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Dynamic Simulation of Long Flexible Fibers in Shear Flow

Wenzhong Tang1 and Suresh G. Advani1

Abstract: An optimization method is proposed to sim-
ulate the motion of long flexible fibers in shear flow. The
fiber is modeled as spheres connected by massless rigid
rods and ball-socket joints. The optimization method is
mathematically justified and used to obtain the position
of a fiber at the next time step from its current position.
Results for a single fiber in simple shear flow agree well
with those reported in the literature. The usefulness of
the method is demonstrated by simulating the motion of
two interactive fibers subjected to shear flow field, and
by studying the viscosity of dilute suspensions of flexi-
ble fibers.
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1 Introduction

Fibers immersed in a fluid occur in a variety of bi-
ological and engineering processes [Papanastasiou and
Alexandrou (1987), Ramazani, Ait-Kadi, and Grmela
(1997), Grigelmo-Miguel, Ibarz-Ribas, and Martı́n-
Belloso (1999), Tornberg and Shelley (2004)]. For exam-
ple, in composites industry fibers are mixed with polymer
resin and the suspension is injected into a mold or ex-
truded through a die to form useful products. Addition
of fibers to the polymer matrix results in better physical
and mechanical properties. Similar is the case for manu-
facturing of paper in which one usually deals with natu-
ral fibers. During manufacturing of such fiber reinforced
composites, it is important to understand and character-
ize the bulk flow of fiber suspensions. Fiber orientation
and spatial distribution in the suspension determine not
only its rheological properties, but also the microstruc-
ture of the final product, which characterizes its mechan-
ical, thermal, and electrical properties. Therefore, there
is need to study fiber dynamics in flow. Considerable
benefit can be gained by maximizing fiber length, since
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a longer fiber with a larger aspect ratio can contribute
significantly to composite strength than its short fiber
counterpart [McClelland and Gibson (1990), Bartus and
Vaidya (2005)]. However, larger the aspect ratio of a
fiber, more flexible the fiber will be.

The dynamics of flexible fibers in a flowing suspension
has been of scientific interest for nearly three decades.
With the assumption of inextensibility and perfect flex-
ibility, Hinch (1976) studied the distortion of a thread
in shear flow using slender-body theory. The result was
that the distorted thread in simple shear flow became
straight and aligned along the flow direction. Yamamoto
and Matsuoka (1993) proposed a fiber model of bonded
spheres that can stretch, bend and twist, and investigated
the motion in shear flow of a flexible fiber with an aspect
ratio of up to 20. Ross and Klingenberg (1997) mod-
eled a flexible fiber as a chain of prolate spheroids con-
nected through ball and socket joints. An ideal flexible
fiber with an aspect ratio of 25 in shear flow was studied.
Joung, Phan-Thien, and Fan (2001) described a flexible
fiber as a chain of spherical beads linked by connectors,
within each bead being a joint allowing limited bending
and torsion. They investigated the distortion of a flexible
fiber in shear flow for an aspect ratio of 16.9. Suspension
viscosity was calculated using fiber orientation tensors
by assuming all fibers remain nearly straight at all times.
While most previous studies on the dynamics of flexi-
ble fibers paid attention to an aspect ratio of the order
of 20, fibers of much larger aspect ratios have been used
in fiber reinforced composites. McClelland and Gibson
(1990) reported an injection molded nylon 66 composites
containing long glass fibers with an aspect ratio of 364.
In recent years, there has been a flurry of research fo-
cused on the manufacturing of nanotube reinforced poly-
mer composites [Andrews, Jacques, Minot, and Rantell
(2002), Tang, Santare, and Advani (2003), Gojny, Wich-
mann, Köpke, Fiedler, and Schulte (2004)]. The single-
or multi-walled nanotubes used usually have aspect ratios
as large as 1000. In such cases of large fiber aspect ratios
ranging from a few hundred to over one thousand, the
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fibers are expected to behave more like a flexible thread
rather than a semi-rigid rod. Therefore, external and in-
ternal forces in a fiber dominate its motion and deforma-
tion but little moment is expected to transfer from one to
another part of a fiber. In this paper, our goal is to study
the dynamics of long flexible fibers in simple shear flow.

The next section explains our mathematical model and
then introduces our optimization method to advance the
fiber configuration to the next time step. Mathematical
justification is provided for our technique to advance the
fiber. Validation of the method is presented by compar-
ing our results with published work and versatility of the
method is demonstrated by simulating dynamics of inter-
active fibers in shear flow.

