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A Silent Boundary Scheme with the Material Point Method for Dynamic Analyses

Luming Shen1 and Zhen Chen2

Abstract: To simulate the dynamic responses involv-
ing different material phases in a finite computational
domain without discretizing the whole problem domain,
a silent boundary scheme is proposed within the frame-
work of the material point method (MPM) that is an ex-
tension from Computational Fluid Dynamics to Compu-
tational Solid Dynamics. Because the MPM does not em-
ploy fixed mesh connectivity, a robust spatial discretiza-
tion procedure in the moving domain of influence could
be designed by applying viscous damping forces along
the computational boundary. To establish a simple in-
terface between the discretization procedures with and
without fixed mesh connectivity, a boundary layer is in-
troduced to implement the continuously distributed vis-
cous damping forces along the moving computational
boundary. To verify the proposed procedure, a paramet-
ric study is conducted with plane strain and oblique im-
pact problems. The application to the model-based simu-
lation of film delamination then demonstrates the poten-
tial of the proposed procedure in simulating the evolution
of localized failure with different degrees of discontinu-
ity under dynamic loading.

keyword: Silent Boundary; MPM; Film Delamination;
Dynamic Failure

1 Introduction

The evolution of dynamic structural failure in a severe
environment often involves localization, thermal soften-
ing, damage diffusion, debonding, phase transition and
fragmentation. So far, accurate constitutive models and
efficient numerical solvers are still under development
for the first-principle simulation of multi-physical phe-
nomena involved in the evolution of dynamic structural
failure, as can be found in the open literature. With re-
spect to the spatial discretization methods, conventional

1 UMC, Columbia, MO, USA
2 UMC, Columbia, MO, USA;
Corresponding Author: chenzh@missouri.edu

mesh-based methods, such as the finite element method
and finite difference method, are often handicapped when
moving localization and subsequent transitions from con-
tinuous to discontinuous failure modes occur. There-
fore, the “meshless” methods, such as the smooth par-
ticle hydrodynamics (SPH) method [Monaghan (1992)],
the element free Galerkin (EFG) method [Belytschko,
Lu and Gu (1994)], the Meshless Local Petrov-Galerkin
(MLPG) method [Atluri (2004); Atluri, Han and Rajen-
dran (2004)] and the material point method (MPM) [Sul-
sky, Chen and Schreyer (1994)], which do not employ
fixed mesh connectivity, have been proposed in the re-
search community to accommodate the multi-degree dis-
continuities involved in the failure evolution. However,
these innovative numerical methods have not found their
way successfully into general practical applications due
to some unsolved problems such as moving boundary
treatments, large rotation, and interactions among dif-
ferent material phases, although academic exercises have
demonstrated their robustness and potential in simulating
certain representative problems.

As one of the recently developed spatial discretiza-
tion methods, the MPM is an extension to solid me-
chanics problems of a hydrodynamics code which, in
turn, evolved from the particle-in-cell method, as de-
scribed in the representative references [Chen, Hu, Shen,
Xin and Brannon (2002); Sulsky, Chen and Schreyer
(1994)]. The motivation of the development was to simu-
late those problems with history-dependent internal state
variables, such as contact/impact, penetration/perforation
and metal forming without invoking master/slave nodes
and global remeshing. The essential idea is to take ad-
vantages of both Eulerian and Lagrangian methods. Al-
though the MPM could effectively handle localized large
deformations and subsequent transitions from continuous
to discontinuous failure modes involved in the evolution
of dynamic failure as compared with conventional mesh-
based methods, it would double the computational cost
associated with the spatial discretization process due to
the use of double-mapping procedure. This issue be-
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comes serious when the problem domain is infinite or the
failure region is small in a finite problem domain. With
the limited resources, hence, it is often necessary to focus
on a small computational domain instead of discretizing
the whole problem domain for dynamic failure analysis.

To prevent outwardly radiating waves from being re-
flected by the computational boundaries, several kinds of
numerical methods for the treatment of absorbing bound-
aries, i.e., silent boundaries, have been proposed with
certain success for the mesh-based methods, as shown
by the representative references [Cohen and Jennings
(1983); Lysmer and Kuhlemeyer (1969); White, Valli-
appan and Lee (1977)]. By applying viscous damping
forces along the computational boundary, Lysemer and
Kuhlemeyer (1969) proposed an approach which can ef-
fectively absorb, rather than reflect, the radiant energy.As
reviewed by Cohen and Jennings (1983), this approach
is not only relatively easy to implement, but also quite
accurate in treating both dilatational and shear waves in
many applications. To extend Lysmer and Kuhlemeyer’s
method to the case of anisotropic materials, White, Val-
liappan and Lee (1977) proposed an improved version,
namely, a “unified” viscous boundary method. For the
isotropic materials, however, no significant improvement
upon the Lysmer-Kuhlemeyer’s method could be found
while the numerical implementation of the “unified” vis-
cous boundary is much more complicated. Although
the extended-paraxial boundary method [Cohen and Jen-
nings (1983)], which was derived originally from one-
directional wave theories, better eliminates wave reflec-
tions based on a theoretical comparison, actual numerical
tests reveal only a small superiority over the Lysmer and
Kuhlemeyer’s scheme. The numerical implementation
of the extended-paraxial boundary method is also quite
complicated as compared with other viscous boundary
approaches [Cohen and Jennings (1983)].

