
Copyright c© 2005 Tech Science Press CMES, vol.8, no.2, pp.153-164, 2005

An Efficient Time-Domain BEM/FEM Coupling for Acoustic-Elastodynamic
Interaction Problems

D. Soares Jr.1 and W.J. Mansur1,2

Abstract: A coupling procedure is described to per-
form time-domain numerical analyses of dynamic fluid-
structure interaction. The fluid sub-domains, where
acoustic waves propagate, are modeled by the Bound-
ary Element Method (BEM), which is quite suitable to
deal with linear homogeneous unbounded domain prob-
lems. The Finite Element Method (FEM), on the other
hand, models the structure sub-domains, adopting a time
marching scheme based on implicit Green’s functions.
The BEM/FEM coupling algorithm here developed is
very efficient, eliminating the drawbacks of standard and
iterative coupling procedures. Stability and accuracy fea-
tures are improved by the adoption of different time steps
in each sub-domain of the coupled analysis.

keyword: BEM/FEM coupling; fluid-structure interac-
tion; acoustics; elastodynamics; Green’s functions; ad-
justable time steps.

1 Introduction

Accurate modelling of infinite domain problems with the
Finite Element Method (FEM) – and other domain dis-
cretization methods, e.g., Finite Differences, Finite Vol-
umes etc. – has been the subject of intense investigation
since the method started being employed to solve practi-
cal engineering (and other fields) problems. Infinite ele-
ments and other similar schemes have been successfully
employed in some time-independent problems; however,
in time-dependent problems the success is conditioned
to the correct choice of one or more calibration param-
eters. The very first researches, that employed the FEM
to model either harmonic or arbitrarily time-dependent
wave propagation problems, were faced with artificial
boundary reflections, which can invalidate the numerical
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response [Bettess and Bettess (1991), Givoli (1991)].

Methods based on plane wave approximations (PWA)
were among the first appearing in the literature to sim-
ulate the effect of the infinite media [Mindlin and Ble-
ich (1952), DiMaggio, Sandler and Rubin (1981), Ham-
dan and Dowling (1995)]. PWA is a very simple and
elegant approach, however, it only carries away part of
the energy supposed to be dissipated through the infi-
nite medium (the knowledge of the direction of the wave
hitting the transmitting boundary may improve the PWA
accuracy). Although the coupling of PWA with the vir-
tual mass approximation (VMA) method [Geers (1969)],
as proposed by Ranlet et al. (1977) improved the per-
formance of PWA, it is presently accepted that methods
based on plane wave approximations (and other simpli-
fied approaches) can work well only for the far field.
Other semi-analytical approaches, which work quite well
for some particular cases (e.g., coupling of structures
with stratified fluid or elastic infinite media), have been
employed to simulate energy dissipation by infinite me-
dia [Wolf (1985), Kausel (1994)].

Many different approaches have been developed after the
PWA models, some of them have been reported as good
“transmitting boundaries” (“silent boundaries” is also a
common designation adopted); the Boundary Element
Method (BEM) is one of the most successful. BEM
is commonly used in both time-domain and frequency-
domain algorithms. As examples of BEM/FEM cou-
pling in frequency domain the reader is referred to Jeans
and Mathews (1990), Everstine and Henderson (1990),
Tanaka et al. (1998), Tadeu and Godinho (2003) etc..

