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Computational Modelling of Isotropic Multiplicative Growth

G. Himpel, E. Kuhl, A. Menzel, P. Steinmann 1

Abstract: The changing mass of biomaterials can ei-
ther be modelled at the constitutive level or at the kine-
matic level. This contribution attends on the description
of growth at the kinematic level. The deformation gra-
dient will be multiplicatively split into a growth part and
an elastic part. Hence, in addition to the material and the
spatial configuration, we consider an intermediate con-
figuration or grown configuration without any elastic de-
formations. With such an ansatz at hand, contrary to the
modelling of mass changes at the constitutive level, both
a change in density and a change in volume can be mod-
elled.
The algorithmic realisation of this framework within a fi-
nite element setting constitutes the main contribution of
this paper. To this end the key kinematic variable, i.e. the
isotropic stretch ratio, is introduced as internal variable
at the integration point level. The consistent linearisation
of the stress update based on an implicit time integration
scheme is developed. Basic features of the model are
illustrated by means of representative numerical exam-
ples.

keyword: Biomaterials, growth, remodelling, multi-
plicative decomposition

1 Introduction

The modelling of biomaterials with changing mass can
be classified in terms of two different approaches, the
coupling of mass changes and deformations at the con-
stitutive level and the coupling at the kinematic level,
whereby both theories can be combined in one frame-
work.
A changing mass at the constitutive level is typically re-
alised by a weighting of the free energy function with
respect to the density field. Such an ansatz enables the
simulation of changes in density while the overall vol-
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ume remains unaffected by growth. We will call this ef-
fect ‘remodelling’. Although in principle applicable for
small and large strains, this approach is typically adopted
for hard tissues, which usually undergo small strain de-
formations. The first continuum model in this regard has
been advocated by Cowin & Hegedus (1976). In the last
decades this model which is embedded into the thermo-
dynamics of open systems has been elaborated further
by, for instance, Harrigan & Hamilton (1992; 1993), Ep-
stein & Maugin (2000), Kuhl et al. (2003), Kuhl & Stein-
mann (2003a; 2004), Himpel (2003) and Menzel (2005;
2005a).
Within the kinematic coupling, a changing mass is char-
acterised through a multiplicative decomposition of the
deformation gradient into a growth part and an elas-
tic part, as first introduced in the context of plasticity
by Lee (1969). In this formulation, which we will re-
fer to as ‘growth’ in the sequel, mass changes are at-
tributed to changes in volume while the material den-
sity remains constant. This approach has classically
been applied to model soft tissues undergoing large
strains. The first contribution including this ansatz is
the work by Rodriguez et al. (1994). Further elab-
orations can be found in the publications by Taber
& Perucchio (2000), Chen & Hoger (2000), Klisch
et al. (2001), Ambrosi & Mollica (2002), Imatani &
Maugin (2002), Humphrey (2002), Humphrey & De-
lange (2004), Humphrey & Rajagopal (2002), Rao et
al. (2003), Garikipati et al. (2004) and Menzel (2005a).
The present paper is essentially based on the recent
work of Lubarda & Hoger (2002) which combines both,
growth and remodelling, i.e. changes in volume and
changes in density. Naturally, the classical open system
approach by Cowin & Hegedus (1976), introducing the
change of mass at the constitutive level, and the ansatz of
Rodriguez et al. (1994), introducing a coupling of mass
changes and deformations at the kinematic level, are in-
cluded as special cases. As a main contribution of this
work, we will discuss the algorithmic setup of the advo-
cated material model.
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The present paper is organised as follows: The growth
remodelling framework is reviewed in section 2. This
includes the introduction of the multiplicative split of
the deformation gradient as well as the detailed descrip-
tion of the consequences of this split to the density ex-
pressions. Essential balance equations are presented be-
fore the model is specified to different cases for a mass
change. The constitutive equations are presented in sec-
tion 3. A free energy function and the evolution of the
growth deformation gradient are suggested. These con-
stitutive functions are then specified to the special cases
of a pure density change and a pure volume change. In
section 4 we concentrate on the numerical implementa-
tion of the constitutive framework for the density pre-
serving approach. This includes the algorithmic treat-
ment of the stretch ratio evolution as well as the compu-
tation of the incremental tangent modulus within a finite
element setting. The theory will be discussed by means
of numerical examples in section 5. We first drive a sim-
ple tension test to demonstrate the sensitivity with respect
to the material parameters. Then the theory will be ap-
plied to a boundary value problem. Finally, the results of
the paper are summarised in section 6.