So far, the use of silent boundary methods in numer-
ical simulation is mainly limited to the conventional
mesh-based methods, as can be found in the open litera-
ture. With the increased use of unconventional discretiza-
tion methods in dynamic failure analysis, especially in
multi-scale simulation of micro-electromechanical sys-
tem (MEMS) responses under extreme loading condi-
tions, it is therefore desirable to develop robust silent
boundary schemes based on the unique features of dif-
ferent spatial discretization methods which are suitable
for various engineering problems.

Thin film is one of important components in MEMS
so that a thorough understanding of film delamination
mechanisms is crucial in designing and fabricating the
microdevices that can have normal function under ex-
treme environments. The delamination of compressed
films has been studied by many researchers in both
academia and industry, as shown by representative ref-
erences [Chen, Shen, Mai and Shen (2004); Gioia and
Oritz (1997); Hutchinson and Suo (1991)]. Based on the
experimental observation of the transition from compres-
sive to tensile stress as a function of argon gas pressure
in magnetron sputter-deposited films [Shen, Mai, Zhang,
McKenzie, Fall and McBride (2000)], Chen, Shen, Mai
and Shen (2004) proposed that the delamination of com-
pressed films is due to the formation and evolution of
localization, depending on different stress states in the
domain of influence, which characterizes the interaction
between geometrical and material instabilities. A nu-
merical effort has been made to investigate the transition
from inelastic flow to decohesion involved in tungsten
film delamination from the silicon substrate. Since the
yield strength of silicon is much higher than that of tung-
sten, only a small part of the silicon substrate with its bot-
tom surface being fixed was discretized with the MPM,
without considering the whole problem domain in order
to reduce the computational cost [Chen, Shen, Mai and
Shen (2004)]. With the existing MPM, the numerical
study of the effects of aspect ratio and failure mode on
the evolution of failure patterns under different boundary
conditions provided new insight into the mechanisms of
film delamination, but the use of a small computational
domain instead of the realistic physical domain remains
to be justified. An immediate consequence of using a re-
duced domain for the silicon substrate is that the reflected
stress waves from the fixed boundary may interfere with
the failure patterns, while in a real film-substrate problem
the substrate domain is almost infinite as compared with
the film thickness. Therefore, an effective silent bound-
ary method is needed to reduce the reflection of incident
stress waves from the boundary if only a small computa-
tional domain is employed in the simulation of film de-
lamination.

The remaining sections of the paper are organized as
follows. For the paper to be self-contained, the theory
of Lysmer-Kuhlemeyer’s viscous boundary is briefly de-
scribed in Section 2. Based on the framework of the
MPM, a silent boundary method is then developed and
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implemented in Section 3. To evaluate the effectiveness
of the proposed procedure, a parametric study is con-
ducted with plane strain and oblique impact problems in
Section 4. To demonstrate the potential of the proposed
procedure in simulating dynamic failure evolution, the
delamination of film is simulated with and without us-
ing the silent boundary, respectively, in Section 5. The
conclusions are made in the last section.

2 A silent boundary for transient analysis

In the approach proposed by Lysmer and Kuhlemeyer
(1969), the reflected stress waves are effectively reduced
by applying viscous damping stresses to the computa-
tional boundary. The approach, which is directly analo-
gous to the use of viscous dashpots, is not only relatively
easy to implement, but also quite accurate in treating both
dilatational and shear waves in many applications. The
viscous damping forces, or dashpots, have another ad-
vantage, because they do not depend on the frequencies
of the transmitted stress waves. The technique is thus
suitable for transient analysis.

The basic idea of Lysmer and Kuhlemeyer’s approach
is illustrated in Fig. 1 for a plane strain problem. As
can be seen from Fig. 1, the distributed viscous damp-
ing stresses, σbd and τbd, are applied continuously along
the computational boundary which is otherwise free of
any stress. As a result, the incoming stress waves are ab-
sorbed by these viscous damping stresses at the bound-
ary, namely

σin +σbd ≈ 0, and τin +τbd ≈ 0 (1)

where σin and τin are the incident stresses. Thus, the
equilibrium condition at the silent boundary,

(σin +σbd)+σr f = 0, and (τin +τbd)+τr f = 0, (2)

causes the reflected wave stresses, σr f and τr f , to be zero.

Lysmer and Kuhlemeyer (1969) proposed one set of the
applied viscous damping stresses as follows:

σbd = −ρcdvx, and τbd = −ρcsvy (3)

where ρ is the mass density of material, vx and vy are
the particle velocities in the x- and y- directions, respec-
tively, cd is the velocity of dilatational wave and cs is
the velocity of shear wave. These applied stresses are

σbd

τbd

Silent 
Boundary

α

Wave 
Front

y

x

Figure 1 : Schematic drawing of a silent boundary with
the use of viscous damping stresses.

clearly dissipative and independent on the frequencies
of the transmitted waves. Based on Lysmer and Kuhle-
meyer’s scheme, a silent boundary method is developed
within the framework of the MPM as follows.

