 Failure mechanisms in carbon nanotubes

3.1 Perfect carbon nanotubes under uniaxial tension

In this subsection we compare the results obtained with
the new four-node finite element for two types of nan-
otubes under axial loading with results published by
Zhou and Shi (2001). Molecular dynamics (MD) simula-
tions have been performed by the authors to study the me-
chanical properties of two types of single-walled carbon
nanotubes under tensile loading with and without hydro-
gen storage. Brenner’s bond order hydrocarbon poten-
tial was used in their simulations, see Mowrey, Brenner,
Dunlap, Mintmire, and White (1991) and Dunlap, Bren-
ner, and Schriver (1994).

The examined nanotubes, a (10,10) armchair and a
(17,0) zigzag type, have a similar diameter and tube
length. A periodic boundary condition has been used by
Zhou and Shi along the axial and horizontal directions.
To simulate the tubes under tensile loading, the tubes
were annealed at simulation temperature for 5000 MD
increments during the first simulation step. The time in-
terval between two MD increments was chosen to 0.5 fs.
In the second simulation step the tubes were pulled in-
crementally in axial direction with a strain increment of
5×10−4. Following each increment of pulling, some ad-
ditional MD increment were used to relax the structure
[Zhou and Shi (2001)].

Fig. 7 and Fig. 8 show the calculated load-deflection
curves for the perfect (17,0) zigzag and (10,10) armchair
carbon nanotubes, respectively. Because single-walled
carbon nanotubes are constructed of hexagonal carbon
rings, their mechanical properties are strongly dependent
on their chiral directions. Bond angle and bond length
are the two crucial factors that control the deformation.
Though length and diameter of both nanotubes are al-
most identical, see Tab. 1, only the initial stiffnesses (i. e.
the slope of the load-deflection curve for zero strain) of
the different nanotube types are similar: S0 ≈ 1016 nN
for the (17,0) zigzag nanotube and S0 ≈ 1047 nN for
the (10,10) armchair nanotube. The maximum force of

Molecular dynamic
simulation by
Zhou and Shi (2001)

User element
computation

Figure 7 : Load-deflection curves for a (17,0) zigzag car-
bon nanotube subject to uniaxial tension. The results ob-
tained by Zhou and Shi (2001) using molecular dynamics
simulation and the results obtained by the authors with
the new four-node finite element are shown.

the (10,10) armchair nanotube, Fmax ≈ 175.2 nN, how-
ever, and the corresponding elongation, εmax ≈ 28.0 %,
are much higher than the maximum force of the (17,0)
zigzag nanotube, Fmax ≈ 138.4 nN, and the correspond-
ing elongation εmax ≈ 20.7 %, respectively. Here, we de-
fine the maximum elongation εmax and the maximum ten-
sile force Fmax at the turning point on the load-deflection
curve that has the highest value of F .

Table 1 : Structural parameters of the carbon nanotubes

Type of nanotube (17,0) (10,10)

diameter in Å 13.47 13.72

length in Å 71.59 71.02

number of atoms 1190 1200

mass of a carbon atom in fg 1.994473×10−8

A detailed examination of the nanotube structure during
the deformation process by Zhou and Shi (2001) revealed
that the elongation of the (10,10) nanotube is initially due
to the altering of bond angles (stage 1). For armchair
single-walled carbon nanotubes, the elongation of tube
due to the altering of bond angles can be up to 15 % if
the C-C bonds are assumed to be rigid. For zigzag single-
walled carbon nanotubes one-third of the C-C bonds are
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Molecular dynamic
simulation by
Zhou and Shi (2001)

User element
computation

Figure 8 : Load-deflection curves for a (10,10) armchair
carbon nanotube subject to uniaxial tension. The results
obtained by Zhou and Shi (2001) using molecular dy-
namics simulation and the results obtained by the authors
with the new four-node finite element are shown.

parallel to the loading axis and the loading force is then
directly acting on these bonds. Under further pulling, the
contribution from the elongation of the C-C bonds be-
comes significant and plays the main role in the deforma-
tion process (stage 2). When the strain is up to a critical
level, some groups of the C-C bonds are broken. Then,
the tube starts necking and the force decreases dramat-
ically. Due to the nature of the hexagonal carbon ring,
pulling the zigzag tube along its axial direction would
cause some second nearest neighbor C-C atoms to be-
come closer and to form new C-C bonds. In the local
regions of these newly formed bonds, some old carbon-
carbon bonds have to break due to the saturation of cova-
lent bonds. This would lead to the necking and breakage
of the zigzag single-walled carbon nanotubes (stage 3).

