Copyright (©) 2005 Tech Science Press

CMES, vol.8, no.2, pp.135-152, 2005

Multiscale Simulations Using Generalized Interpolation Material Point (GIMP)
Method And SAMRALI Parallel Processing

J.Ma!, H. Lu!, B. Wang!, S. Roy!, R. Hornung?, A. Wissink” and R. Komanduri'-3

Abstract: In the simulation of a wide range of mechan-
ics problems including impact/contact/penetration and
fracture, the material point method (MPM), Sulsky, Zhou
and Shreyer (1995), demonstrated its computational ca-
pabilities. To resolve alternating stress sign and insta-
bility problems associated with conventional MPM, Bar-
denhagen and Kober (2004) introduced recently the gen-
eralized interpolation material point (GIMP) method and
implemented for one-dimensional simulations. In this
paper we have extended GIMP to 2D and applied to sim-
ulate simple tension and indentation problems. For sim-
ulations spanning multiple length scales, based on the
continuum mechanics approach, we present a parallel
GIMP computational method using the Structured Adap-
tive Mesh Refinement Application Infrastructure (SAM-
RAI). SAMRALI is used for multi-processor distributed
memory computations, as a platform for domain decom-
position, and for multi-level refinement of the computa-
tional domain. Nested computational grid levels (with
successive spatial and temporal refinements) are used in
GIMP simulations to improve the computational accu-
racy and to reduce the overall computational time. The
domain of each grid level is divided into multiple rect-
angular patches for parallel processing. This domain de-
compositionembedded in SAMRALI is very flexible when
applied to GIMP. As an example to validate the parallel
GIMP computing scheme under SAMRALI parallel com-
puting environment, numerical simulations with multi-
ple length scales from nanometer to millimeter were con-
ducted on a 2D nanoindentation problem. A contact al-
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gorithm in GIMP has also been developed for the treat-
ment of contact pair between a rigid indenter and a de-
formable workpiece. GIMP results are compared with
finite element results on indentation for validation. A
GIMP nanoindentation problem with five levels of refine-
ment was modeled using multi-processors to demonstrate
the potential capability of the parallel GIMP computa-
tion.

keyword: Material point method (MPM), Generalized
interpolation material point method (GIMP), Tension,
Nanoindentation, Parallel computing, SAMRAI, Multi-
level refinement, Contact problem.

1 Introduction

The material point method (MPM) has demonstrated its
capabilities in addressing such problems as impact, up-
setting, penetration, and contact (e.g. Sulsky, Zhou and
Schreyer (1995); Sulsky and Schreyer (1996)). In MPM,
two descriptions are used — one based on a collection of
material points (Lagrangian) and the other based on a
computational background grid (Eulerian), as proposed
by Sulsky, Zhou and Schreyer (1995). A fixed struc-
tured mesh is generally used in the background through-
out the MPM simulations. The material points are fol-
lowed throughout the deformation of a solid to provide
a Lagrangian description and the governing field equa-
tions are solved at the background grid nodes so that
MPM is not subject to mesh entanglement. Compared
to the finite element method (FEM), MPM takes ad-
vantage of both Eulerian and Lagrangian descriptions
and possesses the capability of handling large defor-
mations in a more natural manner so that mesh lock-
up problems present in FEM are avoided. Addition-
ally, for problems involving contact, MPM provides a
naturally non-slip contact algorithm to avoid the pene-
tration between two bodies based on a common back-
ground mesh (Sulsky, Zhou and Schreyer (1995), Sul-
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sky and Schreyer (1996)). One drawback of the con-
ventional MPM is that when the material points move
across the cell boundaries during deformation, some nu-
merical noise/errors can be generated, Bardenhagen and
Kober (2004). To solve the instability problems asso-
ciated with the conventional MPM simulations, Barden-
hagen and Kober recently proposed the generalized inter-
polation material point method (GIMP) and implemented
for one-dimensional simulations.

The present investigation extends the GIMP presented
by Bardenhagen-Kober to two-dimensional simulations
and applies it to simple tension and indentation problems.
Furthermore, a refinement technique and a parallel pro-
cessing scheme are developed so that the serial GIMP al-
gorithm and code can be extended for parallel computa-
tion of large scale computations based on the continuum
mechanics approach.

Parallel processing has been used successfully in nu-
merical analysis using different methods, such as FEM
and boundary element method (BEM), Mackerle (2003)
and molecular dynamics (MD), Kalia and Nakano
(1993). The computational time on parallel processors
can be reduced to a small fraction of the time con-
sumed by a single processor at the same speed. Par-
allel processing generally involves issues, such as do-
main decomposition/partitioning, load balancing, par-
allel solver/algorithms, parallel mesh generation, and
multi-grid, Mackerle (2003). Domain decomposition has
been widely applied in parallel processing in FEM, Hsien
(1997). With partitioning of the overall computational
domain, sequential FEM algorithm usually cannot be
used directly in parallel processing without some modifi-
cation, primarily due to the coupling of a large number of
simultaneous linear equations. Remeshing is sometimes
needed in each sub-domain. The interfaces of neighbor-
ing sub-domains must be meshed identically for subse-
quent communications, Mackerle (2003). These prob-
lems are intrinsic to certain numerical methods, such as
FEM; however, they can be totally or partially avoided if
other appropriate computational methods are used. For
example, the domain decomposition is more straightfor-
ward for structured meshes, and large systems of coupled
equations can be avoided, if explicit time integration is
used.