The first algorithms, which employed BEM/FEM cou-
pling, followed a standard coupling approach (SCA)
where BEM and FEM equations are coupled into a
unique system of algebraic equations through direct ap-
plication of equilibrium and compatibility conditions to
the interface between FEM and BEM domains. The
first applications of SCA in time-domain were con-
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cerned with soil-structure interactions [Karabalis and
Beskos (1985), Spyrakos and Beskos (1986), Estorff and
Prabucki (1990)]. Soon after these first works, Estorff
and Antes (1991) presented the extension of the formula-
tion presented by Estorff and Prabucki (1990) to consider
fluid-structure interaction and, recently, non-linear mod-
elling has been considered within the FEM sub-domain
[Czygan and Estorff (2002)]. As it has been reported
[Yu, Lie and Fan (2002), Czygan (2002)], SCA leads to
several problems with respect to accuracy, efficiency and
stability. Some authors have improved the stability and
accuracy features of the time-domain BEM approach,
proposed by Mansur (1983) [see also Mansur and Breb-
bia (1982a), Mansur and Brebbia (1982b)]: improved
shape functions [Frangi (2000)], alternative time march-
ing processes [Yu, Mansur, Carrer and Lei (1998)], vari-
ational approaches [Belytschko and Lu (1994)] etc. have
been developed. In fact, Yu et al. (2001) used the lin-
ear θ method and the SCA in time-domain fluid-structure
and structure-structure interaction problems and reported
great stability improvement. Stability improvements in
SCA have also been reported by Belytschko and Lu
(1994) and can be expected if the technique worked out
by Frangi (2000) is employed. In fact, several techniques
[Yan, Cui and Hung (2005), Callsen, Estorff and Zaleski
(2004), Qian, Han, Ufimtsev and Atluri (2004), Qian,
Han and Atluri (2004)] may be adopted in order to im-
prove specific points on the formulation.

Iterative coupling approaches [Elleithy, Al-Gahtani and
El-Gebeily (2001)] (ICA) allow BEM and FEM domains
to be treated separately, leading to smaller and better con-
ditioned systems of equations to be solved and, in the
case of time-domain analyses, one may employ different
time steps for each sub-domain. Consideration of differ-
ent time steps for BEM and FEM improves substantially
stability and accuracy. Additional improvements can be
obtained if the very same procedures already developed
for time-domain FEM, BEM and/or BEM/FEM SCA are
employed to the FEM/BEM ICA. In previous publica-
tions [Soares Jr and Estorff (2004), Soares Jr, Estorff and
Mansur (2004), Soares Jr, Estorff and Mansur], the au-
thors highlighted the improvement of the stability and ac-
curacy of the ICA, when compared to the SCA, due to the
possibility of considering different time-steps for each
sub-domain. Computational efficiency improvement has
also been reported: (a) few iterations are required for the
ICA convergence and they can be carried out together

with non-linear analysis; (b) different solvers, suitable
for each sub-domain can be employed; (c) the system
of equations is smaller than that obtained by SCA algo-
rithms; (d) BEM equations do not need to be dealt with
in each step of the non-linear process; etc.

The present paper presents an even more efficient
BEM/FEM coupling approach for time-domain fluid-
structure interaction analyses. A time marching algo-
rithm based on FEM implicit Green’s functions [Soares
Jr and Mansur (2005)] is employed to model the solid
sub-domain (structure or continuous). In this way, two
major advantages are achieved: (a) FEM and BEM sub-
domains are solved separately; (b) coupling iterations, as
required by the ICA, become unnecessary. Fluid sub-
domains are here modelled by the standard time-domain
BEM formulation [Mansur (1983),Dominguez (1993)].

The present text is organized as follows: firstly the
adopted BE and FE formulations are shown and briefly
discussed (section 2 and 3). In the sequence, the pro-
posed BEM/FEM coupling procedure is presented (sec-
tion 4), followed by some numerical examples (section
5). At the end of the paper, conclusions and general re-
marks are presented, highlighting the potentialities of the
new procedure.