3 A silent boundary method with the MPM

As can be found from the representative references
[Atluri and Zhu (2000); Belytschko, Krongauz, Organ,
Fleming and Krysl (1996); Chen, Hu, Shen, Xin and
Brannon (2002)], the key difference among different spa-
tial discretization methods (mesh-based or meshfree) is
the way in which the gradient and divergence terms are
calculated. To show how a silent boundary method could
be developed without the use of fixed mesh connectiv-
ity, the basic framework of several versions of the MPM
[Bardenhagen and Kober (2004); Chen, Hu, Shen, Xin
and Brannon (2002); Sulsky, Chen and Schreyer (1994);
Nairn (2003); Sulsky, Zhou and Schreyer (1995); among
others] is outlined as below.

The MPM discretizes a continuum body with the use of
a finite set of Np material points in the original config-
uration that are tracked throughout the deformation pro-
cess. Let xt

p (p = 1, 2, . . . , Np) denote the current posi-
tion of material point p at time t. Each material point at
time t has an associated mass Mp, density ρt

p, velocity vt
p,

Cauchy stress tensor st
p, strain et

p, and internal state vari-
ables necessary for the constitutive model. Thus, these
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material points provide a Lagrangian description of the
continuum body. At each time step, the information from
the material points is mapped to a background computa-
tional mesh which covers the computational domain of
interest, and is chosen for computational convenience.
After the information is mapped from the material points
to the mesh nodes, the discrete equations of the conser-
vation of momentum can be solved on the mesh nodes.
The weak form of the conservation of momentum can be
found, based on the standard procedure used in the finite
element method, to be
∫

Ω
ρw ·adΩ = −

∫
Ω

ρss : ∇wdΩ+
∫

Sc
ρcs ·wdS (4)

in which w denotes the test function, a is the accelera-
tion, ss is the specific stress (i.e., stress divided by mass
density), cs is the specific traction vector (i.e., traction
divided by mass density), Ω is the current configuration
of the continuum, Sc is that part of the boundary with
a prescribed traction. Note that the body force term is
neglected here for the purpose of simplicity. Since the
whole continuum body is described with the use of a fi-
nite set of material points, the mass density term can be
written as

ρ(x, t) =
Np

∑
p=1

Mp δ
(
x−xt

p

)
(5)

where δ is the Dirac delta function with dimension of the
inverse of the representative volume around the material
point p. As a result, ρ(xp, t) represents the mass density
associated with the material point p.

The substitution of Eq. 5 into Eq. 4 converts the integrals
to the sums of quantities evaluated at the material points,
namely

Np

∑
p=1

Mp
[
w

(
xt

p, t
) ·a(

xt
p, t

)]

=
Np

∑
p=1

Mp

[
−ss (xt

p, t
)

: ∇w|xt
p
+w

(
xt

p, t
) · cs (xt

p, t
)

h−1
]

(6)

with h being the width of the boundary layer of the repre-
sentative volume around material point p, which is cru-
cial in enforcing moving boundary conditions as shown
later. As can be seen from Eq. 6, the interactions among

different material points are reflected only through the
gradient terms, and a suitable set of material points must
be chosen to represent the boundary layer.

In the MPM, a background computational mesh is re-
quired to calculate the gradient terms, which is con-
structed of a suitable set of cells employed to define stan-
dard nodal basis functions. The nodal basis functions are
assembled from conventional finite element shape func-
tions. For two-dimensional problems, a 4-node cell can
be used with the linear shape functions given as follows:

N1 = (1−ζ)(1−η) (7a)

N2 = ζ(1−η) (7b)

N3 = ζ η (7c)

N4 = (1−ζ)η (7d)

where ζ and η are the natural coordinates of a mate-
rial point p in a computational cell along the x- and y-
directions, respectively, as shown in Fig. 2(a). For ex-
ample, the natural coordinates of points (1) - (4) in Fig.
2(a) are (0, 0), (1, 0), (1, 1) and (0, 1), respectively, while
the center point p has natural coordinates of (0.5, 0.5).
The coordinates of any material point in a cell can then
be represented by

xt
p =

Nn

∑
i=1

xt
iNi

(
xt

p

)
(8)

with Nn being the total number of mesh nodes and xt
i

denoting nodal coordinates. If the displacements of any
material point in a cell are defined by the nodal displace-
ments, ut

i (t), it follows that

ut
p =

Nn

∑
i=1

ut
iNi

(
xt

p

)
(9)

Since the material time rates of the basis functions must
be zero, it follows that the velocity and acceleration of
any material point in a cell are represented by

v t
p =

Nn

∑
i=1

vt
iNi

(
xt

p

)
(10)

and

a t
p =

Nn

∑
i=1

at
iNi

(
xt

p

)
(11)
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with vt
i and at

i being nodal velocities and accelerations,
respectively. The test function also takes a similar form,

w t
p =

Nn

∑
i=1

wt
iNi

(
xt

p

)
(12)

The use of Eqs. 8-12 ensures that the associated vector
fields are continuous across the cell boundary. However,
the gradients of these vectors are not continuous across
the cell boundary due to the use of linear shape functions.