Recently a platform for parallel computation, namely, the

structured adaptive mesh refinement application infras-
tructure (SAMRALI), Hornung and Kohn (2002), has been
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developed by the Center for Applied Scientific Com-
puting at the Lawrence Livermore National Laboratory.
SAMRALI has provided interfaces for user-defined data
types so that material points carrying physical variables
(mass, displacement, velocity, acceleration, stress, strain,
etc.) can be readily defined. As aresult, SAMRALI is very
suitable for handling material points and their physical
variables in MPM or its variant, GIMP. In this investi-
gation SAMRALI is used for parallelizing GIMP. SAM-
RAI has also provided a foundation for parallel adap-
tive mesh refinement (AMR) with the use of either dy-
namic or static load balancing, Wissink, Hysom and Hor-
nung (2003). This function allows SAMRALI to process
both spatial and temporal refinements in areas of inter-
est, typically with high gradients in some physical vari-
ables (e.g., strains), and to use coarse mesh in the remain-
ing areas. With the appropriate use of fine and coarse
meshes in different regions, multiscale simulations us-
ing MPM can provide desired computational accuracy
with reduced costs associated with computer memory
and computational time.

Material multiscale simulations span from elec-
tronic structure, atomistic scale, crystal scale, to
macro/continuum scale, Horstemeyer, Baskes, Prantil,
Philliber and Vonderheide (2003); Komanduri, Lu,
Roy, Wang and Raff (2004). Appropriate simulation
algorithms can be used at various scales, e.g., ab
initio computation for electronic structure, molecular
dynamics at the atomistic scale, crystal plasticity or
mesoplasticity at the crystal scale, and continuum me-
chanics at the macro scale, Horstemeyer, Baskes, Prantil,
Philliber and Vonderheide (2003). At the continuum
scale, FEM is generally used. Recently, the meshless
local Petrov-Galerkin (MLPG) method (Shen and Atluri
(20044a, 2005)) and the continuum/lattice Green function
method (Tewary and Read (2004)) have been used to
couple with molecular dynamics seamlessly. The MLPG
method is a simple, less-costly alternative approach
to FEM, Atluri and Shen (2002). For the purposes of
providing the insights into the discrete atomistic system
and coupling with continuum, an equivalent continuum
was defined in the MD region to compute the atomic
stress based on the Smoothed Particle Hydrodynamics
(SPH) method, Shen and Atluri (2004b). The atomic
stress tensor computed using the SPH method is more
natural than other atomic stress formulations because
it is in the nonvolume-averaged form and rigorously
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satisfies the conservation of linear momentum. Hence, it
is applicable to both homogeneous and inhomogeneous
deformations. A tangent stiffness formulation was
developed for both MLPG and MD regions and the
displacements of the nodes and atoms are solved in one
coupled set of linear equations. The MLPG/MD cou-
pling has been demonstrated to be capable of enforcing
the local balance equations in the handshaking region
between continuum mechanics and molecular dynamics,
Shen and Atluri (2005).

The simulation using parallel GIMP computing scheme
in this investigation will focus on multiscales, e.g., from
nanometer to millimeter, based on the continuum me-
chanics approach, namely, 2D GIMP. An example used
for validating the simulation at several length scales at
the continuum level is nanoindentation. It involves the
contact issue between a rigid indenter and a deformable
workpiece. A contact algorithm, which allows the con-
tact interface to be located in a few computational do-
mains, is introduced in this study. The contact pressure is
determined from solving a set of equations from multiple
processors. Parallel GIMP results on nanoindentation are
compared with FEM results using the ABAQUS/Explicit
code. A nanoindentation model with five levels will be
used; this model allows simulation from nanometer to
millimeter scales.

2 Generalized Interpolation Material Point (GIMP)
Method

The governing equations in both conventional material
point method (MPM), Sulsky, Zhou and Sheryer (1995),
Hu and Chen (2003), Bardenhagen (2002) and general-
ized interpolation material point (GIMP) method, Bar-
denhagen and Kober (2004), are briefly summarized in
this section. The weak form of the momentum conserva-
tion equation in the conventional MPM is given by
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where w is the test function, a is the acceleration, and
s*, ¢’ and b’ are the specific stress, specific traction, and
specific body force, respectively. € is the current con-
figuration and dQ is the surface with applied traction.
The material density, p, can be approximated as the sum
of material point masses using a Dirac delta function
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ber of material points and M), is the mass of the ma-
terial point. Upon discretization of Eq. (1) using the
shape functions Nl-(x;), the governing equations at the
background grid nodes become (see Sulsky, Zhou and
Schreyer (1995))
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where /£ is the thickness of a boundary layer. Ateach time
step, all variables for each material point, such as mass,
velocity, and force are extrapolated to the grid nodes of
the cell in which the material point resides. New nodal
momenta are computed and used to update the physi-
cal variables carried by the material points. Thus, ma-
terial points move relative to each other to represent de-
formation in a solid. A spatially fixed background grid
is used throughout the MPM computation. MPM has
already demonstrated its capabilities in solving a num-
ber of problems involving impact/contact/penetration. In
case of large deformation, however, numerical noise,
or errors have been observed, especially when material
points have just crossed cell boundaries resulting in insta-
bility problems in the MPM simulations (see, e.g., Sul-
sky, Zhou and Schreyer (1995), Hu and Chen (2003),
Bardenhagen and Kober (2004)). The primary cause for
the problem has been attributed to the discontinuity of
the gradient of the shape functions across the cell bound-
aries (see, e.g., Hu and Chen (2003), Bardenhagen and
Kober (2004)). To resolve this problem, Bardenhagen
and Kober (2004) proposed a generalized interpolation
material point (GIMP) method. In GIMP, the interpola-
tion between node i and material point p is given by the
volume averaged weighting function