2 Modelling the BEM sub-domain

The governing equation for a homogeneous acoustic fluid
can be written as

∇2 p(X , t)− 1
c2 p̈(X , t) = −�

s(X , t) (1)

where ∇2 is the Laplacian operator; p is the transient
fluid pressure; p̈ is the second partial time derivative
of p; �s is the source density and c is the sound speed
(c = (K/ρ)1/2, where K and ρ are the fluid compression
modulus and density, respectively). The integral equation
which solves equation (1), can be written as

4πc(ξ) p(ξ, t) = ρ

−
(∫

Γ

t+∫
0

p∗(X , t;ξ,τ) üN(X ,τ)dτdΓ(X)

+
∫
Γ

t+∫
0

ü∗N(X , t;ξ,τ) p(X ,τ)dτdΓ(X)
)

+
∫
Ω

t+∫
0

p∗(x, t;ξ,τ)�s(x,τ)dτdΩ(x) (2)
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In the above equation, the following fundamental solu-
tions are employed

p∗(X , t;ξ,τ) =
2c H [ c(t −τ)− r ]

[c2(t −τ)2 − r2 ]1/2
(3)

ü∗N(X , t;ξ,τ) = −1
ρ

(
∂ p∗

∂N

)
(4)

whereH [c(t −τ)− r] stands for the Heaviside function;
r = r(X ;ξ) is the distance between the field point (X)
and the source point (ξ); and N stands for the co-ordinate
in the direction of outward vector, normal to Γ at X .
üN = −(1/ρ)(∂p/∂N) is the normal acceleration on the
boundary.

In order to implement a numerical scheme for the two-
dimensional time-domain BEM analysis, an approxima-
tion in time and along the boundary needs to be intro-
duced. This can be done, by using shape functions

p(X , t) =
J

∑
j=1

M

∑
m=1

φm
p (t)η j

p(X) pm
j (5)

üN(X , t) =
J

∑
j=1

M

∑
m=1

φm
üN

(t)η j
üN

(X) üm
N j (6)

where the following notation is employed: η j
p and η j

üN

are spatial interpolation functions related to p and üN ,
respectively, corresponding to a boundary node Xj; φm

p
and φm

üN
are time interpolation functions related to p and

üN , respectively, corresponding to a discrete time tm; and
finally, pm

j = p(Xj, tm) and üm
N j = üN(Xj, tm).

Taking into account the approximations given in equa-
tions (5) and (6), equation (2) can be written at each
boundary node; adopting matrix notation, the resulting
system for a generic time step nis given by

(
C+H1) Pn = G1Ün

N +
n−1

∑
m=1

(
Gn−m+1Üm

N

− Hn−m+1Pm)
+Sn

(7)

where Hn and Gn are the influence matrices computed at
the current time step n and Sn stands for the domain inte-
gral indicated in equation (2). After introducing bound-
ary conditions in equation (7), the following expression
is obtained

Axn = Byn +Qn +Sn (8)

where, as usual in time domain BEM, the entries of xn in
equation (8) are unknown pressures or normal accelera-
tions at the discrete time tn, while the entries of vector yn

are the according known nodal values. Qn is the vector
related to the convolution process indicated in equation
(2); it represents the history up to tn−1. Further details on
the implementation of the time-domain BEM algorithm
can be found, for instance, in Mansur(1983), Dominguez
(1993), Estorff (2000). In order to achieve a more ef-
ficient procedure, the convolution process can be prop-
erly truncated and the vector Qn can be evaluated as it is
shown by Soares Jr and Mansur (2004).

Equation (8) yields the dynamic response of the fluid
sub-domain at time tn. In a next step (section 4), it needs
to be coupled with the finite element formulation given
in section 3.

3 Modelling the FEM sub-domain

The FEM approach adopted in this paper is based on a
previous work by Soares Jr. and Mansur (2005). The
FEM system of equations, which governs the linear re-
sponse of a dynamic system, is given by [Hughes (1987),
Bathe (1996)]

MÜ
n +CU̇

n +KUn = Rn (9)

where M, C and K are mass, damping and stiffness ma-
trices respectively; Rn is the nodal equivalent force vec-
tor; Un, U̇n and Ün are respectively displacement, ve-
locity and acceleration nodal vectors originated from the
FEM spatial discretization, at time tn.