The results obtained during stages 1 and 2 with the two
different methods (molecular dynamic approach and fi-
nite element method) are in good agreement, see Figs.
7 and 8. At the limit point, the maximum interatomic
distance in axial direction is RIJ ≈ 1.700 Å. For larger
distances, RIJ > 1.700 Å, the normal stiffness cB (Eq. 4)
becomes negative, see Fig. 2, which can be interpreted
as a kind of softening. In the mathematical sense, a bi-
furcation problem occurs at this deformation state of the
carbon nanotube. The fact that the static analysis remains
on the instable primary path can be attributed to the per-
fect symmetry of the carbon nanotubes. This stability

problem for geometrically perfect nanotubes under uni-
axial displacement-driven loading is assumed to be one
of the reasons for the differences between the two load-
deflection curves obtained with molecular dynamics sim-
ulations and finite element method, respectively.

3.2 Carbon nanotubes with Stone-Wales defects

Atomistic studies have suggested that carbon nanotubes
possess unique and superior electrical, electromechani-
cal, and mechanical properties, and therefore have many
potential applications in the fields of nanoelectronics,
nanoelectro-mechanical systems (NEMS) and nanocom-
posites. However, there are some discrepancies between
atomistic modelling and experimental results. For exam-
ple, Yakobson, Campbell, Brabec, and Bernholc (1997)
molecular dynamics simulations based on the empirical
interatomic potential for carbon suggested that the break-
ing strain of a single wall CNT is as large as 55 %, while
the fracture strain of multiwall carbon nanotubes mea-
sured by Yu, Lourie, Dyer, Moloni, Kelly, and Ruoff
(2000) is less than 12 %. One important reason for this
large difference is that most atomistic studies have not
accounted for the effect of defects in carbon nanotubes.
Belytschko, Xiao, and Ruoff (2002) showed that defects
can explain part of the discrepancy between the failure
stresses and strains of nanotubes given by theoretical or
numerical predictions and those observed in experiments.

In the following the influence of Stone-Wales defects on
the mechanical behavior of a (10,10) armchair carbon
nanotube with structural parameters given in Tab. 1) are
studied. The orientation of the defects and their distri-
bution over the nanotube is thought to have a significant
influence on the mechanical, electrical and thermal be-
havior of the nanostructure. Therefore, we introduced a
defect distribution function which specifies all defects in
the nanotube by their lattice indices. For real-world sim-
ulations, this function should be specified on the basis of
experiments and an accompanying statistical investiga-
tion. Here, we restrict our calculations to systems with a
maximum of two Stone-Wales defects equally distributed
along the axis of the nanotube or in circumferential direc-
tion.

Fig. 9 shows the different defect distributions (locations
and orientations of the Stone-Wales defects) taken into
account. The defects are grouped into

• defect group 0, no defect,
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• defect group 1, one Stone-Wales defect at location
(nd11,md11) = (12,0),

• defect group 2, two Stone-Wales defects at locations
(nd21,md21) = (8,0) and (nd22,md22) = (16,0),

• defect group 3, two Stone-Wales defects at locations
(nd31,md31) = (8,0) and (nd32,md32) = (8,8).

Figure 9 : (10,10) armchair carbon nanotubes; top down:
no defect (dg0), one Stone-Wales defect at the bottom
(dg1), two Stone-Wales defects at the bottom (dg2), two
Stone-Wales defect with one at the top and one at the
bottom (dg3)

In contrast to a static analysis, in a dynamic analysis it
is not possible to increase the deflection linearly with
time because inertial forces would become infinite. For
that reason the loading velocity is increased with time,
slowly enough to get a quasi-static response. The load is
prescribed at the two ends of the tube where the marked
nodes are rigidly connected to each other.

3.2.1 Tension test

Fig. 10 shows the load-deflection curve of a (10,10) arm-
chair carbon nanotube in the uniaxial tension mode for
different defect groups 0, 1, 2 and 3 computed with the
new four-node finite element. We can observe that the
carbon nanotube with defects collapse earlier than the
perfect nanotube.

dg0

dg2

dg1

dg3

Figure 10 : Load-deflection curves for the (10,10) arm-
chair carbon nanotubes subject to tension

In Fig. 11 the configurations of the (10,10) carbon nano-
tube with defect groups 1, 2 and 3 at ultimate loading are
shown. One can observe the localization of deformations
in the vicinity of the Stone-Wales defects in all the three
cases. In these localization zones the distances between
neighboring atoms are so large that the normal stiffness
of the four-node element becomes negative. This behav-
ior introduces a kind of local softening in the defective
atomic areas finally resulting in the breaking and reori-
entation of interatomic bonds.