— 1
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where V), is the current volume of the material point,
Xp(X) is the characteristic function of the material point,
and S;(x) is the node shape function. The role of the
weighting function is the same as the shape function in
conventional MPM. The modified equation of momen-
tum conservation, Bardenhagen and Kober (2004), can
be written as
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where dv is an admissible velocity field, p,, is the rate of
change of the material point momentum. Eq. (7) can be
further discretized and solved at the grid nodes, Barden-
hagen and Kober (2004). Herein, the weighting function
E-p is C! continuous under the spatially fixed background
grid. Consequently the noises associated with material
point crossing cell boundaries in the conventional MPM
can be minimized.

In this paper, we have implemented GIMP presented
by Bardenhagen-Kober for two-dimensional simulations.
We have also developed a refinement technique and a par-
allel processing scheme to extend the serial GIMP algo-
rithm to code large scale parallel computing. The ca-
pability of parallel GIMP computing has been demon-
strated by modeling nanoindentation problem. A con-
tact algorithm has been developed to address the contact
problem between the rigid indenter and the deformable
workpiece. We proceed next to describe the contact al-
gorithm developed in this investigation.

2.1 Contact Algorithm in GIMP

Nanoindentation involves a contact pair of a rigid inden-
ter and a deformable workpiece. The contact interac-
tion between these two surfaces is governed by the New-
ton’s third law and Coulomb’s friction law as well as the
boundary compatibility condition at the contact interface,
Oden and Pires (1983), Zhong (1993). While MPM can
prevent the penetration at the interface automatically, it
uses a single mesh for the two bodies. At the contact sur-
face, all components of the variables are interpolated to
the nodes from both bodies using Eqgs. (3)-(5). As a re-
sult, MPM using a single mesh tends to induce early con-
tact in approaching and late separation when two parts
move away from each other. So, MPM cannot model
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the contact behavior between two parts correctly. Hu and
Chen (2003) proposed a multi-mesh MPM algorithm to
release the no-slip constraint inherent in the MPM using
a single mesh. In the multi-mesh MPM, in addition to a
common mesh for all objects, there is an individual mesh
for each of the objects under consideration. All meshes
are identical, i.e. nodal locations are the same. The multi-
mesh can be generated by creating multiple nodal fields
for each node. Each nodal field corresponds to an ob-
ject. In multi-mesh MPM scheme, the nodal masses and
forces are mapped from the material points of each ob-
ject to its own mesh. The nodal values are transferred
to the corresponding nodes in the common mesh. When
the values at a node of the common background mesh in-
volve contributions from two parts, the contact between
two parts occurs so that this node is defined as an over-
lapped node. Otherwise, two parts move independently.
This multi-mesh algorithm can handle sliding and sepa-
ration for the contact pair. However, in using the multi-
mesh for contact problem in GIMP, the interaction at the
overlapped nodes is still activated too early before the
actual contact of the material points occurs.

Fig. 1 is an example illustrating early contact when Part
1 is moving toward Part 2. The four bottom particles of
Part 1, labeled in hollow circles, have come into the cells
of Part 2, the nodes of which cells are labeled in three
dashed circles. Physical variables (e.g., normal force,
and velocity component normal to the contact surface)
in Part 1 will be interpolated onto these three overlapped
nodes. The physical variables in the three overlapped
nodes will be further interpolated into material points
within the top layer of cells in Part 2, and contribute
to the stress and deformation in the entire Part 2. With
this treatment in the previous multi-mesh algorithm, even
though Parts 1 and 2 are not in physical contact, the par-
ticles in Part 2 will contribute to the physical variables of
particles in Part 1, leading to numerical early contact, and
vice versa, through the overlapped nodes. Similar situa-
tion occurs when Part 1 is retracting from Part 2, resulting
in late separation of two parts. Unless other measures are
taken to prevent these physically incorrect early contact
and late separation problems, they could cause large er-
rors in GIMP and must be corrected in contact problems.

In this paper, a new contact algorithm is developed for
GIMP simulations. Fig. 2 illustrates the contact algo-
rithm for the contact pair between a rigid indenter and
a deformable workpiece. Although circular points are
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Figure 1 : [llustration of early contact in multi-mesh
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Figure 2 : Schematic of contact algorithm between the rigid indenter and the deformable workpiece

used in this schematic diagram, it should be noted that
the points are representations of areas occupied by these
points, based on the GIMP algorithm. A frictionless con-
tact is assumed in this investigation. At the beginning of
a time step, a material point is located at point A. At the
end of this time step, the material point moves to B, if
there is no contact interaction.

