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Mining of Data from Evolutionary Algorithms for Improving Design Optimization

Y.S. Lian1 and M.S. Liou2

Abstract: This paper focuses on integration of compu-
tational methods for design optimization based on data
mining and knowledge discovery. We propose to use ra-
dial basis function neural networks to analyze the large
database generated from evolutionary algorithms and to
extract the cause-effect relationship, between the objec-
tive functions and the input design variables. The aim
is to improve the optimization process by either reducing
the computation cost or improving the optimal. Also, it is
hoped to provide designers with the salient design pattern
about the problem under consideration, from the physics-
based simulations. The proposed technique is applied
to both academic problems and real-world problems, in-
cluding optimization of an airfoil and the turbopump of
a cryogenic rocket engine. Our results demonstrate that
these techniques can further improve the design already
achieved by the evolutionary algorithms with a slightly
additional cost.

Keywords: Evolutionary Computation, Data Mining,
Optimization.

1 Introduction

Many real design problems in aerospace and aeronauti-
cal fields are often multi-objective, multi-modal and mul-
tidisciplinary in nature. Evolutionary algorithms (EAs)
are particularly suitable for multi-objective optimization
problems (MOOPs) because EA’s population approach
can be exploited to explore equally all non-dominated
solutions in a population and keep an archive of a di-
verse set of non-dominated solutions. This striking fea-
ture gives EAs an advantage for MOOPs because they
eliminate the need to convert a MOOP into multiple
single-objective problems and the need to select different
settings of parameters which unavoidably favor certain
Pareto-optimal solutions [Deb (2001)].

Evolutionary computations usually produce enormous
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amount of data that contain rich information of which
only a tiny fraction is generally utilized throughout the
design optimization. Tremendous profit may be gained
from the generated data if a systematic analysis of the
data is performed so that a salient feature of the input-
output relationship can be distilled. However, these data
are not only large in volume but also highly multidimen-
sional in space. Furthermore, unlike much of statistics, in
which data are carefully chosen to answer specific ques-
tions, the data from EAs are usually collected randomly.
Therefore, it is very difficult to analyze and root out dis-
tinctive features of the underlying physics.

Data mining is the analysis of large observable data sets
to find unsuspected relationships and to summarize the
data in novel ways that are both understandable and use-
ful to the data owner [Hand et al.( 2001)]. Data mining is
a powerful new technology, it is an interdisciplinary field,
adopting established algorithms from statistics, machine
learning, neural networks, and databases. We propose to
leverage the data mining techniques to further improve
our evolutionary design optimization. In our approach,
we first construct a model generalizing the relationship
between the objective function and design variables. This
is achieved using a radial basis function (RBF) neural
network based on the available data. This model is then
used to predict future input, i.e., we can achieve better
results through optimizing the constructed model. Our
work aims at (1) providing a robust, automatic, physics-
based systematic approach to obtain global optimization
to a complex engineering system, and (2) discovering the
underlying causal relationships between objective func-
tions and design variables at the end of the optimization.
As a result, it can lead to a capability to yield a better de-
sign at a much reduced cost, by delegating the complex
searching process to machine, while freeing scientists
and engineers to focus on creative thinking/formulations.
also, the second goal can lead to gaining succinct knowl-
edge for similar problems by a systematic analysis of the
enormous complex data set.

In the multidisciplinary optimization literature there is
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copious of work on using surrogate models such as
response surface and Kriging to reduce the computa-
tional burden of optimizing complex engineering prob-
lems [Simpson et al. (2002), Lian, and Liou (2005)]. In
the evolutionary computation surrogate models are also
used to reduce the computational cost and to enhance
convergence rate [Ong et al. (2003), Lian, and Liou
(2004a, 2004b), Wang et al. (2004), Zhu et al. (2004)].
In those work surrogate models are constructed either be-
fore or during the optimization procedure. In the for-
mer one, surrogate models are constructed based on pre-
selected design points, which are selected based on the
design of experiment either to fill the space evenly or to
concentrate on the boundary. Our work is different from
those in that the model, which generalizes the relation-
ship between the objective and design variables, is con-
structed after the evolutionary optimization is completed.
There is no guarantee that those points are evenly dis-
tributed in the design space or representative of the entire
space. More often their distribution is chaotic. And in
evolutionary optimization, we expect that the data points
are very close. Our mining of data is the post-processor
of the optimization procedure. The aim is to extract use-
ful information from the already existing data points.