Substituting Eqs. 11 and 12 into Eq. 6 yields

Nn

∑
i=1

wt
i ·

Nn

∑
i=1

mt
i ja

t
j = −

Nn

∑
i=1

wt
i ·

Np

∑
i=1

Mp ss,t
p · ∇Ni|xt

p
+

Nn

∑
i=1

wt
i ·ct

i

(13)

at time t. In Eq. (13), the consistent mass matrix is given
by

mt
i j =

Np

∑
p=1

MpNi
(
xt

p

)
Nj

(
xt

p

)
(14)

with the corresponding lumped nodal masses

mt
i =

Np

∑
p=1

MpNi
(
xt

p

)
(15)

The discrete specific traction takes the form of

c t
i =

Np

∑
p=1

Mp cs,t
p h−1Ni

(
xt

p

)
(16)

with cs,t
p = cs

(
xt

p, t
)
. Since wt

i are arbitrary except that
the essential boundary conditions must be satisfied, Eq.
13 becomes

mt
i a

t
i =

(
ft
i

)int +
(
ft
i

)ext
(17)

for a lumped mass matrix, where the internal force vector
is given by

(
f t
i

)int = −
Np

∑
p=1

Mp ss,t
p ·Gi

(
xt

p

)
(18)

with ss,t
p = ss

(
xt

p, t
)

and Gi
(
xt

p

)
= ∇Ni|xt

p
, and the exter-

nal force vector takes the form of
(
f t
i

)ext = ct
i (19)

As can be observed from Eqs. 15, 16 and 18, the infor-
mation is mapped from material points to the nodes of
the cells containing these points through the use of shape
functions. Eq. 17 is solved on the cell nodes, and the
solutions are then mapped back to the material points to
update the associated variables.

Once the material points have been completely updated,
the computational cycle is complete for this time step.
The computational mesh used in the current cycle may
be discarded, and a new mesh is defined, if desired, for
the next time step, in the spirit of the updated Lagrangian
frame. The key feature of the MPM is the use of the same
set of nodal basis functions for both mapping from mate-
rial points to cell nodes, and mapping from cell nodes
to material points. As a result, the use of the single-
valued mapping functions yields a natural non-slip con-
tact/impact scheme so that no inter-penetration would oc-
cur. However, the treatments for boundary conditions
and discontinuities in the existing MPM are not satisfac-
tory because the scale effect associated with the width of
the boundary layer, as defined by the size of boundary
cell and corresponding number of material points, is still
not clear. Hence, the existing MPM must be modified to
simulate the tractions applied to a moving boundary, as
discussed next.

Since the equations of motion are solved on the cell
nodes, it is convenient to enforce both essential and nat-
ural boundary conditions on the nodes of the cells con-
taining the boundary material points. For the essential
boundary conditions, this treatment is consistent with the
weak form of the governing equations because w is taken
to be zero on the essential boundary. For the moving
natural boundary conditions, it is proposed that the trac-
tions be carried by the boundary material points, which
are mapped to the nodes of the cells containing these ma-
terial points at a given time. Thus, the external force vec-
tor can be formed on the cell nodes. If only boundary
point(s) is located in a cell, the cell boundary becomes a
part of the physical boundary, and the cell size represents
the width of boundary layer. If both boundary and inte-
rior material points are located in a cell within any time
step, this cell becomes a mixed one. However, the mixed
cell is still treated as a boundary cell in that time step. To
reduce numerical errors, therefore, small cells must be
used to contain only boundary points if possible, and the
boundary conditions must be enforced in each time step.
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Figure 2 : (a) Illustration of the natural coordinates for an
MPM cell; (b) Distribution of the viscous stresses applied
to the boundary cells in the MPM.

As can been seen in Fig. 1, the viscous damping stresses
are applied continuously along the computational bound-
ary. In the proposed procedure, these continuously dis-
tributed stresses are first discretized onto the material
points, and then mapped onto the related cell nodes by
using the shape functions. As a result, the applied vis-
cous damping stresses can be considered as the exter-
nal forces acting on the background computational mesh
nodes.

To illustrate the proposed procedure, consider a two-
dimensional plate with the x-component of velocity, vx,
being used for calculating the viscous damping stresses,
as shown in Fig. 2(b). The cells on the right column are
considered as the boundary layer in this case. Note that
the thickness of the plate is chosen to be one, and that the
width of boundary layer is the cell width.