To satisfy the displacement compatibility condition, the
material point has to be brought to the indenter surface
and kept in contact with the indenter. The contact veloc-
ity correction Vj, can be determined based on the rigid
surface orientation indicated by its unit outward normal
vector n. The final location of the material point is set to
C by a contact pressure. Hence, the velocity of a material
point p under contact can be determined by
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where N is the number of nodes contributing to material
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point p, F{ is the contact force on node i, p? and F? are
the nodal momentum and force without consideration of
the contact, respectively. The velocity Vg of the material
point without the consideration of contact is given by

N 0—|—F0At_

Zp

The contact force F; on node i is the resultant of the
contact pressures on the neighboring particles, and can
be computed in terms of contact pressures using the ap-
proach given by Bardenhagen and Kober (2004), i.e.,

€)
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where Q is the total number of material points in contact
with the indenter. If the contact pressure Py is assumed
to be constant in the contact area occupied by material

= | Si(x)ds
9Q,

Since V;Vg + Vi, the contact velocity Vi, for material

Q
point g, we have Fj = qz,l T;qPy, where T,
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point p is given by
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Eq. (11) can be established for each material point in
contact. At each material point there is an unknown
contact pressure P;. Therefore, the number of unknown
pressures, P¢, is equal to the number of points in contact.
In parallel computing, points in contact might be located
in different domains processed by different processors.
Consequently, a parallel solver is needed to solve Eq.
(11) in this investigation. Since contact can only occur
on the outer surface of an object, Eq. (11) is solved ana-
lytically under the physical contact condition P -n <0 to
find the contact pressure at all material points in contact
with the indenter. The contact pressure is then extrap-
olated to the nodes from the contact material points to
update the total nodal forces.

2.2  Numerical Implementation

We consider the case where initially there are four mate-
rial points in a cell for which the 2D weighting function
is depicted in Fig. 3. To compute the weighting function,
we take ), (X) to be one in the current region occupied
by the material point p and zero elsewhere. In this figure,
one node is at the origin and the horizontal axes give ma-
terial point positions normalized by the cell size. Fig. 3 is
based on the same material point characteristic function
and node shape function as in Bardenhagen and Kober
(2004). It is noted that the computation of the weighting
function in the deformed state involves some practical
difficulties because the integration boundaries in Eq. (7)
can be difficult to obtain. To circumvent this problem, we
assume that the shape of the region occupied by the four
material points remains rectangular without rotation, so
that Eq. (6) can be evaluated analytically. This assump-
tion leads to significant saving in the computational time
while introducing only small errors. Using this assump-
tion, GIMP is extended to 2D simulations and the results
are presented in Section 4.
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3 Parallel Computing Scheme Using GIMP with
SAMRAI

3.1 Structured Adaptive Mesh Refinement Applica-
tion Infrastructure (SAMRAI)

The Structured Adaptive Mesh Refinement Applica-
tion Infrastructure (SAMRALI), a scientific computational
package for structured adaptive mesh refinement and par-
allel computation, is used with the GIMP for parallel
computation of large-scale simulations. SAMRALI is cho-
sen because of its similarity in grid structure with GIMP.
In GIMP, the computation is usually independent of the
background grid mesh so that a structured spatially-fixed
mesh can be used throughout the entire simulation pro-
cess. This advantage makes GIMP highly suitable for
parallel computation, as the domain decomposition for
structured mesh can be easily performed and no remesh-
ing is required. Thus the complexity and inefficiency as-
sociated with parallel processing can be avoided.

In SAMRALI, the computational domain is defined as
a hierarchy of nested grid levels of mesh refinement,
Berger and Oliger (1984), as shown in Fig. 4. Each
grid level is divided into non-overlapping, logically-
rectangular patches, each of which is a cluster of compu-
tational cells. Indices are used extensively in SAMRALI to
manage grid levels and patches. For example, patch con-
nectivity is managed by the cell indices. The organiza-
tion of the computational mesh into a hierarchy of levels
of patches allows data communication and computation
to be expressed in geometrically-intuitive box calculus
operations. Communication patterns for data dependen-
cies among patches can be computed in parallel without
inter-processor communications, since the mesh config-
uration is replicated readily across processor memories.
Inter-processor communications, i.e., data communica-
tions between patches on the same as well as neighbor-
ing levels, are pre-defined by SAMRAI communication
schedules. Problem-specific communication interfaces
are also provided by SAMRAL

SAMRALI supports several data types defined in a patch,
such as cell-centered data, node-centered data, and face-
centered data. These data are stored as arrays to allow
numerical subroutines to be separated easily from the im-
plementation of mesh data structures. User-defined data
structures over a patch, which can be accessed through
cell index, are supported by SAMRAI. These charac-
teristics make SAMRAI a very flexible parallel com-
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Figure 3 : Material points in cells and the weighting function in 2D GIMP

Level 3

Figure 4 : Illustration of a hierarchy of three nested grid levels of mesh refinement

puting environment for numerous physics applications,
Wissink, Hysom, and Hornung (2003).