This paper is constructed as follows: we first introduce
the basic concept of RBF neural network, which includes
ridge regression, bias-variance trade-off, basis function
optimization, weight parameter determination, and data
pre-processing. This is followed by numerical analysis.
Four examples are presented to demonstrate the applica-
bility and effectiveness of our approach, including design
of a subsonic airfoil and design of a turbopump used in
the space launch vehicle. Our results demonstrate that
these techniques can expedite the design process, fur-
ther improve the existing design. Without major changes,
these technologies can also be extended to data mining in
other fields.

2 Radial Basis Neural Networks

Neural networks simulate human functions such as learn-
ing from experience, extracting recognizable informa-
tion or patterns from inputs containing irrelevant or even
chaotic data. Neural computing has emerged as a prac-
tical technology and has been successfully applied in
many fields such as time series analysis, pattern recogni-
tion, signal processing and control. Most of these works
make use of feed-forward network architectures such as

the multi-layer perceptron and the RBF neural networks.
Here we adopt RBF neural networks to perform data min-
ing because of their simplicity and ease to interpolate.
RBF networks are a major class of neural network mod-
els, in which the activation of a hidden unit is determined
by the distance between the input vector and a prototype
vector. The RBF neural networks usually have the fol-
lowing form:

f (�x) =
m

∑
j=1

wjφ j(�x), (1)

where�x is an n-dimensional input vector with element xi,
{wj}m

j=1 are the weight parameters, and f is the model
function expressed as a linear superposition of m basis
functions {φ j}m

j=1. Several forms of basis function have
been considered, the most common being the Gaussian:

φ j(�x) = exp(−||�x−�µ j||
σ2

j

). (2)

Here �µ j is the prototype vector determining the center
of the basis function φ j and it has elements µ ji, σ j is a
parameter controlling the smoothness properties of the
interpolating function. The Gaussian is a localized func-
tion with the property that�φ j → 0 as �x is far away from
�µ j.

RBF networks usually consist of a two-stage training
procedure. In the first stage, parameters governing the
basis functions {m,�µ j,σ j} are determined. This is an un-
supervised procedure, in which parameters are chosen to
form an optimal representation of the probability density
of the input data. The second stage determines the weight
parameters {wj}m

j=1. Upon completion of the first stage,
because basis functions are already determined, model
function in Eq. (1) is simply a linear function of the
weight parameters. If we have p training data, {�xi,yi}p

i=1,
p ≥ m, then the weight parameters will be resolved by
minimizing the sum-squared-error

E =
p

∑
i=1

(yi − f (�xi))2. (3)

To restrict the flexibility of linear model (1), we usually
augmented Eq.(3) with a penalty term. The function to
be minimized then becomes:

Eg =
p

∑
i=1

(yi − f (�xi))2 +λ
m

∑
i=1

w2
i , (4)
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where λ > 0 is the regularization parameter. A small
λ means great flexibility and leads to a tight fit without
causing large penalty; a large λ favors the penalty term in
the cost of flexibility and tight fit. The reason for using
the regularization parameter and its effects will become
clear in the following sections. The process of finding a
proper λ is called weight decay in neural network field,
or ridge regression in statistics field.

The second stage of RBF network training involves
the determination of weight parameters. Depending on
user’s preference the weight parameters can be obtained
by minimizing either Eq. (3) or Eq. (4), which leads to
the following linear system of equations:

�A�w = �HT�y, (5)

where �w = [w1,w2, . . . ,wm]T is the weight parameter vec-
tor, �y = [y1,y2, . . . ,yp]T is the target information, and �H
is the design matrix with the following form:

�H =

⎡
⎢⎢⎢⎣

φ1(�x1) φ2(�x1) . . . φm(�x1)
φ1(�x2) φ2(�x2) . . . φm(�x2)

...
...

. . .
...