The analytical expressions for the displacement Un and
the velocity U̇n vectors, which obey equation (9), are
given by:

Un = Gn CU0 + Ġn MU0 +Gn MU̇0 +Gn •Rn

U̇n = Ġn CU0 + G̈n MU0 + Ġn MU̇0 + Ġn •Rn (10)

where Gn represents the Green’s function matrix of the
model and the symbol • represents convolution. U0 and
U̇0 are displacement and velocity initial conditions, re-
spectively.

Assuming that a given time-step ∆t is small enough, ap-
proximation (11) can replace the convolution integrals in-
dicated in equation (10) ( f1 and f2 are generic functions).
It is important to notice that the approximations indicated
in equation (11) are analogous to those employed in fre-
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quency domain analysis, where standard DFT/FFT algo-
rithms are employed [Soares Jr and Mansur (2003)].

∆t∫
0

f1(∆t −τ) f2 (τ) dτ = f1 (0) f2 (∆t) ∆t (11)

Taking into account the approximations indicated by
equation (11), recursive expressions can be obtained by
considering equation (10) at time tn and by supposing
that the analysis starts at time tn−1. The recurrence re-
lations, that arise, are given by:

Un = (GC+ ĠM)Un−1 +GMU̇
n−1

+G0 Rn ∆t

U̇n = ( ĠC+ G̈M)Un−1 + ĠMU̇
n−1

+ Ġ0 Rn ∆t
(12)

where G is the Green’s function of the model at time step
∆t. The G Green’s function, as well as its derivatives, can
be properly evaluated by solving the system of equations
(9) at time t = ∆t, considering a free vibration system
submitted to the following initial conditions [Soares Jr
and Mansur (2005)]: G0 = 0 and Ġ0 = M−1.

The method considered here for the solution of equations
(12) does not use any analytical expression for the prob-
lem Green’s function; rather it employs the Newmark
method to compute numerically the Green’s function ma-
trix. The Newmark method expressions are employed
initially to establish expressions that permit to compute
G and its time derivatives; subsequently the expressions
obtained are introduced in the recurrence relations shown
by equations (12).

If some simplifications are taken into account, one ob-
tains final recurrence expressions, which permit the es-
tablishment of very efficient computational algorithms.
These simplifications are, namely: a) consider the damp-
ing matrix proportional to the mass matrix (C = αmM);
b) adopt the trapezoidal rule scheme (γ = 0.50 and β =
0.25) in the Newmark formulation (in fact, it is just nec-
essary to adopt the following relation between the New-
mark parameters:γ2 = β, in order to achieve suitable final
expressions).

The final recurrence relations that arise, taking into ac-
count the above mentioned methodology and simplifica-
tions, are given by (for more details see Soares Jr. and
Mansur (2005)):

Un = U+c3Un−1 (13)

U̇n = c5U+c4Un−1 +c3U̇n−1 +R∗ (14)

where

U = K∗−1M
(

c2Un−1 +c1U̇n−1)
(15)

K∗ = K+c0M (16)

R∗ = M−1 Rn∆t (17)

and

c = (1/(2β)−1) αm −1/(β∆t) (18)

c0 = 1/(β∆t2)+(αmγ)/(β∆t) (19)

c1 = (γ/β−1) αm − (∆t/2)(γ/β−2) α2
m −c (20)

c2 = (αm +c5) c1 (21)

c3 = 1−∆t(1− γ)αm + γ∆t c (22)

c4 = αmc3 +c (23)

c5 = γ/(β∆t) (24)

Once the mass matrix is lumped (in order to avoid solv-
ing a system of equations when evaluating the effective
force vector R*, see equation (17)), the above methodol-
ogy becomes very efficient in a FEM/BEM coupling con-
text, as it will be shown. Equations (13) and (14) enables
the computation of the FEM displacement and velocity
response, respectively, at time tn. As it has been shown
[Soares Jr and Mansur (2005)], for γ = 0.50 and β = 0.25,
the amplification matrix related to the solution algorithm
(13)-(14) is second order accurate and unconditionally
stable.