Node 5 is chosen as an example to illustrate the proce-
dure of assembling the external tractions from bound-

ary material points to related cell nodes. The viscous
damping forces carried by material points 2 and 4 will
be mapped to cell node 5 by using the corresponding
shape functions. Based on Eqs. 7, 16 and 19, the x-
component of the external force acting at cell node 5,
( f t

5x)
ext , is given by,

( f t
5x)

ext = M2
τt

2x

ρ2
(∆x)−1N4(xt

2)+M4
τt

4x

ρ4
(∆x)−1N1(xt

4)

= τt
2x∆y(1−ζ)η+τt

4x∆y(1−ζ)(1−η) (20)

where ∆x and ∆y are the cell sizes in the x- and y- direc-
tions, respectively, and the tractions along the computa-
tional boundary are given by

τ t
2x = −ρ2cd2v2x (21a)

τ t
4x = −ρ4cd4v4x (21b)

with ρi and cdi being the mass density and longitudinal
wave velocity of material point i, respectively, and vix

being the particle velocity of material point i in the x-
direction. A similar procedure can be employed to imple-
ment the viscous shear stresses by using the correspond-
ing wave velocity and particle velocity of the material.

4 Evaluation of the proposed procedure

To evaluate the effectiveness of the proposed silent
boundary method with the MPM, a parametric study is
conducted here with a plane strain problem under differ-
ent boundary conditions as shown in Fig. 3. Two dif-
ferent kinds of external loads, namely, pure compressive
pulse and pure shear pulse, are applied along the left side
of the plate, respectively. Three different boundary con-
ditions, i.e., free boundary, silent boundary, and extended
region with free boundary, are employed along the right
side of the plate. The stress histories of point A in Fig. 3
are monitored and compared among three different kinds
of boundary conditions.

As shown in Fig. 3, the dimensions of the 2-D plate are
Lx =50 mm, Ly =200 mm and Lext =100 mm, respec-
tively. The distance from point A to the top surface is
100 mm and point A is located 40 mm to the left side.
The computational grid consists of square cells with each
side being 1 mm long. Initially, one material point per
cell is used to discretize the plate. The time step is ∆ t=
4 x 10−8s. The magnitude and duration of the pulse are
F0 =200 MPa and t0 = 2 x 10−5s, respectively, as shown
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in Fig. 4. The material properties for the simulated plate
are given based on tungsten (to study the film delamina-
tion later), namely, Young’s modulus E =411 GPa, Pois-
son’s ratio ν = 0.28, mass density ρ = 15 x 103kg/m3 and
yield strength σy =1.0 GPa.
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Figure 3 : Schematic drawings of the different boundary
conditions: (a) free boundary, (b) silent boundary by us-
ing viscous stresses (σxx, τxy), and (c) extended problem
domain.
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Figure 4 : Time history of the applied pulse.

Fig. 5 demonstrates the longitudinal stress (σxx) histo-
ries of point A under different boundary conditions with
a pure compressive pulse being applied along the left
boundary. As can be seen, the reflected wave, which oc-
curs in the free boundary case, is effectively eliminated
by using the silent boundary. The two longitudinal stress
histories are identical between the silent boundary case
and the extended region case. The elimination of the re-
flected wave can also be seen from the lateral stress (σyy)
histories of point A in Fig. 6. Note that the shapes of the

output waves are not the same as those input pulses since
the wave fronts are damped out by the MPM during the
simulation.

-200

-160

-120

-80

-40

0

40

80

120

160

0.E+0 5.E-6 1.E-5 2.E-5 2.E-5

Time(s)

Lo
ng

itu
di

an
l S

tre
ss

 (M
Pa

)

free end
silent boundary
extended

Figure 5 : Longitudinal stress histories of point A under
pure compressive pulse loading.
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Figure 6 : Lateral stress histories of point A under pure
compressive pulse loading.

The shear stress (τxy) histories of point A under different
boundary conditions with a pure shear pulse being ap-
plied along the left side are shown in Fig. 7. In the pure
shear loading case, the x-direction displacements of the
material points along both bottom and top surfaces are
kept zero in order to eliminate the bending effect due to
the applied shear loads, and to create pure shear stress
waves in the plate. Again, by using the silent boundary,
the reflected shear waves can be effectively eliminated.



312 Copyright c© 2005 Tech Science Press CMES, vol.7, no.3, pp.305-320, 2005

-120

-80

-40

0

40

80

120

0.0E+0 5.0E-6 1.0E-5 1.5E-5 2.0E-5 2.5E-5

Time(s)

Sh
ea

r S
tre

ss
 (M

Pa
) free end

silent boundary
extended

Figure 7 : Shear stress histories of point A under pure
shear pulse loading.

To further evaluate the effectiveness of the proposed
silent boundary scheme, a plane strain problem with an
aluminum plate impacting a steel plate is investigated
with the MPM. As shown in Fig. 8, the aluminum plate
impacts the initially stationary steel plate with a veloc-
ity of 10 m/s in the x-direction. Three boundary con-
ditions are considered for the steel plate, namely, free
boundary, silent boundary and extended region with free
boundary, as shown in Figs. 8(a)-(c), respectively. The
material properties are given as follows. For aluminum,
Young’s modulus is 70 GPa, yield strength 200 MPa,
density 2,700 kg/m3, and Poisson’s ratio 0.33. For steel,
Young’s modulus is 200 GPa, yield strength 400 MPa,
density 7,800 kg/m3 and Poisson’s ratio 0.3.