φ1(�xp) φ2(�xp) . . . φm(�xp)

⎤
⎥⎥⎥⎦ . (6)

�A is the variance matrix. If Eq. (3) is used as the error
function, then A has the following form:

�A = �HT �H, (7)

or if Eq. (4) is used, then the variance matrix �A can be
written as:

�A = �HT �H +�Λ, (8)

and �Λ is a diagonal matrix,

�Λ =

⎡
⎢⎢⎢⎣

λ
λ

. . .
λ

⎤
⎥⎥⎥⎦ . (9)

A useful matrix, which is used often in the RBF net-
works, is the projection matrix:

�P =�Ip −�H�A−1�HT . (10)

This square matrix projects vectors in p-dimensional
space perpendicular to the m-dimensional subspace

spanned by the model. With a simple matrix operation
we can have the following relation:

�P�y =�y−�H�w =�y−�f . (11)

Eq.(11) tells us that �P�y is the error vector due to the ap-
proximation of the real function�y with model function �f
of Eq. (1).

With the matrix notation, the sum-squared-error in
Eq. (3) can be equivalently written as:

E =�yT�P2�y, (12)

or the error function in Eq. (4) can be written as:

Eg =�yT�P�y (13)

Unlike multi-layer perceptrons, RBF networks generally
have a simple architecture consisting of two layers of
weights, in which the first layer contains parameters of
the basis functions (m,�µ j, and σ j), and the second layer
forms a linear combination of the activations of the basis
functions to generate the outputs. Soon we will find that
the training of RBF networks is substantially faster than
the training of multi-layer networks, which is one of the
principal advantages of the RBF networks.

2.1 Bias-variance trade-off

From our experience of polynomial fitting we know that
a lower order polynomial fitting in general shows a poor
approximation as a consequence of its limited flexibility
while a high order polynomial can give rise to unwanted
oscillations. Similarly, in the RBF network training of
Eq. (1), there is an optimal number of basis functions
{φ j}m

j=1, which gives the best representation of the un-
derlying systematic properties of the data, and hence ob-
tains the best generation on new data. We can obtain a
better appreciation of this phenomenon by introducing
the concept of the bias-variance. Suppose the input is�x,
then the trained model predicts the output as f (�x). If we
had many training sets and we knew the true output y(�x),
we could calculate the mean-squared-error as

〈(y(�x)− f (�x))2〉 (14)

where 〈.〉 denotes the expectation over the training sets.
For convenience, Eq. (14) can be decomposed into two
components

(y(�x)−〈 f (�x)〉)2︸ ︷︷ ︸
bias

+〈( f (�x)−〈 f (�x)〉)2〉︸ ︷︷ ︸
variance

. (15)
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The first part is the bias and the second part is the vari-
ance. The bias measures the extent to which the average
of the network function differs from the true value y(�x);
the variance measures the extent to which the trained
model f (�x) is sensitive to a particular choice of the data
set.

An inflexible model will have a large bias while a flex-
ible model will have a large variance. The best model
is obtained when we have the best compromise between
the conflicting requirements of small bias and small vari-
ance. In neural networks we can achieve such a compro-
mise by adjusting the number of basis functions. Or, as
an alternative, always referred as regularization in litera-
tures, we can accomplish that by restricting the flexibility
of linear model (1) using a penalty as shown in Eq.(4). In
the following we describe both approaches.

2.2 Basis function optimization

The first stage of RBF training involves determination of
the basis function parameters, i.e., the number of basis
functions, m, basis function center, �µ j, and smooth pa-
rameter, σ j . In general RBF network can approximate
arbitrary non-linear functional mappings between multi-
dimensional space. With Eq. (1) we can exactly map the
whole input data directly onto the final outputs as long
as the number of basis functions is equal to the number
of training points. However, such an exact interpolation
is typically a highly oscillatory function with large vari-
ance, generally it fails to give a good representation and
usually produces poor results. In addition, our goal of
network training is not to get an exact representation of
the known input data but rather to make good representa-
tions for the unknown inputs. Therefore, it is necessary
to choose the optimal settings of m,�µ j, and σ j .

From the perspective of function approximation, gener-
alization, and noisy interpolation, the basis function pa-
rameters should be chosen to form a representation of the
probability density of the input data. A number of strate-
gies have been proposed based on the following consid-
erations. One straightforward approach is to randomly
choose a number of subsets from the data, set the basis
function centers �µ j equal to the input vectors, and then
chose the best candidate among those subsets. This ap-
proach is fast but clearly is not an optimal procedure in-
sofar as the probability density estimation is concerned,
and may also lead to the use of an unnecessarily large
number of basis functions in order to achieve an adequate

performance on the training data [Bishop (2003)].