2 Kinematics

In this section we discuss the kinematics of finite growth.
For a general overview on the continuum mechanics of
finite deformations the reader is referred to the mono-
graphs by Ogden (1997) and Holzapfel (2000). The basic
quantities will be introduced and necessary correlations
will be given. Essential balance equations are reviewed
and finally we present three different forms in which a
change of mass can occur. We consider the deformation
map ϕϕϕ of a material placement XXX in the material con-
figuration B0 at time t0 to the spatial placement xxx in the
spatial configuration Bt at time t. The corresponding de-
formation gradient FFF denotes the tangent map from the
material tangent space TXXXB0 to the spatial tangent space
TxxxBt

FFF = ∇XXXϕϕϕ(XXX , t) : TXXX B0 → TxxxBt . (1)

The related Jacobian is denoted by J = detFFF > 0. The
cofactor of the deformation gradient cofFFF = JFFF−t maps
a material area element dAAA to a spatial area element daaa.
Since the Jacobian constitutes a scalar value , FFF−t de-
notes the normal map from the material cotangent space

T �
XXX B0 to the spatial cotangent space T �

xxx Bt

FFF−t : T �
XXX B0 → T �

xxx Bt . (2)

Further on the metric tensors GGG in the material config-
uration and ggg in the spatial configuration are introduced,
which relate the tangent and cotangent spaces. Therewith
we define the right Cauchy-Green tensor

CCC = FFF t ·ggg ·FFF (3)

as a deformation measure in the material configuration.
Its spatial counterpart is represented by the left Cauchy-
Green tensor

bbb = FFF ·GGG−1 ·FFF t . (4)

The material time derivative of a material quantity {•}
will be denoted by ˙{•} = ∂t{•}|XXX . The spatial velocity
gradient can be introduced in the form

lll := ∇xxxvvv = ḞFF ·FFF−1 , (5)

with vvv = ẋxx denoting the spatial velocity.

2.1 Multiplicative decomposition

The deformation of the body during the growth process
can be decomposed into two parts. At first every parti-
cle of the body grows or alternatively decreases. This
growth part of the deformation results in an intermedi-
ate configuration B̂0, which does not necessarily has to
be compatible. Hence an additional elastic deformation
might be needed to ensure compatibility of the total de-
formation. This phenomenon is clearly illustrated in Ro-
driguez et al. (1994) considering a growing ventricle as
example. According to this considerations we assume a
multiplicative split of the deformation gradient

FFF = FFFe ·FFFg (6)

into a growth deformation gradient FFFg and a purely elas-
tic deformation gradient FFFe. An illustration of this as-
sumption is given in Fig. 1. In the theory of elastoplastic-
ity an analogous split was first introduced by Lee (1969)
and has been applied to several material models. A
comparison of constitutive theories based on a multi-
plicative split of the deformation gradient is given in
Lubarda (2004).
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Figure 1 : The total deformation gradient FFF is multi-
plicative split into a growth part FFFg and an elastic part

FFFe. The intermediate or grown state B̂0 is incompatible.
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Figure 2 : Visualisation of the metric tensors and the
deformation tensors between the tangent space and the
cotangent space in the material configuration, the inter-
mediate configuration and the spatial configuration.

According to the above considerations we introduce the
metric tensor ĜGG and the elastic Cauchy-Green tensor

ĈCC = FFF t
e ·ggg ·FFFe (7)

in the intermediate configuration. The correlations be-
tween the metric tensors and the deformation tensors are
visualised in Fig. 2. The pullback of the spatial velocity
gradient in Eq. 5 to the intermediate configuration

L̂LL = FFF−1
e · lll ·FFFe = L̂LLe +L̂LLg (8)

can additively be split into the elastic velocity gradient
and the growth velocity gradient

L̂LLe := FFF−1
e · ḞFFe and L̂LLg := ḞFFg ·FFF−1

g , (9)

respectively.
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Figure 3 : The grown mass element dm consists of the
initial mass element dM and the mass produced by the
mass source R0 during the time interval [t, t0]. In the in-
termediate configuration and in the spatial configuration
it can be expressed as the product of the density and the
volume element.

2.2 Density transformations

In the following section we consider the transformations
between the density expressions in different configura-
tions. Herein the scalar value ρ�

0 signifies the initial den-
sity of a mass element. Its counterpart in the spatial
configuration and in the intermediate configuration is de-
noted by ρt and ρ̂0, respectively. A volume element in the
material configuration is characterised by dV, its coun-
terpart in the spatial configuration is dv. In the interme-
diate configuration the volume element is termed dV̂. In
analogy to the Jacobian J = detFFF of the total deforma-
tion gradient we define the Jacobians Je = detFFFe > 0 and
Jg = detFFFg > 0 of the elastic deformation gradient and
the growth deformation gradient, respectively. Note that
the Jacobian of FFF is the product of the Jacobians of FFFe

and FFFg, that is J = JeJg. As depicted in Fig. 3 the Ja-
cobians transform the volume element in the well-known
form

dv = J dV , dV̂ = Jg dV , dv = Je dV̂ . (10)

With the notations given above we obtain the initial mass
element as

dM = ρ�
0 dV . (11)

In the following R0 should denote a mass source per
unit volume in the material configuration. A mass flux
through the surface of the considered mass element will
be neglected. Therewith the grown mass element dm
consist of the initial mass element dM and an additional
mass term taking into account the production of mass by
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the mass source R0 during the time interval [t0, t]

dm = dM+
∫ t

t0
R0 dt dV . (12)

In the intermediate configuration, the mass element can
also be written as

dm = ρ̂0 dV̂ . (13)

Since the deformation map between the intermediate
configuration and the spatial configuration is a purely
elastic map, the mass element expressed in terms of the
spatial quantities is

dm = ρt dv . (14)

Insertion of the volume mappings in Eq. 10 into the ex-
pressions of the grown mass element in Eq. 13 and Eq. 14
yields the transformation of the density from the spatial
to the intermediate state

ρ̂0 = Jeρt . (15)

Furthermore, we define the density of the grown mass
element in the material configuration

ρ0 := Jρt = Jgρ̂0 . (16)

Insertion of Eq. 10, Eq. 11, Eq. 14 and Eq. 16 into Eq. 12
yields the expression

ρ0 = ρ�
0 +

∫ t

t0
R0 dt , (17)

which underlines, that the density of the grown mass ele-
ment consists of the initial density and a production term
taking into account the mass source.