2 Flexible fiber model

2.1 Physical model of a flexible fiber

To simulate the motion of flexible fiber, we model the
fiber as a chain of spheres illustrated in Figure 1. This
model is based on the rigid body-hinge model by Skjetne,
Ross and Klingenberg (1997) and the chain-of-beads
model by Joung, Phan-Thien and Fan (2001). In our
model, a continuous fiber of length Lf and diameter d f

is discretized into a number of small segments of length
L0; next the segments are lumped into individual spheres
of diameter ds , the volume of which is the same as that of
the corresponding segments; finally the spheres are con-
nected by rigid massless rods of length L0 to maintain
constant fiber length, and ball-socket joints are used to
allow free rotation between neighboring segments. The
interaction between the fiber and the suspending fluid and
between the fibers is through the spheres. There are two
types of forces acting on each sphere: external forces
and internal forces. External forces include viscous drag
from the moving fluid and short-range lubrication forces
when two spheres are in close proximity. Viscous drag
on each sphere is calculated from the drag on the cor-
responding fiber segments. The orientation of the ith
segment Ri is taken as the direction from the (i− 1)th
sphere to the (i + 1)th sphere (Figure 2). Considering
a circular cylinder in a uniform unbounded flow at low
Reynolds numbers, the Stokes drag per unit length on a
fiber segment in the transverse direction Fd⊥ is calculated
as [Happel and Brenner (1973), Lamb (1993)]

Fd⊥ =
4πµdu⊥

1/2− γ− ln(ρ f r f du⊥/4µ)
(1)

 

Figure 1 : Sphere-Chain model of a flexible fiber.

where µ is the viscosity of the suspending fluid, du⊥ is
the relative velocity of the moving fluid to the fiber seg-
ment at its centroid in the transverse direction, γ = 0.577
is Euler’s constant, ρ f is the density of the fluid and r f is
the radius of the fiber. In this work, the fluid viscosity of
µ = 1×10−3 Pa · s, and the density of the fluid equal to
ρ f = 1000 kg/m3 were used. Taking into account the ax-
ial motion of a circular cylinder of finite length in a fluid
of infinite extent at low Reynolds numbers, the Stokes
drag per unit length on a segment in the axial direction is
calculated as [Broersma (1960), Cox (1970)]

Fd‖
=

2πµdu‖
ln(L f/r f )−0.80685

(2)

where du‖ is the relative velocity of the fluid with respect
to the segment centroid in the axial direction.

The lubrication force exists when the gap between two
spheres approaching each other is less than 0.1ds (10%
of their diameters, see Figure 3). It is calculated using
the following equation [Kim and Karilla (1991), Joung,
Phan-Thien and Fan (2001)]

Fi j = - 3πµ
(ds/2)2

gap
Vsqz (3)

where the relative squeezing velocity Vsqz along the cen-
terline between the two spheres can be expressed as

Vsqz =
ri j∣∣ ri j

∣∣
[

ri j∣∣ ri j

∣∣ • (V j −Vi)

]
. (4)

where ri j = r j − ri is the position vector from sphere i to
sphere j, and Vi and V j are their velocities respectively.
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           (a) Segment orientation;                                            (b) Transverse drag;                               (c) Parallel drag 
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Figure 2 : Stokes drag on a fiber segment.
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Figure 3 : Lubrication force between two spheres in
close proximity.

The internal forces are between neighboring spheres of
the same fiber and along the direction of their connective
rod, which will be illustrated in Figure 5.

2.2 Use of minimizing principle to track fiber move-
ment

Minimal principles in physics have been sought for more
than two thousand years [Marion (1970)]. When a phys-
ical process takes place, nature always acts in such a way
that certain important quantities are minimized. In this
work, our method is based on such a notion of minimal
principle.