A more sophisticated strategy is the forward selection
procedure, which starts with an empty subset and adds
one basis function each time. Suppose we have M train-
ing data points, forward selection starts with an empty
subset, and M networks are trained in which each of the
M data in turn is selected as the center for the basis func-
tion. The training point which most reduces the sum-
squared-error (Eq.(3)) is retained. In subsequent steps
of the algorithm, the number of basis functions is then
increased incrementally. This process stops until some
chosen criteria is satisfied. Forward selection involves
growing the network by one basis function.

Suppose we add a new basis function, φJ, to the subset
which already has m basis functions, then the new design
matrix in Eq. (6) is

�Hm+1 = [�Hm �hJ ], (16)

where �Hm is the old design matrix with m basis functions,
and�hJ is

�hJ =

⎡
⎢⎢⎢⎣

φJ(�x1)
φJ(�x2)

...
φJ(�xp)

⎤
⎥⎥⎥⎦ . (17)

The newly added basis function is the one that reduces
the sum-squared-error the most. Without calculating the
weight parameters from scratch with Eq. (5), we can
greatly reduce the cost by using appropriate incremental
operation [Orr (1996)]. The key equation is

�Pm+1 = �Pm −
�Pm�hJ�hT

J
�Pm

�hT
J
�Pm

�hJ

, (18)

where �Pm is the projection matrix in Eq. (11) when there
are m basis functions in the subset; �Pm+1 is the subse-
quent projection matrix when one more basis function is
added. Two RBF models are constructed, one has m basis
functions, and the other has m+1. With Eq.(3), the train-
ing errors, associated with the two models and evaluated
with the p available data, can be written as follows:

Em = �yT�P2
m�y, (19)

Em+1 = �yT�P2
m+1�y. (20)

Therefore, adding a new basis function will reduce the
sum-squared-error in an amount of

σ̂2 = Em −Em+1 =
(�yT�Pm�hJ)2

�hT
J
�Pm�hJ

. (21)
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The approximate number of multiplications required to
add a basis function is 2p2, which is much less than
the cost of simply calculating a projection matrix from
scratch, which is about m3 + pm2 + p2m. This process
can be further improved with the orthogonal least square
technique [Chen et al. (1989)], which has been imple-
mented by Orr (1996, 1999) in his Matlab package for
RBF networks and is used in our study. It is noted that
for the RBF network, we can choose suitable parame-
ters for the hidden units without having to perform a
full non-linear optimization problem as required by the
multi-layer perceptron networks.

2.3 Generalized cross-validation

In the basis function optimization we grow the subset by
one basis function at a time until the sum-squared-error
has been reduced the most. In this choosing process, we
compute the sum-squared-error with Eq. (3) by substi-
tuting the known data {�xi,yi}p

i=1. Ordinarily, this sum-
squared-error will decrease as extra functions are added:
it starts off at a large value, deceases rapidly, and then
continues to decrease slowly as the network makes its
way to a local minimum on the error surface. If contin-
uing the process further, it leads to an exact interpola-
tion and ends up overfitting the training data. However,
our goal in optimizing the basis function is not to have
an exact interpolation of the known data but to have a
well-trained model which has the least prediction error
for the unknowns. Unfortunately, for an arbitrary input
�x, the true output y(�x) is usually unknown. Therefore, it
is required to select a proper model to estimate the pre-
diction error. Many popular models for prediction error
have been attempted.

In this context, cross-validation provides an appealing
guiding principle [Stone (1974)]. The philosophy of
cross-validation is to randomly partition the available
data into a training set and a test set. Different models
trained on the training set can be compared on the test
set. To guard against the possible bias associated with a
particular partition, the available data set can be divided
into S distinct segments and an average score over the
partitions is evaluated. A network is trained using data
from the S−1 segments, and its performance is evaluated
by computing the error function using the remaining seg-
ment as illustrated in Fig. 1. This process repeats for all
the S possible choices. The performance of the model is
assessed by averaging over all the errors. Consequently,

Figure 1 : Illustration of the hold-out method of cross-
validation. For a given trial, the shaded subset of data is
used to validate the model trained on the remaining data.

it avoids the bias that may be introduced by an arbitrary
division of the data. In addition, all the data can be used
for training with a high proportion of the available data.
When the available data is limited, we may go to the ex-
treme limit of S = p for a data set with p data. This
limit is known as the leave-one-out method. The gen-
eralized cross-validation (GCV) by Golub et al. (1979)
is an improved version of cross-validation with the same
underlying idea. The beauty of GCV for the linear RBF
networks is further illustrated by an analytical expression
for the average variance over the training set:

σ̂2 =
p�yT�P2�y

(trace(�P))2
(22)

We can interpret the GCV as a good approximation to
the prediction error when p−1 basis functions are used
to construct the model. In addition, it is noted that the
penalty parameter is absent in the evaluation of the GCV
error and trace(�P) = p−m.