4 BEM/FEM coupling procedure

The basic ideas adopted by this work to deal with the
coupled analysis can be described as follows: (a) The
domain of the original problem is divided into different
sub-domains, which are separately modelled by the BEM
and the FEM. Structural sub-domains are modelled here
with FE while acoustical sub-domains are modelled with
BE; (b) The coupling between the BEM and FEM sub-
domains is taken into account considering the variables
on the sub-domains interfaces, namely: the displace-
ments of the FEM sub-domain interfaces are related with
the normal accelerations on the BEM sub-domain inter-
faces; the pressures on the BEM sub-domain interfaces
are related with the nodal forces on the FEM sub-domain
interfaces.

The BE formulation adopted by this work, assumes
piecewise constant interpolation functions (φm

üN
(t) ) for
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the normal acceleration (equation (6)). The BEM normal
displacement along time (Ut

N), within a time-step B∆t,
can then be obtained by time integration. This procedure
gives as result

Ut
N = Uto

N + U̇to
N (t− to)

+ Üt
N (t − to)2/2 , ∀t ∈ (to ; to +B ∆t ]

(25)

According to equation (25), within a time-step B∆t, the
BEM normal displacement, velocity and acceleration
have parabolic, linear and constant behavior along time,
respectively (Figure 1(a)). Equation (25) is equivalent
to the Newmark method equation for displacement with
parameters: γ = 1.00 and β = 0.50.

Once equation (25) has been established, one can eas-
ily obtain the BEM normal accelerations from the FEM
displacements on the interfaces, this procedure is shown
on item (3) of the algorithm below. The following algo-
rithm describes the BEM/FEM coupling procedure being
adopted (F∆t and B∆t are the FEM and BEM time-steps,
respectively, and the initial time attributions are: Ft = 0
and Bt = B∆t):

(1) Begin the evaluations at the current time-step: Ft =
Ft +F∆t; If F t > Bt then: adoption of Bt = Bt +B∆t
and evaluation of vectors SBt and QBt ;

(2) Solve the FEM problem (equation (13)): obtain the
displacements on the FEM sub-domain UF t;

(3) From UFt obtain the normal displacement UF t
N and

the normal acceleration on the BEM interface ÜF t
N =

(2/FB∆t2)(UFt
N − UBt−B∆t

N ) − (2/FB∆t)U̇Bt−B∆t
N

(equation (25));

(4) Time extrapolation of ÜFt
N in order to obtain ÜBt

N .
Once the interpolation function φm

üN
(t) (equation (6))

is usually considered as being piecewise constant,
one has: ÜBt

N = ÜFt
N (Figure 1(a));

(5) Solve the BEM problem (equation (8)): obtain the
pressure PBton the interface;

(6) Time interpolation of PBt in order to obtain PFt .
Once the interpolation function φm

p (t) (equation (5))
is usually considered as being linear, one has:
PFt = PBt(FB∆t/B∆t)+PBt−B∆t (1−FB ∆t/B∆t) (Fig-
ure 1(b));

t
N
BU&&  t

NU&&  

t
NU  
t
NUt
NU&  

NU&&  

t  

tt BB ∆−  tB  tF  

tFB ∆  

(a)

 

tFB ∆  

tBP  

P  

t  

tt BB ∆−  tB  tF  

tt BB ∆−P  

tFP  
tP  

(b)

Figure 1 : Time interpolation-extrapolation procedures:
(a) time extrapolation of ÜFt

N in order to obtain ÜBt
N (ÜBt

N =
ÜFt

N ); (b) time interpolation of PBt in order to obtain PFt

(PFt = PBt(FB∆t/B∆t)+PBt−B∆t (1−FB ∆t/B∆t)).