3.2 Spatial and Temporal Refinements

In the application of SAMRALI to large-scale GIMP sim-
ulations, the techniques for refinement, both spatial and
temporal, have to be developed to achieve high accu-
racy in areas of high stress/strain gradients while reduc-
ing the overall computational time by using coarse mesh
in regions of low stress/strain gradients. Since a struc-
tured mesh is used in GIMP, the refinement can be im-
plemented by imposing fine levels of sub-grids at loca-
tions of interest, using the approach adopted by Berger
and Oliger (1984) in SAMRALI The scheme for the struc-
tured grid refinement is illustrated in Fig. 4. The cell size
ratio, also called the refinement ratio, of two neighboring
levels is always an integer for convenience. The advan-

tage of this refinement technique is that nesting relation-
ships between different levels can be handled. A mate-
rial point in GIMP can be split into several small material
points. Tan and Nairn (2004) proposed a criterion to split
material points based on local deformation gradient. If
the refinement ratio is two in each direction, one coarse
material point can be split into four material points in the
next fine level in 2D case. However, this splitting tech-
nique can become complicated when conservation of en-
ergy and momentum have to be enforced. In this paper, a
more natural refinement approach is developed to avoid
direct splitting and merging processes by using material
points of the same size and mass in overlapped region
(called ghost region) between two neighboring levels.

Fig. 5 shows two neighboring coarse and fine grid lev-
els in 2D GIMP computations with a refinement ratio
of two. The thick line represents the physical bound-
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Fine

Figure 5 : Two neighboring coarse and fine grid levelsin 2D GIMP computations

ary of the fine level with four layers of ghost cells. Ini-
tially, four material points are assigned to each cell at
the fine level. At the coarse level, the portion overlapped
by the fine level is assigned with 16 material points per
cell. Hence, these material points have the same size and
initial positions as those at the fine level. The rest of
the coarse level is assigned with four material points per
cell. GIMP provides a natural coupling of the material
points with different sizes at the same grid level. This
is because the weighting function depends on the char-
acteristic size of the material points and cell length and
the interpolation between the nodes and material points
is weighed by the mass of the material point. In GIMP
computation, each level is computed independently with
the physical variables communicated through the ghost
regions between neighboring levels. Two data exchange
processes, namely, refinement and coarsening are used
in the communication. Refinement process passes infor-
mation from the coarse level to the immediate fine level,
while coarsening process will pass information from fine
level to the next coarse level. In the refinement process,
physical variables at the fine material points inside the
thick lines in Fig. 5 are copied directly to replace the
material points at the coarse level. In the coarsening pro-
cess, the physical variables at coarse material points are
copied to the ghost cells of the immediate fine level.

In the refinement, the material points located in the ghost
cells at the fine level are eliminated first, and the mate-
rial points in the corresponding region of the coarse level
(with the same size as points in the immediate fine level)
are copied to ghost cells at the fine level. In the copy-
ing process, if some (small) material points in the coarse

level fall into the interior (inside the square on the right of
Fig. 5) of the immediate fine level, these points will not
be copied to this fine level, as points in the fine level will
be able to carry over all computations in the interior of
the fine level already. In coarsening, the material points
of the coarse level located in the region overlapped by
the fine level (inside the square on the left of Fig. 5) are
eliminated first, and the material points in the fine level
are then copied to the immediate coarse level. With these
refinement/coarsening operations, the material points can
move around freely, including moving outside the origi-
nal level in large deformations. To ensure that this coars-
ening process can still be performed reliably during de-
formation, sufficiently wide region of cells should be as-
signed with refined material points at the coarse level so
that the ghost cells of the fine level always stay within
the region with fine material points on the coarse level.
At the coarse level, the interior cells covered by the fine
level do not participate in the computation and there are
no material points inside (see Fig. 5).

The refinement techniques can be applied for multiple
times at the regions of interest, such as the stress concen-
tration regions. A fixed refinement ratio of two between
two neighboring levels is very effective in reducing the
total number of computational cells. Fig. 5 shows nested
multi-level refinement and its corresponding relation be-
tween the total number of cells and the number of grid
levels. The cell percentage represents the ratio of the total
number of cells with multi-level refinement mesh to the
total number of cells with one-level finest mesh. If each
fine level occupies one quarter of the neighboring coarser
level, as shown in Fig. 6 (a), the cell percentage as a



Multiscale Simulations Using Generalized Interpolation Material Point (GIMP) Method And SAMRAI Parallel Processing143

=
3
Level 2
Level 1
(a)

100
_. 801
X
(]
2 60 A
€
[]
e
o 40 4
Qo
3

20 A

0 . . . Y +

1 2 3 4 5 6 7
Number of levels
(®)

Figure 6 : Nested multi-level refinement and reduction
in the number of cells with number of levels

function of the number of grid levels can be calculated,
as shown in Fig. 6 (b). For example, when totally four
levels of successive refinements are used the total num-
ber of cells is about 8% of that of one uniform fine mesh.
A reduction in the number of computational cells leads
to a reduction in the number of material points. Hence,
the total amount of computational time can be reduced
significantly. However, refinement and coarsening com-
munications will cost additional computational time, as
will be discussed in Section 4.

Another advantage of the multi-level refinement is that it
allows for temporal refinement. Since the computation at
each grid level is conducted independently, different time
step increments can be used for computation at different
levels. For example, a smaller time step increment can
be used for the fine level to improve computational accu-
racy, while a larger time step increment can be used for
the coarse level. Since the refinement ratio is an integer,
the time step increment ratio should also be an integer

for convenience in the computation and data communi-
cation/synchronization. For example, in Fig. 5, when the
refinement ratios in both directions are fixed at two, the
time step increment ratio should be set to two as well. As
a result, two time step computations are performed at the
fine level, and results are passed over to the immediate
coarse level to couple with the results at the coarse level.