From Eq. (21), we get Em −Em+1 ≥ 0, which means that
adding a basis function will always decrease the train-
ing error. Training error is estimated based on a subset,
on which the model design is based. It is possible for
the network to end up overfitting the training data if the
training section is not stopped at the right point. GCV,
on the other hand, is validated based on subset, which
is independent from the model design, and will stop de-
creasing error as a consequence of overfitting. Therefore,
we adopt GCV to monitor our training process. We ter-
minate the forward selection process once GCV stop de-
creasing.
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2.4 Ridge regression

The regularization parameter λ in Eq.(4) restricts the
flexibility of the linear model by introducing a small
amount of bias. The optimal value of λ is associated with
the least prediction error. By using GCV, the optimal
value of λ can be found with the following formula:

λ =
�yT�P2�ytrace(�A−1 −λ�A−2)

�wT�A−1�wtrace(�P)
, (23)

where �w is a vector satisfying Eq.(5). Equation (23)is an
implicit equation for λ and a numerical iteration proce-
dure must be used until the solution is converged.

2.5 Data Pre-processing

Hartman et al. (1990) proved that Eq. (1) is capable of
universal approximation, i.e., RBF networks can perform
an arbitrary non-linear functional mapping. However,
such a mapping usually produces poor results. For ex-
ample, in the RBF networks, it is particularly important
to normalize the input variables so that they span similar
ranges. For example, Gaussian function in the RBF net-
work is determined by the Euclidean distance between
the input�x and the prototype�µ j. If one of the input vari-
ables has a much smaller range of values than the others,
then the distance (Gaussian function) will be insensitive
to variation of this variable. One approach is to apply a
linear transformation to the inputs so that they all have
the same ranges. This linear transformation can be based
on the variable variance or the maximal/minimal value.
If it is based on the variance, the scaled new variable is:

x̃ j
i =

x j
i −xi

σi
, (24)

where {x j
i }p

j=1 are p input variables, xi and σi are the
mean and variance of variable xi, respectively, whose def-
initions are as follows:

xi =
1
p

p

∑
j=1

x j
i , (25)

Here we treat variables separately. With this transforma-
tion the scaled variable x̃ j

i then has a zero mean and unit
variance. Or we can scale the source data to a space [0 1]n

based on their maximal/minimal value using a liner trans-
formation. In the RBF network package by Orr (1999)
the source data is equivalently transformed to a space

[0 1]n by using different smooth parameters in different
dimensions. Unlike Eq.(2), the basis function now has
the following form:

φ j(�x) = exp(
n

∑
i=1

(xi −µi j)2

σ2
ji

), (26)

where σ ji is the smooth parameter in the i-th dimension.
It is proportional to the range of value in that dimension.

3 Data mining process

Our data mining process begins with data pre-processing
of the raw data. In this stage we may remove those repet-
itive data, filter the obvious noisy data, and sort the data.
We can also transform the data to have the same range
of values. After pre-processing, we construct the RBF
network with a number of training data. The constructed
model function is then optimized with an optimizer. The
optimal solutions from the model function are usually not
the true optimal solution of the real function, hence they
need to be further validated based on the real function.

4 Numerical Analysis

In this section four examples are tested with our pro-
posed approach. Two of them are unconstraint optimiza-
tion problems widely used in the literature; the other
two are real engineering problems with constraints. The
raw data are from the design optimization with a real-
coded GA [Arakawa, and Hagiwara (1997)]. In the GA,
a blend crossover (BLX-α) operator is used with a value
of α=0.5. In our computations, all design variables are
scaled to the range of [0 1]. We choose a uniform mu-
tation operator which adds a uniform random number to
the parent solution at a probability of pc:

yi = xi +(ri −0.5)∆i, (27)

where ri is a random number, ∆i is a user-defined max-
imum perturbation allowed in the i-th decision variable.
We set pc=0.1 and ∆i = 0.1 in our computations. To en-
sure a monotonic improvement for the GA, we adopt the
elitist strategy [De Jong (1975)] in which some of the
best individuals are copied directly into the next gener-
ation without applying any evolutionary operators. For
single objective optimization, sorting is based on the
value of the objective function; for multi-objective op-
timization, we rank solutions based on Goldberg’s non-
dominated sorting procedure [Srinivas, and Deb (1994)].
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Figure 2 : Plot of two-dimensional Rastrigin function.