Given current positions and velocities of fibers and veloc-
ity field of the flow, the drag force and lubrication forces

acting on each sphere are calculated. Figure 4a shows,
at current time step, a fiber consisting of spheres at dif-
ferent positions Rt

i , velocities Vt
i, and external forces Ft

i
(i = 1, 2, · · · , n). To obtain the new position of a fiber
at the next time step, first the constraints between neigh-
boring spheres are removed (Figure 4b), enabling each
sphere to move independently, which leads to a set of
pseudo new sphere positions R

t+1
i (Figure 4c). Let Rt+1

i
be the actual new positions of the spheres (Figure 4d).
Intuitively the actual new positions Rt+1

i of a fiber can

be derived from these pseudo new positions Rt+1
i . Let

di =
∣∣∣Rt+1

i −Rt+1
i

∣∣∣ be the distance between the pseudo

and the actual new positions of the ith sphere in the fiber.
Inspired by the minimal principles, we seek the actual
new positions by minimizing the sum of square of di, that
is,

min
n

∑
i=1

d2
i (5)

Also the fibers were assumed to be inextensible. The
constraints are∣∣Rt+1

i+1 −Rt+1
i

∣∣ = L0, i = 1, 2, · · · , n−1 (6)

where L0 is the length of each segment. Therefore, the
mathematical model is in principle a typical optimization
problem.

3 Justification of the mathematical model

In this section, the proposed optimization method is jus-
tified using particle dynamics. It will be shown that the
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Figure 4 : Mathematical model for obtaining new fiber position. a- Current position; b- Uncoupled spheres; c-
Pseudo new position; d- Actual new position.

two methods yield the same result.

3.1 Optimization method

Refer to Figure 4, the pseudo new positions of the spheres
are calculated as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
t+1
1 = Rt

1 +vt
1∆t + Ft

1
2m(∆t)2

R
t+1
2 = Rt

2 +vt
2∆t + Ft

2
2m(∆t)2

...

R
t+1
i = Rt

i +vt
i∆t + Ft

i
2m(∆t)2

...

Rt+1
n = Rt

n +vt
n∆t + Ft

n
2m(∆t)2

(7)

where ∆t is the time interval from current time step to
the next time step, and m is the mass of each sphere. To
obtain the actual new positions of the spheres, the opti-
mization problem is formulated as,

Minimize

n

∑
i=1

(Rt+1
i −Rt+1

i )2 (8)

subjected to

(Rt+1
i+1 −Rt+1

i )2 = d2, i = 1, 2, · · · , n−1 (9)

To solve the above optimization problem, the following
equations are derived using Lagrange Multiplier method
[Greenberg (1988)],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Rt+1
1 −Rt+1

1 )+λ1(Rt+1
1 −Rt+1

2 ) = 0

(Rt+1
2 −R

t+1
2 )−λ1(Rt+1

1 −Rt+1
2 )

+λ2(Rt+1
2 −Rt+1

3 ) = 0
...

(Rt+1
i −R

t+1
i )−λi−1(Rt+1

i−1 −Rt+1
i )

+λi(Rt+1
i −Rt+1

i+1) = 0
...

(Rt+1
n −Rt+1

n )−λn−1(Rt+1
n−1−Rt+1

n ) = 0

(10)

where λi ( i = 1, 2, · · · , n−1) are unknown multipliers.
Thus, the total number of unknowns are 4n-1, 3n for
Rt+1

i ( i = 1, 2, · · · , n, three components for each sphere)
and n-1 for λi ( i = 1, 2, · · · , n− 1). We have exactly
the same number of equations from Equations 9 and 10.
These nonlinear equations can be solved using Newton’s
iterative method [Ortega and Rheinboldt (1970)].

3.2 Particle dynamics

The actual new sphere positions Rt+1
i at the next time

step in Fig 4d can also be obtained directly from their
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current new positions Rt
i using particle dynamics. Apart

from external forces (drag force and lubrication force),
the particles are also subjected to internal forces applied
by neighboring spheres on the same fiber. The forces
applied on the ith sphere of a fiber are shown in Figure 5.

t
iF t

iR

t
i 1−R

t
i 1+R

t
ii ,1−f

t
ii

t
ii ,11, −− −= ff

t
ii

t
ii 1,,1 ++ −= ff

t
ii 1, +f

Figure 5 : Forces acting on the ith sphere of a fiber at
current time step.

In the above figure, Ft
i is the resultant external force in-

cluding drag force and lubrication forces, ft
i−1,i the inter-

nal force applied by the (i− 1)th particle, and ft
i+1,i the

internal force applied by the (i+1)th particle. At the next

time step, the new positions of the spheres are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rt+1
1 = Rt

1 +vt
1∆t +

Ft
1 + ft

2,1

2m
(∆t)2

= Rt+1
1 − ft

1,2

2m
(∆t)2

Rt+1
2 = Rt

2 +vt
2∆t +

Ft
2 + ft

1,2 + ft
3,2

2m
(∆t)2

= R
t+1
2 +

ft
1,2 − ft

2,3

2m
(∆t)2

...