3.3 Domain Decomposition

GIMP uses structured mesh, consistent with SAMRALI,
so that domain decomposition is straightforward and no
remeshing, in general, is necessary. Fig. 7 (a) shows
a two-dimensional computational domain decomposed
into two patches separated by a horizontal dash line. The
elliptical solid object with different boundary conditions
applied at different regions is inside this domain/grid.
After discretization, there are a certain number of ma-
terial points and part of the boundary in a patch, which
will be computed individually. It may be noted that patch
boundary does not have to coincide with the boundary of
the material continuum. The patch boundary is always
chosen to be larger than the region occupied by the mate-
rial continuum so that there is extra space for the material
to deform. This will not cause any additional computa-
tional burden as the GIMP computation is only carried
out on material points inside the patch. Each patch can
be processed by a single processor and the convenience
in creating patches will provide great flexibility in paral-
lel processing.

Communication between two neighboring patches is re-
alized through information sharing in the region over-
lapped by the two patches. The overlapped regions are
also called ‘ghost’ regions, as shown in Fig. 7 (b). The
ghost cells are denoted by dash lines. For ease of vi-
sualization, only the ghost cells overlapped by the other
patch are shown and the ghost cells along the other three
sides of a patch are not shown. On one grid level, patches
can communicate with each other by simply copying data
from one patch to another at the same computation time
(Fig. 7 (b)). Using the material point information from
the previous time step, and the physical boundary condi-
tions, each patch is ready to advance one more time step.
At this time, the material point information in the outer-
most layer of the ghost cells becomes inaccurate. For in-
stance, one outermost grid node in patch one, marked by
the circle, obtains information from eight material points
before advancing to the next step. After advancing, it
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Figure 7 : A computational domain of two patches in one grid level

extrapolates to eight material points. However, in patch
two, the grid node at the same location obtains informa-
tion from sixteen surrounding material points. It extrap-
olates to these sixteen material points after advancing.
Typically, after each step, the material points in the next
inner layer in the ghost region become inaccurate as well.

Ghost cells and material points are attached to each patch
to ensure accuracy of the interior. Each patch can be
computed independently for one GIMP step since the
momentum conservation equation is solved at each node
and there are no coupled equations to solve. No data ex-
change is necessary during the GIMP step. Therefore,
different patches can be assigned to different processors
for parallel processing. After one GIMP step, the data in
the ghost cells will be updated.

Copying material points to ghost cells involves data ex-
change between processors, which costs additional time.
The more the number layers of ghost cells, the longer the
time needed for communication, but communication can
be performed less frequently. A minimum of two layers
of ghost cells are necessary to ensure that computation
at the material points inside a patch is always correct. If
three levels of ghost cells are chosen, the communica-
tion can be performed after every two increments of each
patch.

With these refinements and domain decomposition
schemes for GIMP, it is possible to implement GIMP into
the SAMRALI platform. In this study, the refinement ra-
tio is chosen as two. Four layers of ghost cells are aug-
mented to a patch such that data communications, includ-
ing both data exchange on the same level and between
neighboring levels, are performed every two time-steps

for each fine grid level. This is critical because data ex-
change between levels has to be performed when the two
levels are synchronized.

Fig. 8 shows the flowchart advancing all grid levels re-
cursively starting from the coarsest level for one coarsest
time step. It may be noted that the sequential GIMP al-
gorithm can be used to advance each patch without mod-
ification.

4 Numerical Examples and Results

A Beowulf Linux cluster of 8 identical PCs were used in
the simulations. Each PC has a Pentium 4 processor with
a 2.4 GHz CPU, 512 MB RAM except that the master
node has a memory of 1 GB. A gigabit switch is used to
connect the network.

Two examples are used for validation of the 2D par-
allel GIMP computing under SAMRALI platform. The
first example is simple tension of polycrystalline sili-
con under plane strain conditions. The material is as-
sumed to be homogeneous, isotropic, and linear elastic.
The Young’s modulus is 170 GPa and the Poisson’s ra-
tio is 0.18. One end is constrained along the X- direc-
tion while a normal traction is ramped up on the other
end. The size of the tensile model is 0.06 mm x 0.04
mm. The length of a square grid cell is 0.002 mm and the
time step is 5x10* ps. For verification, the same prob-
lem was simulated using both conventional MPM and
FEM (ABAQUS/Explicit). Fig. 9 shows GIMP, MPM
and FEM simulation results of normal stresses in the X-
direction at different increments from a simple tension
problem. The simulation using the conventional MPM in
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Figure 8 : Flowchart showing advancement of grid levels recursively starting from the coarsest to the finest level in

GIMP

Fig. 9 (a) shows material separation close to the free end
with severe numerical instability after 275 increments.
Fig. 9 (b) and (c) show the normal stress distribution
in the tensile direction and deformation after 500 incre-
ments from FEM and GIMP. It may be noted that FEM
results show a stress contour plot on the deformed mesh
while the GIMP results show a discrete scattered plot of
material points. These two results are in good agreement
with the difference in the maximum value being less than
10%.