To maintain a uniform distribution on the Pareto-optimal
front, we use fitness sharing [Goldberg et al.(1989)] in
the multi-objective optimization. The optimization on
the constructed model is performed with a sequential
quadratic programming solver available in commercial
optimizer DOT.

First we apply our approach on the Rastrigin problem,
which is commonly used in the global optimization liter-
ature. The Rastrigin problem is defined as follows:

Minimize:
10n+∑n

i=1[x
2
i −10cos(2πxi)],

Subject:
−5.12 ≤ xi ≤ 5.12, i = 1,2, ...,n.

(28)

The test problem has a highly bumpy surface with many
local optima, which is illustrated from in Fig. 2 in which
n = 2. In our test we set n = 20. Needless to say, this is a
challenging high-dimension problem. The function has a
global minimal value of zero at xi = 0. We set the popula-
tion size of 100 in the genetic computation. Fig. 3 shows
the convergence history of the optimization process. The
convergence rate slows down after 100 generations; fur-
ther computations improve the optimal value but the im-
provement is insignificant. Therefore, we terminate our
optimization process at the 100-th generation and switch
to data mining aiming at improving the existing optimal
solution. At the 100-th generation, the minimal function
value is 15.4106.

With 100 generations of computation we generate 10,000
data. If we directly use those data to train the neural
network, the predictive results will be poor partially be-
cause of the curse of dimensionality. By removing the
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Figure 3 : Convergence history of Rastrigin function.

repetitive data we have 2,092 data left. We then sort
the remaining data in ascending order based on the func-
tion value. The first p points are chosen as the train-
ing data. Ideally, the selected training points should ac-
curately represent the density function. However, there
is no theoretical analysis on how many training points
should be used in the neural network training for an op-
timal fitting. Furthermore, unlike those generated from
the design of experiment, our data are not collected us-
ing efficient strategies for data analysis, instead they are
generated from evolutionary computations.

We test different sets of training points. Their effect on
data mining performance is illustrated in Table 1. With
100 training points, the RBF network is constructed with
98 basis functions. We use software DOT to find the
optimal solutions of the constructed network. We call
these solutions “constructed optimal solutions”. Opti-
mization with DOT on the model function predicts the
same minimal as the genetic computation, indicating the
constructed network gives a good representation of the
real function. The “constructed optimal solutions” are
verified against the real function. We obtain a minimal
of 11.7623, a value can be achieved with 82 more gener-
ations of computation using genetic algorithm.

With the increase of training points we still get improve-
ment but it is not as good as this one. With 600 and 800
training points, no improvement can be made any more
and in fact the result begin to diverge from the baseline.
There are two potential reasons behind this phenomenon.
From Table 1 we can see the number of basis functions
increases with the number of training points. Basis func-
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Table 1 : Effect of number of training points on data
mining performance for Rastrigin function.

Input Basis functions DOT Verified
100 98 15.4106 11.7623
200 198 15.4106 12.0066
300 216 11.2107 13.0483
400 298 11.1723 12.6815
500 492 15.3712 13.6413
600 495 10.8375 41.8475
800 718 11.1086 208.9683

tion gives the freedom to fit the training data. More basis
functions means less bias at an expense of more variance,
thereby giving a poorer representation of the real func-
tion. Another reason is that the increase of training points
is insufficiently rapid in relation to the domain of func-
tion for which a model can account. Because our neural
network is constructed within a domain determined by
the maximal and minimal values of the training points,
the model function accuracy will deteriorate as a dispro-
portional increase of domain and training points occurs.
Our optimizer will take advantage of this inaccuracy and
give false optimal solutions. Suppose the domain ex-
panded by training database is a hypersphere with radius
R, which we can define as follows:

R =
1
2

√
n

∑
i=1

(xU
i −xL

i )2. (29)

Here, xU
i and xL

i are the maximal and minimal values of
the i-th design variable amongst the m training data, re-
spectively. If the hypersphere is equally divided into m
small hypersphere with a radius of r, then we have

m(crn) = cRn. (30)

Thus, radius r can be expressed as the following:

r =

√
∑n

i=1(xU
i −xL

i )2

2 n
√

m
(31)

We plot radius versus number of training points in Fig. 4.
In the figure we normalize the radius with r0, the radius
when m = 100. Figure 4 shows that radius increases with
the number of training points, which means that the train-
ing points become more sparse in the domain. The spar-
sity reduces the accuracy of the model function. The ra-
dius initially shows a linear relation with the number of
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Figure 4 : Number of training points versus the radius
for Rastrigin problem.

training points, then there is a dramatic increase when
the number of training points is larger than 600. This in-
crease tells us that there are not enough training points to
construct an accurate representation of the real function.

The second problem we test is the Griewank function de-
fined as

f (�x) =
n

∑
i=1

x2
i

50
−

n

∏
i=1

cos(
xi√

i
)+1. (32)

This function has a global minimum zero locating at
(x1, ...,xn) = (0, ...,0). We consider the optimization of
the Griewank function with n = 50. The search domain is
defined by [−20 20]50. We set population size as 200. Af-
ter 20,000 function evaluations, the minimal at the 100-th
generation is 0.24209. The convergence history is shown
in Fig. 5. We take these data as the training set to conduct
data mining with the RBF neural network. Data min-
ing results with different numbers of training points are
shown in Table 2. Among them, the best result is ob-
tained with 400 training points. Fig. 5 shows the con-
vergence history for GA. As we can see from this con-
vergence history, it takes GA 150 more generations to
match the result from data mining. From the radius ra-
tio shown in Fig. 6 we know that the variation from 100
training points to 800 training points is relatively modest,
which means the training points are clustered closely. As
a consequence of that, we still get improvement with data
mining when the training point number is 800.

We now apply data mining to an airfoil design optimiza-
tion. The objective is to design an airfoil with the max-
imal lift-to-drag ratio when the freestream Mach num-
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Figure 5 : Convergence history of the Griewank func-
tion.

Table 2 : Effect of number of training points on data
mining performance for Griewank function.

Input Basis functions DOT Verified
100 53 0.16435 0.10587
200 192 0.24209 0.07879
400 398 0.24209 0.06973
600 598 0.24209 0.07463
800 798 0.24209 0.07980

ber and the angle of attack are set to 0.70 and 2 de-
gree, respectively. The airfoil thickness is constrained
to be greater than 9.8% of the chord length at 60% of
the chord. The airfoil is defined by the Sobieczky shape
function [Sobieczky (1998)], which uses basic geomet-
ric parameters as design variables. The 11 design vari-
ables are shown in Fig. 7: leading-edge radius, upper
and lower crest location including curvatures, trailing-
edge coordinate, thickness, direction, and wedge angle.
The aerodynamic performance of each design is evalu-
ated with a two-dimensional Navier-Stokes solver based
on a TVD-type upwind scheme [Obayashi, and Wada
(1994)] with multigrid approach. In this study, both the
trailing-edge coordinate and thickness are frozen to zero,
which leaves nine design variables in our study. The real-
coded adaptive-range GA is used to maximize the objec-
tive function where the population size and the number
of generations are 64 and 100, respectively.

The maximal lift-to-drag ratio from the GA is 56.1674
at the 100-th generation. Eliminating the repetitive ones,
6,222 solutions are left. These data are sorted in descend-
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Figure 6 : Number of training points versus the radius
for Griewank problem.

Figure 7 : Airfoil geometry defined by 11 basic parame-
ters.

ing order. We train the network with the first 100 data,
among which 79 centers are chosen to built the neural
network. The optimization with the DOT on the con-
structed network give the maximum of 56.1674, which
is identical to the solution from GA. The best 20 “con-
structed optimal solutions” are validated by solving the
Navier-Stokes equations. Upon completion of validation,
the best solution we have is 56.1696. As shown in ta-
ble 3 this result can be further improved by increasing
the number of training data. With 400 training data, we
built a neural network with 368 basis functions and we
get an improved solution of 56.1706. However, the opti-
mal solution with 800 training data is not as good as that
with 400 training data. Fig. 8 shows that the radius in-
creases with the number of training data. Although we
expect model with large radius ratio is less accurate than
that with small ratio, we do not have conclusion why the
solution with m = 400 is better than the solution with
m = 100.