Rt+1
i = Rt

i +vt
i∆t +

Ft
i + ft

i−1,i + ft
i+1,i

2m
(∆t)2

= R
t+1
i +

ft
i−1,i − ft

i,i+1

2m
(∆t)2

...

Rt+1
n = Rt

n +vt
n∆t +

Ft
n + ft

n−1,n

2m
(∆t)2

= R
t+1
n +

ft
n−1,n

2m
(∆t)2

(11)

in which Equation 7 was used for simplification. In the
above equations, ft

i, i+1 (i = 1, 2, · · · , n−1) takes the di-
rection of the connective rod between the ith and (i+1)th
spheres. It can be expressed as,

ft
i, i+1 = ci(Rt

i −Rt
i+1), i = 1, 2, · · · , n−1 (12)

where ci (i = 1, 2, · · · , n − 1) are scalar coefficients.
Since the time step ∆t is small, we use (Rt+1

i −Rt+1
i+1) to

approximate (Rt
i −Rt

i+1) in Equation 12. The justifica-
tion for this approximation are: (i) The spheres displace
by a small distance within a small time interval, so the
change in the direction of the connective rod, or the dif-
ference between (Rt+1

i −Rt+1
i+1) and (Rt

i −Rt
i+1) is small;

and (ii) When these approximated forces ft
i, i+1 are substi-

tuted back in Equation 11, they are multiplied by (∆t)2,
making the approximation errors even smaller. After this
approximation Equation 12 becomes

ft
i, i+1 = ci(Rt+1

i −Rt+1
i+1), i = 1, 2, · · · , n−1 (13)
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Substitution of Equation 13 into Equation 11 yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Rt+1
1 −R

t+1
1 )+µ1(Rt+1

1 −Rt+1
2 ) = 0

(Rt+1
2 −R

t+1
2 )−µ1(Rt+1

1 −Rt+1
2 )

+µ2(Rt+1
2 −Rt+1

3 ) = 0
...

(Rt+1
i −Rt+1

i )−µi−1(Rt+1
i−1 −Rt+1

i )

+µi(Rt+1
i −Rt+1

i+1) = 0
...

(Rt+1
n −R

t+1
n )−µn−1(Rt+1

i−1 −Rt+1
i ) = 0

(14)

where µi = ci
2m(∆t)2, i = 1, 2, · · · , n− 1 , are scalar co-

efficients to be determined. The constraints are same as
those in Equation 9. It can be seen that the only dif-
ference between Equation 10 and Equation 14 are the
symbols for unknown coefficients. If we change µi in
Equation 14 into λi, then the two sets of equations are
identical. Therefore, the two methods, the optimization
method and particle dynamics method, give the same re-
sults for Rt+1

i (i = 1, 2, · · · , n), the actual positions of the
spheres at the next time step.

4 Numerical simulation

The flexible fiber model coupled with the optimization
method to advance the fiber to the next time step was
used to study single fiber and two fibers in close prox-
imity in shear flows. Also, the viscosities of two dilute
flexible fiber suspensions were calculated.

4.1 Single flexible fiber

To verify our method and the simulation of flexible fiber
dynamics, the motion and deformation of a single flex-
ible fiber in simple shear flow was investigated. Here
we considered two cases: initially s-shaped fiber (x =
430000y3−2y, −0.0024m ≤ y ≤ 0.0024m) and inverse-
s-shaped fiber respectively (Figure 6a). The fiber was
discretized into 21 segments, and a unit shear rate γ̇ =
1s−1 and a time step of ∆t = 0.001s was used in our
simulation. Figure 6 presents our simulation results and
compares them to the results of Hinch (1976) and Joung
et al. (2001). The fiber positions in the figure correspond
to non-dimensional total strain equal to γ̇t =0, 1, 2, 3, 4,
5, and 6 respectively. However, the aspect ratios adopted

by the three studies are different. While assuming inex-
tensibility and perfect flexibility, Hinch did not introduce
dimensional property to his fiber. Joung et al. used an
aspect ratio of 16.9. In the current work, the fibers are
1.6×10−4 m in diameter and have an aspect ratio of 72.8.
From Figure 6, it can be seen that our simulation results
qualitatively agree well with the other two sets of results.
In each case, the fiber under shear becomes straight and
aligns along the flow direction with time.