Fig. 10 shows that the ultimate load is almost indepen-
dent of the number and locations of the Stone-Wales de-
fects as long as at least there is one defect. For all de-
fect groups we have computed an ultimate load of about
150 nN and a corresponding strain of about 17 %. Of
course this result refers to the nanotubes and the defect
distributions examined here and cannot be generalized
without further research. Particularly the initial defect
distributions must be adapted to actual data by the evalu-
ation of tests. Furthermore, it has to be observed that in
strained nanotubes at high temperatures the spontaneous
formation of double pentagon-heptagon defect pairs oc-
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Figure 11 : Deformed configuration of the (10,10) arm-
chair carbon nanotubes at about 17 % uniaxial strain

curs. Tubes containing these defects are energetically
preferred to uniformly stretched tubes at strains greater
than 5 %, see Buongiorno Nardelli, Yakobson, and Bern-
holc (1998b,a). These topological defects act as nucle-
ation centers for the formation of dislocations in the orig-
inally ideal graphite network, and they constitute the on-
set of a plastic deformation of the carbon nanotube. The
mechanism of formation of such defects, their energetics,
and transformations are not included in the theoretical
framework used here for studying the tensile instabilities
of the (10,10) armchair carbon nanotube.

3.2.2 Bending test

Fig. 12 shows the behavior of the nanotubes when sub-
ject to bending. In this case, the influence of the Stone-
Wales defects on the global mechanical behavior of the
carbon nanotube is not as obvious as in the uniaxial ten-
sion case. The defects are acting as geometrical imper-
fections transforming the bifurcation problem to a snap-
through problem. For more information about stability
problems the interested reader is referred to [Crisfield
(1996, 1997)]. The ultimate bending moment for the
perfect (10,10) carbon nanotube was calculated to about
19 nNnm, appearing at a bending angle of about 37 de-
grees. A single defect (defect group 1) reduces the ul-
timate bending moment by about 10 % to the value of
17 nNnm. It is interesting to observe that the second ini-
tial defect in the (10,10) carbon nanotube does not lead

dg0

dg2dg1

dg3

Figure 12 : Load-deflection curves for the (10,10) arm-
chair carbon nanotubes subject to bending

to a further reduction of the ultimate bending moment,
see Fig. 12. Nevertheless, the difference between to two
curves obtained for defect groups 2 and 3 indicate that
the location of the defects has a significant influence on
the global mechanical behavior in the bending mode and
should be taken into account at the calculation of limit
loads.

Figure 13 : Deformed configuration of the (10,10) arm-
chair carbon nanotubes at bending angle of about 32 de-
grees

In Fig. 13 the configurations at ultimate bending mo-
ments are shown. Compared with the configurations be-
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longing to uniaxial tension, the initial Stone-Wales de-
fects are not connected with the occurrence of localized
deformations under large strains in the defective areas.
Nevertheless, large curvatures of the lattice can be ob-
served in the surrounding of the defects which lie in the
compression zone requiring a suitable choice of the bend-
ing and torsion terms of the underlying potential. Unlike
this, the initial curvatures of the lattice in the vicinity of
defects located in the tension zone is flattened out by the
overlayed bending mode.

3.2.3 Torsion test

Fig. 14 shows the load deflection curve of the nanotubes
when subject to torsion. In this case the ultimate tor-
sion moment is strongly influenced by the Stone-Wales
defects. The perfect carbon nanotube passes a bifurca-
tion point at a torsion moment of about 26 nNnm, how-
ever due to the geometric imperfections introduced by
the Stone-Wales defects the defective tubes show a snap-
through behavior. Under the given conditions, the influ-
ence of the number and orientations of defects on the
ultimate torsion moment is rather low. Its value ranges
from about 16 nNnm for the nanotube with defect group
1 to about 15 nNnm for the nanotube with defect group 3.
Nevertheless, the occurrence of a single defect reduces
the ultimate torsion moment by about 40 % from about
26 nNnm to about 16 nNnm.

dg0

dg3

dg2

dg1

Figure 14 : Load-deflection curves for the (10,10) arm-
chair carbon nanotubes subject to torsion

In Fig. 15 the nanotubes during collapse are shown. The
ultimate torsion angle for all three configurations is about

40 degrees. As in the bending case the initial Stone-
Wales defects do not lead to a local failure in the defec-
tive areas due to tearing of bonds. Also, the large curva-
tures of the lattice in the surrounding of the defects ob-
served in the bending mode are not present in this defor-
mation mode. Nevertheless, a comparison of the results
presented in Figures Fig. 12 and Fig. 14 shows that the
ultimate torsion moment is much more reduced by the
occurrence of a single defect than the ultimate bending
moment. Certainly, this result should not be generalized
because it depends strongly on the chirality of the nan-
otubes and the type of loading.