2.3 Essential balance equations

The time derivative of Eq. 17 also yields the well known
local balance of mass in the material configuration

ρ̇0 = R0 . (18)

Insertion of the density transformation in Eq. 162 and the
definition of the growth velocity gradient in Eq. 92 into
the local balance of mass in the material configuration
Eq. 18 yields the local balance of mass in the intermedi-
ate configuration

˙̂ρ0 + ρ̂0 trL̂LLg = J−1
g R0 , (19)

with J̇g = ∂FFF gJg : ḞFFg = JgFFF−t
g : ḞFFg = Jg trL̂LLg. Further on

we need the local balance of linear momentum

ρ0v̇vv = ρ0bbb0 +DIV(FFF ·SSS) , (20)

and the entropy inequality

ρ0D :=
1
2

SSS : ĊCC−ρ0ψ̇−θρ0S0 ≥ 0 , (21)

where bbb0 denotes the body forces, SSS is the Piola-
Kirchhoff stress tensor in the material configuration and
ψ is the free energy per unit mass. The extra entropy
term S0 is necessary to satisfy the second law of ther-
modynamics. The balance equations are also discussed
in more detail for instance in Epstein & Maugin (2000),
Kuhl & Steinmann (2003) and Himpel (2003).

2.4 Different cases for mass change

One can distinguish between three cases inducing a mass
change. First the density is kept constant, so for a mass
change, the volume must change. Second the volume is
kept constant, such that the density must change. Third,
the density and the volume can change. In the past vol-
ume preserving growth models have been applied suc-
cessfully to simulate porous biomaterials such as hard
tissues, see e.g. van Rietbergen et al. (2003). However,
for soft tissues, these models seem less appropriate since
the addition of new material has an direct impact on the
volume of the tissue, see for instance Humphrey (2002).

2.4.1 Density preservation

Assumption of density preservation from the initial state
to the intermediate configuration, viz ρ̂0 = ρ�

0 = const,
implicates that the volume of the mass element has to
change in order to obtain mass change. This effect of a
volume change will be denoted as growth if the volume
increases or as atrophy if the volume decreases, see also
Taber (1995). Insertion of the ansatz of density preserva-
tion into the local balance of mass Eq. 19 yields the mass
source

R0 = ρ0 trL̂LLg = Jgρ�
0 trL̂LLg . (22)

Thus if the growth deformation gradient FFFg and its evo-
lution ḞFFg is known, the mass source can be determined
directly.
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2.4.2 Volume preservation

For volume preserving growth, namely dV̂ = dV =
const, the density of the mass element has to change to
induce a mass change. This effect will be called remod-
elling. The determinant of the growth deformation gradi-
ent must be Jg = 1 for such an ansatz.

2.4.3 Volume and density change

The third case of mass change is the situation where both,
the volume and the density are allowed to vary. In that
case growth or respectively atrophy and remodelling oc-
cur. For a complete description of this model an addi-
tional assumption has to be made to describe the form of
mass change.

3 Constitutive equations

To take into account the characteristic response of a par-
ticular material, constitutive equations must be specified.
In what follows, we shall restrict ourselves to the mod-
elling of an isotropic response for the sake of clarity.
However, an extension to anisotropic elastic behaviour,
as documented e.g. by Holzapfel et al. (2000), Holzapfel
& Ogden (2003), Kuhl et al. (2004a; 2004) or Men-
zel (2005; 2005a), does not pose any additional concep-
tional difficulties. For the discussed case of multiplica-
tive growth the free energy function and an equation de-
scribing the form of growth, for example the growth de-
formation tensor FFFg, must be provided. Finally, the given
constitutive equations will be applied to the cases of a
density preserving mass change and a volume preserving
mass change.

3.1 Free energy

We assume an isotropic free energy density per unit mass
ψ depending on the elastic Cauchy-Green tensor ĈCC and
the grown material density ρ0

ψ = ψ(ĈCC,ρ0) . (23)

From Fig. 2 we can identify ĈCC = FFF−t
g ·CCC ·FFF−1

g . Insertion
of the time derivative of the free energy density

ψ̇ =
[
FFF−1

g · ∂ψ
∂ĈCC

·FFF−t
g

]
: ĊCC

−
[

2ĈCC · ∂ψ
∂ĈCC

·FFF−t
g

]
: ḞFFg +

∂ψ
∂ρ0

ρ̇0

(24)
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Figure 4 : Visualisation of the stress tensors and the
work conjugated deformation tensors. SSS and ŜSS denote
the Piola-Kirchhoff stresses in the material and in the in-
termediate configuration. τττ characterises the Kirchhoff
stress tensor.

into the entropy inequality Eq. 21 yields the definition of
the Piola-Kirchhoff stresses in the material configuration