(7) Considering PF t obtain the FEM nodal forces and
evaluate the effective load vector R∗ (equation
(17));

(8) Solve the FEM problem (equation (14)): obtain the
velocities on the FEM sub-domain U̇Ft ;

(9) Update results related to the FEM; If F t +F ∆t > Bt
then: update results related to the BEM, including
UBt

N = UBt−B∆t
N + (B∆t)U̇Bt−B∆t

N + (B∆t2/2)ÜBt
N and

U̇Bt
N = U̇Bt−B∆t

N +(B∆t)ÜBt
N (equation (25)).

It is important to notice, that differently from most
BEM/FEM acoustic-elastodynamic coupling algorithms,
which uses the FEM accelerations for the coupling [Es-
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torff and Antes (1991), Czygan and Estorff (2002), Yu,
Lie and Fan (2002), Soares Jr, Estorff and Mansur], the
present algorithm works with the FEM displacements.
This procedure is generic and can be adopted by other
acoustic-elastodynamic coupling methodologies, which
do not deal with the structural acceleration on their for-
mulations (BEM/BEM coupling, for instance).

By adopting the FEM time integration methodology here
presented, the computation of the displacement at a time
t is not dependent of the load at time t. The displace-
ment is in fact dependent of the load history of previous
time only (present time excluded) in view of the approx-
imations adopted (equation (11)) and as it is shown by
equations (13-14). This fact enables a direct coupling of
BEM/FEM procedures by means of the variables on the
interface, being an iterative coupling procedure not nec-
essary. Thus, the final coupling algorithm becomes very
efficient. Moreover, the FEM time integration methodol-
ogy here adopted is also theoretically more suitable for
BEM/FEM coupling algorithms: once the time integra-
tion procedure employed by the BEM is usually based on
convolution integrals, it is appropriate to adopt an analo-
gous procedure for the FEM.

In acoustic-elastodynamic interaction analyses, sub-
domains with completely different properties are usually
considered. Thus special procedures to take into account
different time discretizations in each sub-domain and to
avoid global ill conditioned systems of equations should
always be considered.

In order to consider different time discretizations in each
sub-domain, special procedures are here adopted, based
on interpolations and extrapolations along time, of the
variables on the interfaces. These procedures are de-
picted in Figure 1 and discussed on items (4) and (6) of
the proposed algorithm.

The presented algorithm solves BEM and FEM sepa-
rately, which means that different solution procedures
can be applied to solve the BEM and the FEM systems of
equations. Thus the symmetry and the sparsity of FEM
matrices can easily be taken into account, which results
in a more efficient methodology. By solving the BEM
and the FEM apart, one also has better conditioned sys-
tems of equations, which is important with respect to the
accuracy and efficiency of the analysis.

When the FEM time integration methodology presented
here is adopted, non-linear analyses can also easily be

considered within the FEM sub-domain by means of
pseudo-forces [Soares Jr and Mansur (2005)] or any
other suitable numerical procedure.

5 Numerical examples

In this section two numerical examples are presented,
namely a submerged cylinder subjected to an external ex-
plosion and a loaded dam retaining the water of a storage-
lake. The results obtained with the BEM/FEM coupling
procedure here proposed are compared with other cou-
pling methods, namely, iterative [Soares Jr, Estorff and
Mansur] and standard BEM/FEM coupling [Estorff and
Antes (1991)].

5.1 Submerged cylinder

This example is concerned with the analysis of an elas-
tic infinite cylinder excited by an acoustic wave caused
by an external explosion, as depicted in Figure 2. The
properties of the cylinder are: E = 2.1·1011N/m2 (Young
modulus), ν = 0.3 (Poisson’s ratio), ρ = 7800 kg/m3 (mass
density). The properties of the fluid are: c = 1524 m/s
(wave velocity), ρ = 1000 kg/m3 (mass density). The
geometry of the problem is defined by: r = 0.18m, t =
0.0259m, d = 1.0m. The explosion effects are simulated
by the following concentrated source: �s(X , t) = s(t)δ(X-
ξ), where δ is the Dirac delta function, ξ = (d,0) and
s(t) is depicted in Figure 2. 48 linear boundary elements
were used to model the fluid and 48 linear quadrilateral
finite elements were employed to model the cylinder. The
time-step adopted within the BEM sub-domain was B∆t
= 0.005ms; within the FEM sub-domain a time-step F ∆t
= 0.001ms was adopted.