Figure 15 : Deformed configuration of the (10,10) arm-
chair carbon nanotubes at torsion angle of about 40 de-
grees
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4 Conclusions

Finite element simulations with a new four-node element
based on the DREIDING potential for the atomic inter-
actions have been performed to study the mechanical
properties of single-walled carbon nanotubes with and
without Stone-Wales defects under three main deforma-
tion modes: uniaxial tension, bending and torsion. The
results obtained for geometrically perfect nanotubes of
types (17,0) and (10,10) in the pre-failure states are in
good agreement with those by Zhou and Shi (2001) based
on molecular dynamics simulations using Brenner’s po-
tential. Nevertheless, the ultimate loads predicted by
the two methods differ from each other. A reason for
this is the difference between DREIDING potential and
this of Brenner which becomes more important if the
atomic distances are far from the equilibrium value. The
post-failure response of the nanotube is governed by the
breaking and the rearrangement of carbon bonds which
can be simulated with the molecular dynamics approach
based on Brenner’s potential but not with the finite ele-
ment method presented by the authors. The post-failure
states of the nanotubes require special attention because
in this case the atomic distances are so far from the equi-
librium values that a force field method is eventually not
adequate for their simulation.

Since the defects have a great effect on the ultimate
loads of the nanotubes, we introduced a defect distri-
bution function which specifies all defects in the nano-
tube by their lattice indices. For real-world simulations,
this function should be formulated on the basis of ex-
periments and an accompanying statistical investigation.
Here, we restricted our calculations to systems with max-
imum two Stone-Wales defects equally distributed along
the axis of the nanotube or in circumferential direction.
We found that the influence of the defect distribution on
the ultimate loads and moments depends significantly on
both, the loading case and the number and location of
the defects. While the ultimate load for the uniaxial ten-
sion case is almost the same for all defect distributions
under consideration, the ultimate bending moment was
influenced clearly by the number and the location of the
Stone-Wales defects. An interesting behavior was ob-
served for the defective (10,10) armchair carbon nano-
tube under torsion. In this case, the reduction of the
ultimate moment due to the occurrence of initial Stone-
Wales defects is with about 40 % very high but almost
independent on the number and location of the defects.

Of course, this result should not be generalized because
it will be valid in this form only for the very restricted
defect distributions discussed in this paper.

Acknowledgement: The authors gratefully acknowl-
edge the stimulating discussions with Dr. Andreas
Schneider, Institute for Inorganic Chemistry, University
of Hannover.

References

Atluri, S. N. (2004): The Meshless Method (MLPG)
for Domain & BIE Discretizations. Tech Science Press,
Forsyth, GA.

Belytschko, T.; Xiao, S. P.; Ruoff, R. (2002): Effects
of defects on the strength of nanotubes: Experimental-
computational comparisons. arxiv.org e-Print archive,
physics/0205090, 2002.

Brenner, D. W.; Shenderova, O. A.; Areshkin, D. A.;
Schall, J. D.; Frankland, S.-J. V. (2002): Atomic mod-
eling of carbon-based nanostructures as a tool for devel-
oping new materials and technologies. CMES: Com-
puter Modeling in Engineering & Sciences, vol. 3, no. 5,
pp. 643–674.

Buongiorno Nardelli, M.; Yakobson, B. I.; Bernholc,
J. (1998): Brittle and ductile behavior in carbon nan-
otubes. Physical Review Letters, vol. 81, no. 21, pp.
4656–4659.

Buongiorno Nardelli, M.; Yakobson, B. I.; Bernholc,
J. (1998): Mechanism of strain release in carbon nan-
otubes. Physical Review B, vol. 57, no. 8, pp. 4277–
4280.

Chung, P. W.; Namburu, R. R.; Henz, B. J. (2003):
A lattice statics-based tangent-stiffness finite element
method. CMES: Computer Modeling in Engineering &
Sciences, vol. 5, no. 1, pp. 45–62.

Crisfield, M. A. (1996): Non-linear Finite Element
Analysis of Solids and Structures – 1: Essentials. John
Wiley & Sons.

Crisfield, M. A. (1997): Non-linear Finite Element
Analysis of Solids and Structures – 2: Advanced Topics.
John Wiley & Sons.



304 Copyright c© 2005 Tech Science Press CMES, vol.7, no.3, pp.293-304, 2005

Desch, C. (1934): The Chemistry Of Solids. Cornell
University Press.

Dunlap, B. I.; Brenner, D. W.; Schriver, G. W. (1994):
Symmetric isomers of hydrofullerene c60h36. Journal
of Physical Chemistry, vol. 98, pp. 1756–1757.

Ghoniem, N. M.; Cho, K. (2002): The emerging role
of multiscale modeling in nano- and micro-mechanics of
materials. CMES: Computer Modeling in Engineering
& Sciences, vol. 3, no. 2, pp. 147–173.

Mayo, S. L.; Olafson, B. D.; Goddard (III), W. A.
(1990): DREIDING: A generic force field for molec-
ular simulations. Journal of Physical Chemistry, vol.
94, pp. 8897–8909.

Miyamoto, Y.; Rubio, A.; Berber, S.; Yoon, M.;
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