SSS := 2ρ0FFF−1
g · ∂ψ

∂ĈCC
·FFF−t

g = 2ρ0
∂ψ
∂CCC

(25)

by the standard argumentation of rational mechanics.
Accordingly the push forward of the Piola-Kirchhoff
stresses to the intermediate configuration follows as

ŜSS = FFFg ·SSS ·FFF t
g = 2ρ0

∂ψ
∂ĈCC

. (26)

Thus from Eq. 21 we obtain the reduced dissipation in-
equality

ρ0Dred := M̂MM : L̂LLg −ρ0
∂ψ
∂ρ0

R0−θρ0S0 ≥ 0 (27)

with the Mandel stresses M̂MM = ĈCC · ŜSS, which are work con-
jugate to the growth velocity gradient L̂LLg in the interme-
diate configuration. In Fig. 4 the introduced stresses and
their work conjugated quantities are visualised, whereby
τττ = 2ρ0∂ψ/∂ggg = FFF ·SSS ·FFF t denotes the Kirchhoff stress
tensor.

3.2 Growth deformation gradient

Following Lubarda & Hoger (2002), we define the
isotropic growth deformation gradient as a multiple of
the identity

FFFg := ϑ III (28)
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with ϑ being the isotropic stretch ratio due to volumetric
mass growth. Consequently, the related Jacobian is Jg =
ϑ3. Thus the grown density in the material configuration,
see Eq. 16, can be expressed as

ρ0 = ϑ3ρ̂0 . (29)

Furthermore the growth velocity gradient in Eq. 9 can be
rewritten as

L̂LLg =
ϑ̇
ϑ

III . (30)

3.3 Application to different cases for mass change

As mentioned above an additional requirement is needed
to describe the form of mass change. In this section the
given constitutive equations for the free energy and the
growth deformation tensor will be derived for the special
cases of the density preserving approach and the volume
preserving approach.

3.3.1 Density preservation

For the density preserving case, i.e. ρ̂0 = ρ�
0 = const,

Eq. 29 can be rewritten as

ρ0 = ϑ3ρ�
0 . (31)

From the local balance of mass, see Eq. 18, or alterna-
tively from Eq. 22 the mass source follows straightfor-
wardly as

R0 = J̇gρ�
0 = 3ρ�

0ϑ2ϑ̇ . (32)

Thus for density preservation the mass source R0 and
therewith the evolution of the density is clearly driven
by the evolution of the stretch ratio

ϑ̇ = fϑ(ϑ, trM̂MM) , (33)

which are assumed to depend on the stretch ratio itself
and the trace of the Mandel stresses M̂MM. In contrast to
Lubarda & Hoger (2002), who chose a dependence on the
Piola-Kirchhoff stresses, we prefer the ansatz in Eq. 33,
since the Mandel stresses M̂MM are energetically conjugated
to the growth velocity gradient L̂LLg, see Eq. 27. Concep-
tually speaking, trM̂MM equals trτττ which takes the interpre-
tation as a representative scalar of the volumetric stress
contribution. The simplest form of Eq. 33 is a linear de-
pendence of ϑ̇ on the trace of the Mandel stresses

ϑ̇ = kϑ(ϑ) trM̂MM . (34)

Following Lubarda & Hoger (2002), the coefficient kϑ is
introduced as

kϑ(ϑ) = k+
ϑ

[
ϑ+−ϑ
ϑ+−1

]m+
ϑ

for trM̂MM > 0

kϑ(ϑ) = k−ϑ

[
ϑ−ϑ−

1−ϑ−

]m−
ϑ

for trM̂MM < 0

(35)

to prevent unlimited growth. Herein the parameters ϑ+ >

1 and ϑ− < 1 denote the limiting values of the stretch ra-
tios that can be reached by growth and atrophy, respec-
tively. The parameters k+

ϑ , m+
ϑ and k−ϑ , m−

ϑ are constant
material parameters.
Moreover the free energy density per unit volume ψ0 is
assumed to depend on the elastic Cauchy-Green tensor ĈCC
or respectively on the invariants Ii=1,2,3 of ĈCC

ψ = ψ(ĈCC,ρ0) =
1
ρ0

ψ0(ĈCC) =
1
ρ0

ψ0(I1, I2, I3) , (36)

so that isotropic response is captured. Therewith the
Piola-Kirchhoff stresses in the material configuration and
in the intermediate configuration become

SSS = 2
∂ψ0

∂CCC
and ŜSS = 2

∂ψ0

∂ĈCC
. (37)

Furthermore with Eq. 28, Eq. 31,Eq. 32 and Eq. 30 the
reduced dissipation inequality in Eq. 27 can be reformu-
lated as

ρ0Dred :=
kϑ(ϑ)

ϑ
trM̂MM

[
trM̂MM +3ψ0

]
−θϑ3ρ�

0S0 ≥ 0 . (38)

Therefrom the extra entropy source follows as

S0 ≤ kϑ(ϑ) trM̂MM
θρ�

0ϑ4

[
trM̂MM +3ψ0

]
. (39)

3.3.2 Volume preservation

As aforementioned for the volume preserving case, i.e.
dV̂ = dV = const, the Jacobian of the growth deforma-
tion tensor must be Jg = 1. Thus, with the definition in
Eq. 28, the isotropic stretch ratio must be ϑ = 1. This
leads to the deformation gradients

FFFg = III and FFFe = FFF . (40)