4.2 Two interactive fibers

When there is more than one fiber in the flow field, the
fibers may interact with each other when in close prox-
imity. This does not pose any specific problem for our
methodology. The interactions between two fibers are
calculated through interactive sphere pairs (Figure 3). In
current work, the motion and deformation of two folded
fibers in simple shear flow was simulated (Figure 7). The
fibers are 1.0× 10−4 m in diameter and have an aspect
ratio of 96. Initially, both fibers are folded in the mid-
dle. A unit shear rate of γ̇ = 1 s−1 was applied in the
simulation. To study the effect of segment size on simu-
lation results, three different segment numbers (9, 17 and
33) were used. The motion and deformation of the two
fibers are shown in Figure 7. Under the forces applied by
the flow field and the interactive forces between the two
fibers, while rotating, the fibers slide against each other,
open their ends and become aligned along the flow di-
rection. In this case, 17 segments were sufficient enough
for the description of the motion and deformation of the
fiber.

4.3 Viscosity of dilute Suspension of Flexible Fibers

The rheological properties of fiber suspensions have been
studied by many researchers both experimentally and
theoretically [Mason (1954), Batchelor (1970A), Bar-
bosa, Ercoli, Bibbó, and Kenny (1994), Yamamota and
Matsuoka (1994), Yamane, Kaneda, and Dio (1994), Ra-
mazani, Ait-Kadi, and Grmela (1997), Ross and Klin-
genberg (1997), Petrie (1999), Petrich, Koch, and Cohen
(2000), Pozrikidis (2004)]. Of these studies, most theo-
retical work has been done for suspensions of rigid fibers
in Newtonian liquids. In general, the flow behavior of
fiber suspensions depends on fiber aspect ratio, fiber vol-
ume fraction, fiber orientation, and fluid properties. In
this work, the viscosity of dilute suspensions of flexible
fibers in simple shear flow of Newtonian fluid was calcu-
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Figure 6 : Motion of initially s-shaped fiber and inverse-s-shaped fiber in simple shear flow at γ̇ t =0, 1, 2, 3, 4, 5,
6. (a) Current work; (b) Hinch (1976); (c) Joung et al. (2001).

lated.

One suspension system under investigation is illustrated
in Figure 8, where a unit cell with a curved fiber at ini-
tial position is presented. The size of the unit cell is
0.008m×0.005m×0.001m (x×y× z). Periodic bound-
ary conditions are applied in all three directions. The
fiber is 1.0× 10−4 m in diameter. Initially the fiber is
assigned an s-shape consisting of two half-circles of ra-
dius equal to 1.0×10−3 m. The aspect ratio of the fiber
is approximately 61.6. The volume fraction of the fiber
in the suspension is 0.12%, the flow field is defined as
u(y) = y (m/s) , and the time step used is 0.001s. We
limit our calculations to two-dimensional flows, assum-
ing that the fiber motion and deformation only occur in
the x-y plane. The rheological properties of a fiber sus-
pension can be described by its effective stress tensor.
The bulk stress 〈τmn〉 in the suspension is defined by
Batchelor’s effective stress tensor [Batchelor (1970B),
Ross and Klingenberg (1997)] as

〈τmn〉 = τ∞
mn +

1
V

∫
V 0

τmndV (15)

where τ∞
mn is the stress tensor that would exist in the ab-

sence of the fiber; V is the volume of the periodic unit
cell; V0 is the volume of the fiber; and τmn is the stress
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Figure 8 : Unit cell of the curved fiber suspension.

tensor in the fiber with shear stress component [Timo-
shenko and Goodier (1970)]

τxy = σsinαcosα =
4 fi, i+1

πd2
f

sinαcosα (16)

where σ is the normal stress in fiber axis direction, fi, i+1

is the internal force in the fiber segment between ith and
(i + 1)th spheres which can be calculated from Equation
(11) once the actual new position of the fiber is deter-
mined at each time step, and α (0 ≤ α < 2π) is the angle
between the axis of the fiber segment and x axis (Figure
9). The bulk viscosity of the suspension is defined as
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Figure 7 : Configurations of two interactive fibers in simple shear flow at total strain of γ̇ t =0, 0.5, 1, 2, and 3.
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Figure 9 : Internal force contributing to shear stress com-
ponent in the fiber.