The longitudinal stress histories at points B and C for all
three cases are presented in Figs. 9 and 10, respectively.
As can be found from the figures, the silent boundary can
effectively eliminate the stress wave reflection from the
boundary even though the incoming stress waves do not
normally impinge on the boundary in the impact prob-
lem.

To investigate the mesh and material point convergence
behaviors of the proposed silent boundary scheme with
the MPM, consider a plane strain problem with a rectan-
gular aluminum plate impacting a stationary steel plate.
These two plates are geometrically identical, as shown
in Fig. 11. Point D is located at the center of the plate.
The impact velocity of the aluminum plate is 10 m/s. A
silent boundary is applied along the right edge of the steel
plate. The material properties are the same as given in the
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Figure 8 : Configuration of the impact problem for eval-
uating the silent boundary method (length unit: m). (a)
free boundary. (b) silent boundary. (c) extended region.

previous impact problem.

To study the mesh convergence of the proposed proce-
dure, three different square cell sizes, namely, 0.01 m,
0.005 m, and 0.002 m, are used with each background
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Figure 9 : Longitudinal stress history of point B.
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Figure 10 : Longitudinal stress history of point C.

cell containing one material point initially. Fig. 12 shows
the time histories of the longitudinal stress (along the im-
pact direction) of point D in the steel plate with different
cell sizes. It can be seen from Fig. 12 that the stress his-
tory of point D converges when the cell size is refined.

To investigate the convergence of the proposed proce-
dure with regard to the number of material points in each
cell in the MPM, we initially assign each background
cell with 1, 4 and 9 material points, respectively. The
length of each square cell is 0.01 m. Fig. 13 presents the
time histories of the longitudinal stress (along the im-
pact direction) of point D in the steel plate by initially
assigning different numbers of material points in each
cell. It appears from the figure that the stress history at
point D converges as the number of points in each cell
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Figure 11 : Configuration of the impact problem for con-
vergence study.
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Figure 12 : Time histories of longitudinal stress of point
D by using different cell sizes.

increases. Therefore, both mesh and point convergences
can be obtained by using the proposed silent boundary
scheme with the MPM.

Note that the use of silent boundary would not result
in a perceptible increase of computational time as can
be found from Eqs. 20 and 21. Therefore, the pro-
posed silent boundary method could be effectively used
in a moving domain of influence without discretizing the
whole physical domain.

5 Application to a film delamination problem

The delamination of compressed films in MEMS is a
challenging topic of current interests, which has been in-
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Figure 13 : Time histories of longitudinal stress of point
D with different numbers of material points in each cell.

vestigated by many researchers in both academia and in-
dustry, as shown by representative papers [Chen, Shen,
Mai and Shen (2004); Crosby and Bradley (1999); Gioia
and Oritz (1997); Hutchinson and Suo (1991); Hutchin-
son, Thouless and Liniger (1992)]. The studies have in
general been based on conventional elastic stability the-
ory and interfacial fracture mechanics, with a focus on
the stability of blisters of simple shapes. Recently, much
research has been conducted to model and simulate pat-
tern formation during the delamination process, based
on the buckling-driven mechanism [Crosby and Bradley
(1999); Gioia and Oritz (1997)]. However, the under-
standing of the transition from continuous to discontinu-
ous failure modes involved in the multi-scale delamina-
tion remains to be at the infant stage.

It was observed by Shen, Mai, Zhang, McKenzie, Fall
and McBride (2000) that the residual stresses in the tung-
sten thin films prepared by magnetron sputtering depend
strongly on the sputtering-gas pressure and change from
being highly tensile to being highly compressive in a rel-
atively narrow argon gas pressure range. After carefully
reviewing all the pictures collected from the recent exper-
iments, Chen, Shen, Mai and Shen (2004) have proposed
that the delamination of compressed films is essentially
due to the interaction between geometrical and material
instabilities which results in the formation and evolution
of localization, depending on different stress states in
the domain of influence. A numerical effort has there-
fore been made to investigate the transition from con-
tinuous to discontinuous failure modes involved in tung-
sten film delamination from the silicon substrate. The

onset and orientation of discontinuous failure is identi-
fied from the discontinuous bifurcation analysis of acous-
tic tensor [Chen and Fang (2001); Shen, Liu and Chen
(2001)].Based on the previous work [Schreyer, Sulky and
Zhou (1999); Xu and Needleman (1994)], a discrete con-
stitutive model has then been formulated via the bifurca-
tion analysis to predict the evolution of material failure
as decohesion or separation of continuum. The MPM
is employed as a robust spatial discretization method to
accommodate the multi-degree discontinuities involved
in the film delamination. In order to reduce the compu-
tational cost, only a small part of the silicon substrate
with its bottom surface being fixed was discretized, in
the previous work [Chen, Shen, Mai and Shen (2004)],
since the yield strength of silicon is much higher than
that of tungsten. An immediate consequence of using a
reduced thickness for the silicon substrate is that the re-
flected stress waves from the fixed boundary may affect
the failure patterns of tungsten film. Since no stress wave
reflection exists in a real film-substrate problem due to
the huge size of the substrate domain as compared with
the film thickness, the proposed procedure is used here
to explore the mechanisms of film delamination without
the interference of the stress wave reflections from the
computational boundary.