The assumed growth deformation tensor in Eq. 28 under
volume preservation renders the material configuration to
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coincide with the intermediate configuration. The inter-
mediate configuration is thus dispensable. Since in this
particular case changes in mass follow exclusively from
changes in density, a mass source can be specified consti-
tutively. Following Harrigan & Hamilton (1992; 1993),
the mass source is defined as

R0 =
[

ρ0

ρ�
0

]−m

ψ0 −ψ�
0 , (41)

with the stress stimulus attractor ψ�
0 indicating the point

where the density rate becomes zero, see Beaupré et
al. (1990). Moreover the free energy density is based
on an elastic free energy weighted by the relative density
[ρ0/ρ�

0]
n

ψ = ψ(CCC,ρ0) =
[

ρ0

ρ�
0

]n

ψE(ĈCC,ρ0)

=
[

ρ0

ρ�
0

]n 1
ρ0

ψE
0 (ĈCC) .

(42)

Again a formulation depending on the invariants is pos-
sible. Therewith the Piola-Kirchhoff stresses become

SSS =
[

ρ0

ρ�
0

]n

2
∂ψE

0

∂CCC
=

[
ρ0

ρ�
0

]n

SSSE . (43)

For the reduced dissipation inequality in Eq. 27 we obtain

ρ0Dred:= [1−n]ψ

[[
ρ0

ρ�
0

]−m

ψ0 −ψ�
0

]
−θρ0S0 ≥ 0 (44)

so that the extra entropy source follows as

S0 ≤ 1
θ
[1−n]ψ

[[
ρ0

ρ�
0

]−m

ψ− 1
ρ0

ψ�
0

]
. (45)

The theory and implementation for such a material model
is discussed in more detail for instance in Kuhl et
al. (2003) and Himpel (2003).

4 Numerical implementation

In this section we concentrate on the numerical imple-
mentation of the discussed constitutive theory for the
density preserving case. The implementation of the vol-
ume preserving case has been discussed in the above
given literature. As we assume no mass flux but solely a
mass source, we can apply standard finite element tech-
niques based on an internal variable formulation for the
stretch ratio.

4.1 Incremental tangent modulus

For the computation of the discussed material model we
first develop the tangent modulus at the spatial time step.
Since the material model is formulated with respect to
the intermediate configuration, the corresponding tan-
gent modulus is defined in terms of stresses and strains
in the intermediate configuration, for instance the Piola-
Kirchhoff stresses ŜSS in Eq. 26 and the elastic Cauchy-
Green tensor ĈCC in Eq. 7. By application of the chain rule
we obtain the incremental elastic-growth tangent modu-
lus in the intermediate configuration at the spatial time
step

Ĉ
eg
n+1 = 2

dŜSSn+1

dĈCCn+1

= 2
∂ŜSSn+1

∂ĈCCn+1

+2
∂ŜSSn+1

∂ϑn+1
⊗ ∂ϑn+1

∂ĈCCn+1

. (46)

For the sake of clarity we will drop the index n+1 for the
time step in the following. In Eq. 46 the partial deriva-
tive of the stresses with respect to the strains denotes the
elastic tangent modulus in the intermediate configuration

Ĉ
e := 4

∂2ψ0

∂ĈCC
2 = 2

∂ŜSS

∂ĈCC
. (47)

In order to determine the second part of Eq. 462, we again
apply the chain rule

2
∂ŜSS
∂ϑ

= 2
∂ŜSS

∂ĈCC
:

∂ĈCC
∂ϑ

= − 2
ϑ

Ĉ
e : ĈCC , (48)

whereby ∂ĈCC/∂ϑ = ∂(FFF−t
g ·CCC · FFF−1

g )/∂ϑ = −2ϑ−3CCC =
−2ϑ−1ĈCC. The computation of the third part of Eq. 462

is not straightforward since solely the evolution of the
stretch ratio is known, but not the stretch ratio itself.
Therefore we apply an implicit Euler backward scheme
to obtain the stretch ratio at the spatial time step

ϑ = ϑn + ϑ̇∆t , (49)

and differentiate this equation with respect to the elastic
Cauchy-Green tensor

∂ϑ
∂ĈCC

=
[

∂ϑ̇
∂ĈCC

+
∂ϑ̇
∂ϑ

∂ϑ
∂ĈCC

]
∆t . (50)

Solving this equation for the derivative of the stretch ratio
with respect to the elastic Cauchy-Green strains yields

∂ϑ
∂ĈCC

= ∂ϑϑ̇
−1 ∂ϑ̇

∂ĈCC
∆t (51)
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with the abbreviation

∂ϑϑ̇ := 1− ∂ϑ̇
∂ϑ

∆t

= 1−
[

∂kϑ

∂ϑ
trM̂MM +kϑ(ϑ)

∂ trM̂MM
∂ϑ

]
∆t .

(52)

Recall from Eq. 35 that we have to distinguish be-
tween tensile and compressive stress states for the partial
derivative of the coefficient kϑ with respect to the stretch
ratio

∂kϑ
∂ϑ

=
m+

ϑ
ϑ−ϑ+ kϑ(ϑ) for trM̂MM > 0 ,

∂kϑ

∂ϑ
=

m−
ϑ

ϑ−ϑ− kϑ(ϑ) for trM̂MM < 0 .