In the second example, indentation on the same silicon
material is simulated. The workpiece is subjected to a
pressure applied in the middle of the top surface (Fig.
10 (a)) under plain strain conditions with a thickness of
0.001 mm for computing the mass and forces. The mag-
nitude of the pressure increases linearly with time for the
first 1500 increments, and is then kept constant (see Fig.
10 (b)). The cell size is 0.001 mm in both directions and
the time step is 20 ps for both FEM and GIMP simu-
lations. Due to symmetry, only one half of the work-
piece is modeled. This simulation is performed with two
patches in one uniform grid level. Two processors are
used and one patch is assigned to each processor. Fig. 11

shows GIMP and FEM results of normal stresses in the
Y-direction at different increments. The dashed line in
Fig. 11 (a) is the boundary between the two patches. Fig.
11 (a) and (b) are plots of normal stresses in Y-direction
at 500 time increments for GIMP and FEM simulations.
The difference in stress values in Fig. 11 (a) and (b) is
less than 5%. It should be noted that the FEM simula-
tion aborted at 1348 increments due to excessive element
distortion. The GIMP simulation did not encounter this
problem. Fig. 11 (c) shows the GIMP stress result af-
ter 2000 increments. This demonstrates the capability of
GIMP in handling excessive distortions.

In order to validate the multi-level refinement algorithm
and parallel communication, as well as the proposed con-
tact algorithm, a simulation of nanoindentation with a
wedge indenter was conducted under 2D plane strain
conditions. The workpiece is aluminum and the inden-
ter is assumed to be rigid. Fig. 11 shows the indentation
model. The area below the indenter where high stress
gradients are expected is refined, as shown in Fig. 12
(a). A prescribed velocity was applied on the indenter,
as shown in Fig. 12 (b). The work piece dimensions
are 60 um x 40 um. It is fixed in the Y-direction at the
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Figure 9 : Simulation results of tensile stress contours
for a simple tension problem

bottom. Only half of the model is simulated because of
symmetry. The cell sizes are 500 nm, 250 nm and 125 nm
for levels 1, 2 and 3, respectively. Each level is divided
into four patches with approximately the same size. The
maximum indentation depth in the simulation is about
450 nm. The dotted lines in Fig. 12 (a) illustrate the four
patches in level 1. For comparison, an explicit FEM sim-
ulation (using ABAQUS/Explicit) was carried out under
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Figure 10 : Loading conditions for a simple indentation
problem

the same conditions. The FEM element size is uniform
and is the same size as the finest GIMP background grid
size. In this example, the maximum indentation depth
(450 nm) is relatively small compared to the finest cell
size, so that FEM simulation has not encountered exces-
sive mesh distortion.

Fig. 13 shows a comparison of contours of normal
stresses in the Y-direction at the maximum depth for both
FEM and parallel GIMP simulations. The axis of sym-
metry of the workpiece is located at X=0.03 mm. For
FEM, the plot is the contour of nodal stresses with de-
formed positions, and for GIMP, it is a discrete scattered
plot of stress at deformed material points. The area be-
low the indenter with high stress gradients is refined as
shown in Fig. 12 (a) for parallel GIMP computation. The
borders of grid levels 2 and 3 can barely be seen in Fig.
13 (b) due to the use of high material point density. Fig.
14 is a close-up view of shear stresses in which the three
grid levels are shown. Results show that the normal and
shear stresses from both parallel GIMP and FEM sim-
ulations agree very well. The difference of the normal
stresses in the Y-direction for the material point in con-
tact with the indenter tip and the stress of the FEM node
at the same location is 4.4%. It may be noted that some
non-smoothness in the GIMP stresses around the level
boarders can be seen. This non-smoothness is caused by
the refinement and coarsening and the error associated
with this is negligible for these simulations.

GIMP simulations using a uniform cell size of 500 nm
and 125 nm were performed under the same conditions as
in Fig. 12 to further verify the refinement/coarsening al-
gorithm. Fig. 15 shows normal stresses in the Y-direction
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Figure 12 : Schematic of 2D indentation showing (a)
three levels of refinement and (b) the indenter velocity
history

and shear stresses in GIMP simulations using 500 nm
uniform cells. In this case the material points in contact
with the indenter are 16 times (4 times in each direction)
larger than those with two levels of refinements. In gen-
eral, the stress magnitudes agree with those in Fig. 13
and Fig. 14.

Fig. 16 (a) shows indentation load versus depth curves
from FEM and GIMP with different grid sizes. From
GIMP computations, the load versus depth curves with
three levels of refinement agree very well with the re-
sults from a uniform finest mesh. The load versus depth
curve from the FEM simulation with a uniform cell size
of 125 nm under the same boundary conditions is plot-
ted for comparison. It can be seen from Fig. 16 (a) that
the trend of the load versus depth plots from FEM and
GIMP simulations are similar. The difference in inden-
tation load at the end of loading, which corresponds to
450 nm of indentation depth, is 5.9% between FEM and
GIMP with 3 grid levels. When the depth is less than
100 nm, there is only one material point in contact with
the rigid indenter. The assumption of constant pressure
causes large differences under this circumstance. How-
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Figure 13 : Comparison of normal stresses in Y-direction
from FEM and GIMP

ever, if the GIMP cell size is further refined to 62.5 nm
and the size of the material point is 31.25 nm, the differ-
ence between GIMP and FEM becomes smaller, as can
be seen in Fig. 16 (b).