We apply a silent boundary to the otherwise fixed bound-
ary on the bottom surface of silicon substrate in the tung-
sten film delamination problem. Three different cases,
i.e., a small domain of silicon layer with its bottom sur-
face being fixed, a large domain of silicon layer with its
bottom surface being fixed, and a small domain of sili-
con layer with a silent boundary applied along its bottom
surface, are employed to investigate the effectiveness of
the silent boundary method in preventing the stress wave
reflection. To be complete, a brief introduction of the nu-
merical models proposed by Chen, Shen, Mai and Shen
(2004), and the problem geometry are given as below.

As can be seen from Fig. 14, discontinuous bifurcation
can occur before, at or after the peak state, depending on
the continuum tangent stiffness tensor and stress state.
For the purpose of simplicity, the discontinuous bifurca-
tion analysis can be performed based on an associated
von Mises eleasto-plasticity model with a linear hard-
ening and softening law. Thus, mesh-insensitive results
could be obtained since the location and orientation of
the cohesive surfaces are determined via the discontinu-
ous bifurcation analysis. After the bifurcation is identi-
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fied, decohesion is active until cohesive strength becomes
zero. A linear decohesion-traction relation is assumed.
For more information regarding the bifurcation analysis
and the decohesion model, the reader is referred to the
reference [Chen, Shen, Mai and Shen (2004)].

For a plane strain problem, the geometry and boundary
conditions are shown in Fig. 15. The length of tungsten
film is L= 10 µm, the thickness of tungsten film is ht =

2.5 µm, and the thickness of silicon substrate is either
hs =5 µm [with bottom line being fixed, as shown in Fig.
15(a), or with a silent boundary, as shown in Fig. 15(b)],
or hs =15 µm [extended substrate thickness with bottom
line being fixed, as shown in Fig. 15(a)].

Before the discontinuous bifurcation occurs, the asso-
ciated von Mises elastoplasticity model with a linear
hardening/softening law is used for tungsten, for which
Young’s modulus E =411 GPa, Poisson’s ratio ν = 0.28,
mass density ρ = 15 x 103kg/m3, hardening modulus
Eh = 64 GPa, and softening modulus Es = Eh /100 are
assigned. In addition, yield strength and peak strength
are adjusted to be σy = 1.5 GPa and σp = 1.55 GPa,
respectively, to represent approximately the rate effect
in dynamic cases. After bifurcation occurs, the discrete
constitutive model is active for mixed mode failure. An
elasto-perfectly-plastic von Mises model is employed for
silicon, with Young’s modulus E = 107 GPa, Poisson’s
ratio ν = 0.42, mass density ρ = 3,200 kg/m3, and yield
strength σy = 8.0 GPa. Decohesion is not active inside
silicon due to the very high yield strength of silicon. A
step stress of F =1.3 GPa is uniformly applied along both
sides of tungsten to simulate the dynamic loading.

The computational grid consists of square cells with each
side being 0.1 µm long. Initially, one material point per
cell is used to discretize both tungsten and silicon. To
observe the deformation patterns clearly, the deforma-
tion field is magnified by 10 times in both x- and y-
directions. The stress histories of points E and F are
monitored. Points E and F are both located 0.05 µm be-
low the tungsten-silicon interface. The distance from the
left side to point E is 4.95 µm, and to point F is 0.95 µm.

The failure patterns of film at time t= 2.88x10−9s with
different boundary conditions are shown in Figs. 16-
18. The failure pattern of film by using a fixed boundary
along the bottom line of the silicon substrate with hs =5
µm is given in Fig. 16. Figs. 17 and 18 demonstrate the
deformation fields of film by extending the thickness of
silicon layer to hs =15 µm, and by using a silent bound-
ary along the bottom surface of silicon layer with hs =5
µm, respectively. Note that in order to compare the fail-
ure patterns from the same part of the structure among
the three cases, only the deformation field of tungsten
film and the upper part of silicon layer with thickness of
5 µm is presented in Fig. 17. By comparing all the fail-
ure patterns in Figs. 16-18, we find that Fig. 18 has more
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Figure 16 : Failure pattern of film with the bottom sur-
face of the substrate being fixed.
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Figure 17 : Failure pattern of film by using an extended
thickness of substrate.

in common with Fig. 17 than with Fig. 16. The straight
bottom line in Fig. 16 is clearly different from the curved
line in Fig. 17, while Fig. 18 illustrates an almost identi-
cal curved bottom line as shown in Fig. 17. Certainly, the
bending of bottom line has influence on the deformation
field of tungsten film since in this case the top part of the
structure could be compressed more, as can be seen from
the figures.