(53)

The partial derivative of trM̂MM with respect to ϑ results in

∂ trM̂MM
∂ϑ

= − 1
ϑ

[
2trM̂MM +ĈCC : Ĉ

e : ĈCC
]

(54)

with the elastic tangent modulus being defined in Eq. 47.
Finally, the second term in Eq. 51 can directly be deter-
mined as

∂ϑ̇
∂ĈCC

= kϑ(ϑ)
∂ trM̂MM

∂ĈCC
= kϑ(ϑ)

[
ŜSS+

1
2

ĈCC : Ĉ
e

]
. (55)

Summarising the unsymmetric elastic-growth tangent
modulus reads

Ĉ
eg
n+1 = Ĉ

e
n+1 − 2

ϑn+1
∂ϑϑ̇

−1
kϑ(ϑn+1)∆t[

Ĉ
e
n+1 : ĈCCn+1

]
⊗

[
ŜSSn+1 +

1
2

ĈCCn+1 : Ĉ
e
n+1

]
.
(56)

4.2 Incremental update of the stretch ratio

As we can identify from the previous section, the tangent
modulus, see Eq. 56, and therewith the stresses depend
on the stretch ratio at the spatial time step. From Eq. 31
we conclude that the spatial density ρt depends solely on
the stretch ratio for density preservation. Consequently it
proves convenient to introduce ϑ as internal variable. In
order to compute the stretch ratio at the spatial time step
we incorporate the implicit Euler backward scheme, see
Eq. 49, and formulate the residual

Rϑ = −ϑ+ϑn +kϑ(ϑ) trM̂MM∆t = 0 , (57)

which has to vanish in the solution point. Due to the non-
linearity of this equation, we will solve it by application
of a Newton iteration scheme. Therefore we reformulate
Eq. 57 in terms of Taylor series at ϑ

Rk+1
ϑ = Rk

ϑ −∆ϑ+
∂ϑ̇
∂ϑk ∆ϑ∆t = 0 . (58)

Solving this equation for the increment ∆ϑ leads to

∆ϑ = ∂ϑϑ̇
−1

Rk
ϑ , (59)

with the abbreviation ∂ϑϑ̇ being defined in Eq. 52. There-
with we obtain the algorithm

ϑk+1 = ϑk +∆ϑ (60)

to update the stretch ratio until a convergence criterion is
reached. A summary of the algorithm is given in Tab. 1.

5 Numerical examples

In this section the presented theory of multiplicative
growth will be discussed for the density preserving case
by means of numerical examples. The behaviour of the
material model will be elaborated by a simple tension test
and a cylindrical tube.
As mentioned above, constitutive equations for the free
energy and for the growth deformation gradient must be
specified. The growth deformation tensor is clearly in-
dicated by Eq. 28, Eq. 34 and Eq. 35. Furthermore, we
choose a free energy function of Neo-Hooke type

ψ0 =
λ
8

ln2 I3 +
µ
2

[I1 −3− ln I3] , (61)

with the invariants I1 = trĈCC and I3 = detĈCC.

5.1 Simple tension

At first we consider the behaviour of the material model
at a stepwise increasing elongation of a one-dimensional
bar as depicted in Fig. 5.a. Herein we choose the elas-
tic parameters E = 1N/mm2 and ν = 0.3, corresponding
to λ = 0.577N/mm2 and µ = 0.385N/mm2. The initial
density is ρ�

0 = 1g/cm3. Unless otherwise stated, the lim-
iting values of the stretch ratio are ϑ+ = 1.3 for growth
and ϑ− = 0.5 for atrophy and the remaining material pa-
rameters in Eq. 35 are k+

ϑ = 1.0, k−ϑ = 2.0, m+
ϑ = 2.0 and
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Figure 5 : a) Application of incrementally increasing stretch. b) Relaxation to a biological equilibrium; Limited
Growth. c) Stresses vanish in biological equilibrium for ϑ < ϑ+. d) Density in biological equilibrium does not
change for ϑ < ϑ+.

m−
ϑ = 3.0. For the time step we choose ∆t = 1.0.

As one can see in Fig. 5.b the stretch ratio ϑ increases at
every elongation step until the limiting stretch ratio ϑ+

is reached. This means that for ϑ = ϑ+ the evolution of
the stretch ratio, see Eq. 34 and Eq. 35, becomes ϑ̇ = 0.
The stretch ratio does not increase instantaneously, al-
though the stretch obviously is applied at once, rather it
converges progressively time-depending to the so-called
biological equilibrium. The biological equilibrium is de-
fined as the state, where the stretch ratio remains constant
and therewith neither the density nor the stresses in the
considered specimen changes unless an additional load
is applied. Until the limiting stretch ratio is not reached,
viz ϑ �= ϑ+, we can identify from Eq. 34 and Eq. 35, that
the trace of the Mandel stresses must vanish in the bi-
ological equilibrium state. This effect can be observed
in Fig. 5.c which displays the evolution of the normal

stresses in stretch direction. The normal stresses in the
other directions are zero due to the boundary conditions.
With Eq. 31 and Eq. 16 the spatial density