Other simulations were conducted for the same problem
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with three levels of refinement using different number of
processors to test the efficiency of parallel computing.
The number of patches at each level is the same as the
number of processors and the size of each patch is ap-
proximately the same. The resultant stress distribution
and indentation load versus depth plots are the same as
the previous results. The average time per computational
step is 7.14 sec. when one processor is used and is re-
duced to 4.26, 3.40, 2.18 sec., respectively when two,
three, and four processors are used. When four proces-
sors are used, the CPU time per step is only 30.5% of
that of one processor. This gives a speed-up by a factor
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Figure 15 : Normal and shear stresses of GIMP simula-
tions with a uniform cell size of 500 nm

of 3.28. In the ideal case without communication over-
head, the speed-up would be 4. The reduction in speed-

up from the ideal number is because of the time involved
in data communication between processors. It has been
observed that the refinement and coarsening algorithm
consume most of the communication time. Moreover,
in refinement and coarsening, most of the time is taken
to search for the corresponding material point in another
grid level. This portion of the computational time can be
reduced, if improved searching algorithm or more opti-
mized algorithm for the storage of material points can be
implemented.

The manual refinement for the indentation problem is ad-
equate since the region of high stress gradient is known
to occur below the indenter. The finest level covers the
indenter and part of the specimen. With the same ini-
tial condition, the results at the finest level is identical to
the results in the same area if a uniform fine mesh is used
for the entire domain that requires much longer computa-
tional time. The computational load of each processor is
balanced statically by assigning approximately the same
number of material points to each processor. Dynamic
load balance is supported by SAMRALI and can poten-
tially improve the efficiency of the simulation.

To demonstrate the capability of the algorithm developed
in this investigation for multiscale simulation, an indenta-
tion model with multiple length scales is simulated with
eight processors. The dimensions of the workpiece are
0.25 mm x 0.125 mm. Initially, the velocity of the in-
denter increases from O to 150 m/s linearly with time
and is then kept constant. Five successive levels of re-
finement are used in this simulation. The smallest ma-
terial point represents an area of 64 nm X 64 nm, and
the largest material point covers an area of 1 um x 1
um. Each level is divided into 8 equal-sized patches for
best load balance. Since the contact surface can evolve
into several patches, a parallel solver is implemented to
solve Eq. (11) to find the contact pressure based on the
Portable, Extensible Toolkit for Scientific Computation
(PETSc). An aluminum workpiece is chosen with the
Young’s modulus and Poisson’s ratio of 70 GPa and 0.33,
respectively. The maximum indentation depth was 9.8
um in this simulation (i.e., 153 times the size of the finest
material point). It took nine hours to simulate this prob-
lem with eight processors. Fig. 17 (a) gives the normal
stress distributions and Fig. 17 (b) shows normal stress
distribution for the finest two levels. The relative large
deformation in this multiscale nanoindentation problem
could not be handled by FEM due to excessive distortion



150 Copyright ©) 2005 Tech Science Press

—=o— GIMP-coarse (500 nm)
= = = GIMP-fine (125 nm)
— GIMP-3 levels

—— FEM-fine (125 nm)

Load (mN)

200 300 400

Depth (nm)

0 100 500

(a) FEM

25
—S—GM P-500nm

GM P-125nm
GMP-625nm

FEM -625 mm

Load mN)

Depth @Mm )

(b) GIMP
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in the FEM mesh. However, the parallel GIMP code was
able to complete the entire loading/unloading processes
without any difficulty. This example shows clearly the
advantage of GIMP for multiscale simulations over FEM.

5 Conclusions

The following are specific conclusions based on the re-
sults of this investigation:

1. A 2D generalized interpolation material point (GIMP)
method has been implemented to address problems, such
as particle flying-off and alternating stress sign associ-
ated with conventional MPM in case of relatively large
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Figure 17 : Multiscale simulation of nanoindentation
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deformation.

2. To conduct multiple length scale simulations, a
parallel computing scheme has been presented using
GIMP under SAMRALI parallel computing environment
in which multi-level grids are used for spatial and tem-
poral refinements.

3. A refinement/coarsening algorithm, based on material
points of GIMP in two grid levels, has been developed



Multiscale Simulations Using Generalized Interpolation Material Point (GIMP) Method And SAMRAI Parallel Processing151

for communication between neighboring grid levels of
different refinements. With increase in the refinement
levels, as well as decrease in the time step increments,
the computational accuracy is greatly improved in the re-
gion of interest while the overall computational time is
reduced. The computation at each grid level is performed
recursively to ensure that the refinement and coarsening
are performed when the two neighboring levels are syn-
chronized.

4. 2D MPM and GIMP were applied to simple ten-
sion and indentation problems to validate the GIMP al-
gorithm. GIMP results agree very well with FEM results
for these two examples provided that the deformations
are small. The noise and instability problems present in
conventional MPM are not observed in the GIMP simu-
lations.

5. As the deformation is increased, GIMP continued to
execute while FEM aborted due to element distortion.
Also GIMP results are stable. Thus GIMP is able to han-
dle relatively large deformation problems.

6. For the nanoindentation problem, a GIMP algorithm
for the contact between a rigid indenter and a deformable
workpiece was developed. A reasonably good agreement
between GIMP and FEM results was reached, validating
the contact algorithm presented in this investigation.

7. Another nanoindentation example with multiple
length scales from a few nanometers to sub-millimeters
was simulated and numerical results validated the paral-
lel GIMP computing with the use of SAMRAL
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