µbulk =< τxy > /γ̇xy. (17)

where γ̇xy is the shear rate in the suspension. Then the
relative viscosity of the suspension with respect to fluid
viscosity is calculated as

µr = µbulk/µ. (18)

To verify this method of viscosity calculation, a straight
fiber of 4× 10−3 m in length and 2× 10−4 m in diame-
ter was used instead of the curved one in Figure 8. The
fiber volume fraction in the suspension was 0.314%. Ini-
tially the straight fiber was placed along the y direction
in the middle of the unit cell. Figure 9 shows the relative
viscosity of the suspension changing with shear value

as the fiber changes its orientation. The simulation re-
sult is not sensitive to the size of discretized fiber seg-
ments. The viscosity reaches its maximum when the fiber
forms an angle of 45 degree with the x axis. For com-
parison, the suspension viscosity was also calculated us-
ing the stress equation [Phan-Thien and Graham (1991),
Fan, Phan-Thien, and Zheng (1998)] derived from Trans-
versely Isotropic Fluid (TIF) model〈

τi j
〉

= 2µDi j

+
µφa2

r

[ln(2ar)−1.5]
(D : pppp)i j, 5 < ar < 30

(19)

and the stress equation [Batchelor (1970A), Sundarara-
jakumar (1997)] from Slender-Body Theory (SBT)

〈
τi j

〉
= 2µDi j +

2µφa2
r

3ln(2ar)
(D : pppp)i j (20)

respectively, where D is the strain-rate tensor, p is the unit
vector parallel to the fiber’s axis, φ is the volume fraction
of the fiber in the suspension, and ar is the aspect ratio
of the fiber. Both equations are based on fiber orienta-
tion and for dilute fiber suspensions. It is seen that our
result is comparable to, or more exactly, fall in between
the results obtained from the above two equations.

In the investigation of the fiber suspension as shown in
Figure 8, the fiber is divided into 9, 17, 33 and 65 seg-
ments respectively to study the effect of segment size
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Figure 11 : Fiber configurations at different times.

Viscosity of the curved fiber suspension
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Figure 12 : Relative viscosity of the suspension changes with shear value.
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Viscosity for an initially straight fiber
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Figure 10 : Viscosity of the suspension containing a
straight fiber.
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Figure 13 : Fiber configurations corresponding to A,
B, C and D in Figure 12.

on the simulation results. Figure 11 shows the config-
urations of the fiber at different times. The fiber ro-
tates and gradually forms a straight line. It can be seen
that 17 segments are sufficient to describe the fiber de-
formation. The viscosity of the suspension for differ-
ent segment sizes is shown in Figure 12. As the fiber
changes its configuration and orientation, suspension vis-
cosity changes accordingly. In the figure, the curves for
33 and 65 segments coincide with each other, which con-
firms that the viscosity is convergent with segment size.
The convergence of viscosity with the size of time step
was also verified in the simulation. The fiber configu-
rations corresponding to configurations A, B, and C in
Figure 12 are shown in Figure 13. The relative viscos-
ity of the suspension reaches a maximum of 1.155 when
the central part of the fiber forms an angle of about 39
degree with the x axis and approaches unity as the fiber
becomes aligned along the flow direction. This viscos-
ity change with fiber configuration in a dilute fiber sus-
pension was also reported by Yamamoto and Matsuoka
(1994). In the above suspension system, the fiber den-
sity is negligible and no interaction between fibers takes
place. If we increase the fiber numbers in the unit cell,
semi-concentrated to concentrated suspension-involving
interactions between fibers also can be studied.

Conclusions

Long flexible fibers were modeled as sphere-chains
linked by rigid rods and ball-socket joints. An opti-
mization method was proposed and mathematically jus-
tified for simulating the motion of long flexible fibers in
shear flow. Simulation results of an initially s-shaped and
inverse-s-shaped fiber in simple shear flow were shown
to be in good qualitative agreement with reported results.
The motion and deformation of two interactive folded
fibers in shear flow were also studied. Results show the
two fibers slide against each other and became aligned
along the flow field. The principle used in simulation was
further applied to study two dilute suspensions contain-
ing a flexible fiber. For the suspension containing ini-
tially straight fiber, the simulation result is comparable
to those obtained using reported methods. For the sus-
pension containing initially curved fiber, the suspension
viscosity reaches maximum when the central part of the
fiber forms an angle of about 39 degree with flow direc-
tion and approaches the viscosity of the suspending fluid
as the fiber orientates along the flow direction. The same
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method can be used to investigate semi-concentrated to
concentrated suspensions of long flexible fibers.
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