The influence of reflected stress waves on the stress field
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Figure 18 : Failure pattern of film by using a silent
boundary along the bottom surface of substrate.
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Figure 19 : Time histories of lateral stress at point E
under different boundary conditions.

could be quantitatively studied by monitoring the stress
histories at points E and F. Figs. 19 and 20 present the
time histories of the lateral stress (σyy) at points E and
F, respectively. The arrival of the incoming wave is evi-
dent, and all three cases show identical stress histories in
the beginning. The effect of subsequent wave reflections
caused by the fixed boundary on the stress histories can
be seen from Figs. 19 and 20, while the silent bound-
ary is effective in eliminating the wave reflections from
the computational boundary, although it might damp out
certain waves.
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Figure 20 : Time histories of lateral stress at point F
under different boundary conditions.
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Figure 21 : The time histories of J2 at point E with dif-
ferent cell sizes.

Note that if the same thickness of silicon layer is used, no
noticeable increase of computational time is found by us-
ing a silent boundary as compared to that by using a fixed
boundary. By using a silent boundary instead of a fixed
boundary in a finite computational domain, hence, we
can effectively reduce the effect of stress wave reflection
on the evolution of dynamic failure without discretizing
the whole problem domain.

To study the mesh convergence of the proposed proce-
dure for simulating film delamination, three different cell
sizes, namely, 0.05 µm (fine), 0.1 µm (medium), and
0.167 µm (coarse), are used with all other simulation con-
ditions being the same as those in the case corresponding
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Figure 22 : The time histories of J2 at point F with dif-
ferent cell sizes.

to Fig. 15(b). Figs. 21 and 22 illustrate the time histories
of the second invariant of deviatoric stress, J2, at points
E and F with different cell sizes, respectively. It seems
from Figs. 21 and 22 that the stress histories at points
E and F converge initially as the mesh size decreases,
while both diverge when the decohesion in the film oc-
curs. However, the divergence of the stress at point E is
severer than that at point F since point E is closer to the
film failure area. The lack of convergence in Figs. 21 and
22 reveals the limitation of the current decohesion model,
since the convergence behaviors of the proposed silent
boundary scheme with the MPM have been verified by a
plane strain problem with a rectangular aluminum plate
impacting a stationary steel plate, as can be found from
Figs. 12 and 13.

To further investigate the convergence of the proposed
procedure with respect to the number of material points
in each cell of the MPM, 1, 4 and 9 material points are
initially assigned to each background cell, respectively,
with all other simulation conditions being the same as
those in the case corresponding to Fig. 15 (b). Figs. 23
and 24 demonstrate the time histories of J2 at points E
and F with different number of material points in each
cell. Fig. 24 suggests the convergence of stress at point
F as the number of points in each cell increases, while
the convergence of the stress history at point E is less
satisfactory, as shown in Fig. 23.

As can be seen from Figs. 21-24, the convergence with
regard to the number of material points per cell is better
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Figure 23 : The time histories of J2 at point E with dif-
ferent numbers of material points in each cell.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0E+00 5.0E-10 1.0E-09 1.5E-09 2.0E-09 2.5E-09
Time (s)

J2
 (G

Pa
)

9 points/cell
4 points/cell
1 point/cell

Figure 24 : The time histories of J2 at point F with dif-
ferent numbers of material points in each cell.

than that with regard to the cell size, although the over-
all convergence performance of the proposed procedure
for simulating film delamination is not satisfactory. It
appears that the lack of convergence in these figures is
mainly due to the limitation of the current decohesion
model in treating the transition from continuous to dis-
continuous failure modes. The further improvement of
the decohesion model and its implementation into the
MPM and/or other spatial discretization methods are be-
yond the scope of the current paper.

6 Conclusions

Based on the framework of the MPM, a simple silent
boundary method is developed in this paper for dynamic
analyses. As a result, the evolution of dynamic defor-
mation could be simulated in a small computational do-
main without discreticizing the whole problem domain.
To resolve the inherent difficulty in enforcing moving
natural boundary conditions in the MPM, the concept
of boundary layer is introduced to implement the con-
tinuously distributed viscous damping forces along the
moving computational boundary. Thus, a zoom-in and
zoom-out procedure could be developed, by adjusting the
moving computational boundary, to simulate a particular
domain of interest. As can be found from the parametric
study and oblique impact problems, the proposed numer-
ical procedure could effectively reduce the reflection of
incident longitudinal, lateral and shear stress waves with
good convergence in terms of both the mesh size and the
number of material points per cell in the MPM. The ap-
plication to the model-based simulation of film delami-
nation further demonstrates the potential of the proposed
computational procedure in simulating the evolution of
dynamic failure of multi-degree discontinuities involved
in a moving domain of influence. A better understand-
ing on the failure mechanisms of film delamination could
be obtained with the use of the proposed silent boundary
method, as compared with the previous study by using
a fixed boundary. However, the corresponding conver-
gence study shows that the overall convergence perfor-
mance is not satisfactory after decohesion occurs, which
reveals the limitation of the current decohesion model.
The finding that convergence is more closely tied to the
number of particles in each cell than cell size could pro-
vide useful information for improving the convergence of
the decohesion model in the future study. An integrated
analytical and numerical study is required to further im-
prove the convergence behaviors of the proposed proce-
dure for simulating film delamination in general cases.
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