ρt = J−1ϑ3ρ�
0 (62)

can be computed. Its evolution is depicted in Fig. 5.d.
Obviously the density in the biological equilibrium does
not change until the limiting value of the stretch ratio is
reached.
Fig. 6 underlines the fact, that ϑ+ limits the effect of
growth. Until the stretch ratio is lower than the limiting
value in the biological equilibrium the applied stretches
will be completely compensated by growth. This means
that the stretch ratio and therewith the volume of the
specimen changes. The density in the biological equilib-
rium state is equal to the initial density and the stresses
are zero. Once the limit of growth is reached, purely elas-
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Figure 6 : The stretch ratio increases until the limiting value is reached. If the limiting value of the stretch ratio is
reached the material behaviour is purely elastic.

tic response can be observed. In Fig. 7 the sensitivity of
the material behaviour with respect to the material pa-
rameters k+

ϑ and m+
ϑ is illustrated. Obviously a variation

of these parameters influences the relaxation time, but
not the final state at biological equilibrium.

For higher values of k±ϑ the evolution of the stretch
ratio in Eq. 34 and Eq. 35 becomes higher. Since
(ϑ+ −ϑ)/(ϑ+− 1) and (ϑ−ϑ−)/(1−ϑ−) are always
smaller than one, the evolution of the stretch ratio be-
comes higher for smaller values of m±

ϑ . Consequently,
the attainment of biological equlibrium is more rapid for
high values of k±ϑ and small values of m±

ϑ . The limiting
value ϑ− and the parameters k−ϑ and m−

ϑ are not activated
for the problem at hand, since solely monotonic loading
under tension is considered. It can be shown that for the
application of compression a variation of the appropriate
parameters will have an analogous effect.
For a better illustration of the fact, that the material

behaviour is purely elastic once the limiting value is
reached, we apply a stepwise alternating stretch and com-
pression in a second simulation as illustrated in Fig. 8.
Herein we choose the same material parameters as for
the first simulation, but limiting values of the stretch ra-
tio of ϑ+ = 1.1 for growth and ϑ− = 0.5 for atrophy and
material parameters k+

ϑ = 2.0, k−ϑ = 0.5, m+
ϑ = 1.0 and

m−
ϑ = 4.0.

In the first loading step we apply a stretch of 10%, so that
the limiting stretch ratio is reached. This means that the
stresses become zero in the biological equilibrium state
and the stretch is compensated completely by growth. In
the second step we apply a compression of 5% of the ini-
tial length, thus the stretch ratio decreases until a new bi-
ological equilibrium state is reached. Herein the stresses
vanish again. Then we stretched the specimen to the 1.1-
fold initial length and obtain the same conditions as in the
first loading step. Now the extra stretch of this configu-
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Figure 7 : The material parameters k+
ϑ and m+

ϑ influence the relaxation time, but not the final state at biological
equilibrium

ration can no longer be compensated by growth, since
the limit has already been reached. Thus the stretch in
the fourth loading step causes a purely elastic material-
behaviour. The stresses are no longer identical to zero.
Consequently the displacement in the last loading step of
this simulation results in a reduction of elastic strains.

5.2 Cylindrical tube

In this section the material model is applied to a cylindri-
cal tube, for instance a stylised blood vessel.

5.2.1 Homogeneous loading

In this section a homogeneous deformation of the tube
will be considered. Identical constitutive equations as
for the simple tension test are applied, i.e. Eq. 28,
Eq. 34 and Eq. 35 for the growth deformation tensor and
Eq. 61 for the free energy function. The elastic param-
eters are E = 3N/mm2 and ν = 0.3, corresponding to

λ = 1.731N/mm2 and µ = 1.154N/mm2. The initial ma-
terial density is ρ�

0 = 1g/cm3. The material parameters
describing the growth are the limiting values ϑ+ = 1.5
and ϑ− = 0.5, the coefficients k+

ϑ = 0.5 and k−ϑ = 0.25
as well as the exponents m+

ϑ = 4.0 and m−
ϑ = 5.0. The

time iteration has been executed with time steps ∆t = 0.1.
The discretisation and boundary conditions are depicted
in Fig. 9. The lower boundary is fixed in axial and radial
direction.

In the first simulation the tube will be stretched in one
time step half the initial length in axial direction and then
be fixed in this position, which means that the top dis-
placement depicted in Fig. 9 is u = 0.5 during the whole
simulation. The initial configuration and the resulting
deformations after 1, 100 and 200 time steps as well as
the evolution of the stretch ratio are depicted in Fig. 10.
At the first loading step the cross section of the tube de-
creases due to the classical Poisson effect. Then as a re-
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Figure 8 : Application of stepwise alternating stretch and compression. Until the limiting stretch ratio is not reached,
the specimen will grow . Once the limiting value is reached, a purely elastic behaviour can be observed.

sult of tension the material grows, this means both the ra-
dius and the thickness of the tube become larger. For the
first 100 time steps the growth effect is obviously much
higher than for the following 100 time steps. This reflects
that the density relaxes to a biological equilibrium. This
effect can also be seen in Fig. 11.a, where the displace-
ments of the two points P1 and P2, as depicted in Fig. 9,
are plotted over time.

In the second simulation the displacement depicted in
Fig. 9 is u = −0.5. Apparently we a apply a constant
compression to the tube. In Fig. 12 the initial config-
uration and the resulting deformations after 1, 100 and
200 time steps are pictured as well as the evolution of the
stretch ratio.