The last problem we study is the design of a single-stage
centrifugal pump. This problem has been studied by
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Figure 8 : Number of training points versus the design
space radius for airfoil design.

Table 3 : Effect of number of training points on data
mining performance for airfoil optimization.

Input Basis functions DOT Verified
100 79 56.1674 56.1696
200 175 56.1674 56.1696
400 368 56.1674 56.1706
600 565 56.1674 56.1706
800 764 56.1674 56.1692

Oyama and Liou (2003) with the genetic algorithm as
a multiobjective optimization design, later this problem
is further studied by Lian and Liou (2004b) with an en-
hanced genetic algorithm. The objective is to minimize
the input power with the fixed head at a design point.
The baseline design has a shaft rotating speed of 5,416.7
rpm, total temperature of the fluid entering the pump of
29.6◦C, total pressure of the fluid entering the pump of
35,200kgf/m2, and a mass flow rate of 85.67 kg/s. At
the design point the head rise is 1045.9 inch and required
input is 592.2 HP.

In this single-stage pump design, there are 11 design vari-
ables. They are the rotor leading-edge tip radius R1tip, ro-
tor trailing-edge radius R2, volute tongue radius R3, blade
span at trailing edge B2, blade span at volute tongue B3,
axial length of the blade at the rms diameter S, number of
blades Zn, blade thickness thk, blade trailing-edge angle
at the hub, rms radius, and tip (βhub, βmid , βtip), as shown
in Fig. 9. The design spaces are listed in Table 4. To-
tal head and required power input of pump design candi-
dates are evaluated by using the one-dimensional mean-

Figure 9 : Design parameters of the centrifugal pump
design problem. (From Oyama and Liou (2002))
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Figure 10 : Probability density function of the training
points for turbopump problem.

line pump flow modeling method [Veres (1994)].

The real-coded GA is applied. The population size and
number of generations are set to 110 and 100, respec-
tively. With the GA, we are able to reduce the power in-
put from the original 592.2 HP to 581.5 HP. To perform
data mining, we need to construct two neural networks,
one is for the objective function, and the other for the
constraint. Both are constructed with the same training
database. However, the number of basis functions may
be different. The computed results are tabulated in Ta-
ble 5. In all cases, even though no further improvement
is gained with data mining, we are still able to recover the
results from GA. We plot the probability density function
as a function of power input in Fig. 10. Most of the train-
ing points are clustered near 582.07, only a small por-
tion of them are located near the minimal value of 581.5.
This indicates that the model function is inaccurate in the
sparse region, resulting in an ineffective performance.
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Table 4 : Design parameter spaces for the centrifugal pump design problem.

Design Variables R1,tip in. R2, in. R3, in. B2, in. B3, in.
Lower bound 3.40 5.00 5.60 0.70 0.85
Upper bound 4.00 5.60 6.20 0.85 1.00

Design Variables S, in. βhub, Deg. βrms, Deg. βtip, Deg. thk, in Zn2

Lower bound 3.70 25.0 25.0 25.0 0.03 4
Upper bound 4.30 45.0 45.0 45.0 0.10 30

Table 5 : Effect of number of training points on data mining performance for airfoil optimization.

Input Basis functions DOT Verified
Objective Constraint Objective Constraint Objective Constraint

100 95 95 581.5 1045.0 581.5 1045.0
200 196 192 581.5 1045.0 581.5 1045.0
400 390 386 581.5 1045.0 581.5 1045.0

5 Conclusion

We performed the data mining for design optimization
based on the available data generated from the evolu-
tionary algorithms. This was achieved by constructing a
RBF network, which was then optimized with a gradient-
based optimizer. The performance was found to be prob-
lem dependent. Both the number of training points and
training point distribution were important in determining
the overall performance. Among the four problems pre-
sented, two unconstrained and two constrained optimiza-
tions, we have achieved further improvement in three of
them, with only a fraction of one EA generation, in rela-
tion to the optimized results terminated by the GA proce-
dure. In the fourth problem, we could recover the result
from the evolutionary optimization, but no improvement
was realized.
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