The displacement and hydrodynamic pressure results at
points A (α=0) and B (α = π) are depicted in Fig-
ures 3 and 4, respectively. The results obtained by the
present work methodology are compared with the re-
sults obtained by an iterative BEM/FEM coupling pro-
cedure [Soares Jr, Estorff and Mansur]. As it can be
seen, the present methodology gives good results with-
out any iterative process for the coupling algorithm; on
the other hand, spurious results are achieved with the it-
erative BEM/FEM coupling procedure if no iterations are
considered, as depicted in Figure 3.

Although for usual applications the present methodology
is much faster (computational time) than other usual cou-
pling procedures, in the present application this advan-
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tage is barely observed: most of the computational effort
here are due to the BE convolution process, once several
time steps are being employed. In the present applica-
tion, the total CPU time of the proposed methodology is
about 90% of the one related to the iterative coupling pro-
cedure (an average of 3 iterations per time step was nec-
essary for convergence in the ICA). On the other hand,
adopting the convolution truncation process, as proposed
by Soares Jr and Mansur (2004), the present total CPU
time can be reduced up to 35%, with meaningless loss of
accuracy.

5.2 Storage-lake dam

In this second example, a dam-reservoir system, as de-
picted in Figure 5, is analyzed. The structure is sub-
jected to a sinusoidal, distributed vertical load on its
crest, acting with an angular frequency w = 18 rad/s.
The material properties of the dam are: Poisson’s ratio
ν = 0.25; Young’s modulus E =3.437·109N/m2; mass
density ρ= 2000 kg/m3. The adjacent water is charac-
terized by a mass density ρ = 1000 kg/m3 and a wave
velocityc =1436m/s. The time-step adopted for the
BEM and FEM are B∆t = 0.00350s and F∆t = 0.000875s,
respectively. 93 linear quadrilateral finite elements were
employed to model the dam; the number of acoustic
boundary elements employed varies with the water level
h (see Figure 5), however, in all analyses, linear boundary
elements with the same size (� = 5m) were employed.

The time history of the vertical displacement at point A
is shown in Figure 6. Two different water levels, namely
h =50m andh =35m, and their influence on the dam re-
sponse are investigated. A comparison of the results ob-
tained with the here proposed coupling procedure and
with that from the standard coupling scheme used by Es-
torff and Antes (1991) shows again good agreement. In
Figure 7, the transient hydrodynamic pressure at point
B is depicted. Also in this case, the results using the
standard BEM/FEM coupling procedure match well with
those of the new approach (it is important to observe
that minor differences between results in Figure 7 are ex-
pected once in Estorff and Antes (1991) different time-
step and mesh - poorer discretization - were adopted to
model the FEM sub-domain).

6 Conclusions

The present paper presented an efficient time-domain
BEM/FEM coupling algorithm to solve acoustic-
elastodynamic interaction problems. The FEM was em-
ployed to model the solid sub-domain (structures or con-
tinua) taking into account a time integration scheme
based on implicit Green’s functions. The classical BEM
formulation was adopted to model the acoustic fluid
sub-domain. The main advantages of the proposed
BEM/FEM coupling procedure are:

• Improved efficiency: (a) lower order systems of
equations are considered; (b) different solvers, suit-
able for each sub-domain, can be employed; (c) no
iterative process is necessary in order to take into
account the interface coupling conditions.

• Improved accuracy and stability: (a) different time-
steps are possible within each sub-domain; (b) the
systems of equations of each sub-domain are solved
independently, avoiding global ill conditioned sys-
tems of equations.

The two applications here presented, comparing the
present paper results with those of iterative and standard
coupling algorithms, showed the good level of accuracy
of the present formulation numerical results (which is
also computationally cheaper).
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