Herein we observe the inverse attitude as in Fig. 10. Due
to the compression at the first step, reproducing the elas-
ticity of the material, the tube becomes wider. As a re-
sult of atrophy both the thickness and the radius become

smaller in the long run. Furthermore the relaxing be-
haviour of the material can again be observed. For this
simulation the axial and radial displacement of the two
points P1 and P2 are plotted against the time in Fig. 11.b.
Comparison of the evolution of the radial displacements
in Fig. 11 for tension and compression shows the influ-
ence of the material parameters m±

ϑ and k±ϑ . Because of
m+

ϑ < m−
ϑ and k+

ϑ > k−ϑ , the relaxation time to the biologi-
cal equilibrium is smaller in tension than in compression.

5.2.2 Inhomogeneous loading

Finally we consider an inhomogeneous deformation of
the tube. The discretisation and the boundary conditions
are similar to those in the last section, but now both the
lower and the upper boundary of the tube are fixed in
axial and radial direction. The constitutive equations and
material parameters are identical, too. We apply a radial
deformation, with peak value at the middle layer of the
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Figure 9 : Discretisation, load and boundary condi-
tions of the cylindrical tube.
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Figure 10 : Deformation of the tube and evolution of the
stretch ratio for an axial stretch u = 0.5.
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history data: internal variable ϑn

1. set initial values

FFFe = FFF ·FFF−1
gn = 1

ϑn
FFF ; ĈCC = FFF t

e ·FFFe

ŜSS = 2 ∂ψ0

∂ĈCC
; M̂MM = ĈCC · ŜSS

ϑ = ϑn

2. check loading

IF trM̂MM > 0 THEN

apply kϑ(ϑ) and ∂kϑ(ϑ)
∂ϑ for tension

ELSEIF trM̂MM < 0 THEN

apply kϑ(ϑ) and ∂kϑ(ϑ)
∂ϑ for compression

ELSE

Ĉeg = Ĉe EXIT

3. local Newton iteration

a. compute residual

Rϑ = −ϑ+ϑn + ϑ̇∆t

b. check tolerance

IF ‖Rϑ‖ < tol GOTO 4

c. compute incremental update

∆ϑ = ∂ϑϑ̇
−1

Rϑ

with

∂ϑϑ̇ = 1−
[

∂kϑ
∂ϑ trM̂MM +kϑ(ϑ) ∂ trM̂MM

∂ϑ

]
∆t

d. update

ϑ ⇐ ϑ+∆ϑ
FFFe = 1

ϑFFF ; ĈCC = FFF t
e ·FFFe

ŜSS = 2 ∂ψ0

∂ĈCC
; M̂MM = ĈCC · ŜSS

4. compute moduli

Ĉ
eg = Ĉ

e − 2
ϑ ∂ϑϑ̇

−1
kϑ(ϑ)∆t[

Ĉe : ĈCC
]
⊗

[
ŜSS + 1

2ĈCC : Ĉe
]

with Ĉ
e = 4 ∂2ψ0

∂ĈCC
2

and density

ρ0 = ρ�
0ϑ3

Table 1 : Implicit Euler backward algorithm
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Figure 12 : Deformation of the tube and evolution of the
stretch ratio for an axial compression u = −0.5.
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Figure 13 : Deformation of the inner boundary of the
tube in radial direction.

tube, declining to the upper and lower boundary. The
applied deformation is depicted in Fig. 13

for one cut along the axial direction through the tube.
Herein the displayed deformation is chosen to ur =
0.125. Fig. 14 shows the deformation and the evolution
of the stretch ratio.

Herein we observe, that due to the stretch of the outside
layer the material in the middle of the tube grows. At
the upper and lower boundary atrophy is observed due to
compression.

6 Conclusions

The main goal of this paper is the numerical implemen-
tation of a constitutive model for finite growth. In or-
der to represent both a change in density and a change
in volume, we applied a multiplicative split of the de-
formation gradient into a growth part and an elastic part.
Consequently an additional presetting is required to de-
scribe the form of growth, this means the division of
the total deformation into the elastic part and the growth
part. We distinguish between different cases for a mass
change, namely density preserving growth, volume pre-
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Figure 14 : Deformation of the tube and evolution of the
stretch ratio.

serving growth and growth in which both, the density and
the volume, change. Since the volume preserving case
has been studied intensively in earlier works, we focused
in particular on the density preserving case. Changes in
volume are characterised through the isotropic stretch ra-
tio which is treated as an internal variable. In contrast
to Lubarda & Hoger (2002), we assume the stretch ratio
to be driven by the Mandel stresses M̂MM rather than by the
elastic Piola-Kirchhoff stresses ŜSS. The constitutive equa-
tions have been implemented into a finite element code.
Based on an implicit Euler backward scheme, the incre-
mental tangent modulus as well as the algorithmic evo-
lution of the stretch ratio have been derived. The theory
has been discussed by numerical examples. At first the
sensitivity of the material parameters has been shown by
a simple tension test. Finally a cylindrical tube under ho-
mogeneous and an inhomogeneous deformation has been
discussed within a finite element setting.

References

Ambrosi, D.; Mollica, F. (2002): On the mechanics of
a growing tumor. International Journal of Engineering
Science, vol. 40, pp. 1297–1316.
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