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On Foundations of the Ultrasonic Non-Destructive Method of Determination of
Stresses in Near-the-Surface Layers of Solid Bodies

Aleksandr N. Guz1

Abstract: The ultrasonic non-destructive method of
determination of stresses in near-the-surface layers of
solid bodies is based on the regularities of elastic sur-
face wave propagation in bodies with initial (residual)
stresses. Above mentioned regularities are received in
the framework of the 3-D linearized theory of waves
propagation in bodies with initial (residual) stresses.
Computational methods are used for solution of the dis-
persion equations as applied to problems under consider-
ation. Description of the non-destructive method and in-
formation on instruments and devices for measurements
are presented. Some examples of non-destructive deter-
mination of stresses in near-the-surface layers of materi-
als are presented also as applied to the residual stresses
arising at electric welding and to the operating stresses
arising at loading.

keyword: ultrasonic non-destructive method, regular-
ities of surface waves propagation, bodies with initial
(residual) stresses, main relationships of method, instru-
ments and devices for measurements.

1 Introduction

Main results of this paper were received in the frame-
work of the 3-D linearized theory of elastic waves propa-
gation in bodies with initial (residual) stresses. This the-
ory is presented in joined form for the theory of finite
initial deformations and for two variants of the theory
of small initial deformations. More detailed information
on above mentioned approach may be received in [Guz
(2004), Guz, Makhort (2000), Guz (2002)]. All results
of this paper are presented according to following Table
of Contents.

2. On three-dimensional theory of elastic waves in bodies
with initial (residual) stresses. 2.1. Principles of the the-

1 The Institute of Mechanics National Academy of Sciences of
Ukraine, Nesterov str., 3, 03680, Kiev, Ukraine. Tel.: (38044)
4569351, Fax: (38044) 4560319, E-mail: guz@carrier.kiev.ua

ory construction. 2.2. Main relationships. 2.3. General
solutions under homogeneous initial (residual) states.

3. Main regularities of Rayleigh waves propagation in
bodies with initial (residual) stresses. 3.1. Planar prob-
lem. Influence of initial (residual) stresses. 3.2. Axisym-
metrical problem. Influence of initial (residual) stresses.
3.3. Rayleigh waves on a circular cylinder. Influence
of initial (residual) stresses. 3.4. Rayleigh waves on a
sphere. Influence of initial (residual) stresses. 3.5. Gen-
eral regularity.

4. Ultrasonic non-destructive method of determination
of stresses in near-the-surface layers of solids. 4.1. De-
scription of the non-destructive method. 4.2. On in-
struments and devices for measurements. 4.3. Verifica-
tion of the non-destructive method. 4.4. Examples of
non-destructive determination of uniaxial and two-axial
stresses in near-the-surface layers of materials.

5. Conclusion. The approach of this paper and obtained
results may be considered as the joined approach corre-
sponding to solid mechanics, computational mechanics
and experimental mechanics.

2 On three-dimensional theory of elastic waves in
bodies with initial (residual) stresses

All results were received by linearization of the three-
dimensional non-linear theory of elasticity in cases of fi-
nite and small deformations.

2.1 Principles of the theory construction.

Three state of the hyperelastic materials are considered.

First state corresponds to natural state (stresses and
strains are absent).

Second state corresponds to initial or residual state (all
values of this state are marked by index “0”).

Third state corresponds to disturbanced state. The val-
ues of third state are sums of the corresponding values
of second state and the disturbances of the corresponding
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values. The values of disturbances are not marked by in-
dex. It is assumed the disturbances are small values and
procedure of linearization is realized.

Above mentioned approach are considered as applied to
any value x, value y and relationship y = f (x) of non-
linear theory of elasticity. These values and relationship
for second state have the following form

y0 , x0 , y0 = f (x0). (1)

These values and relationships for third state have the fol-
lowing form

y0 +y, x0 +x, y0 +y = f (x0 +x). (2)

Inequalities for the disturbances have following form

|y0| � |y| , |x0| � |x| . (3)

Linearizing the expressions (2) and taking into account
the expressions (1) and (3) the following relationship for
the disturbances are received approximately

y =

[(
d f
dx

)∣∣∣∣
x=x0

]
x . (4)

All relationships of the three-dimensional linearized the-
ory of elastic waves propagation in bodies with initial
(residual) stresses were received in accordance with ex-
pression (4). All results were received in general united
form for theory of finite initial deformation and two vari-
ants of theory of small initial deformations. Needed in-
formation on this subject is presented in [Guz (2004)].

In general case of isotropic hyperelastic compressible
material the elastic potential Φ is used in form

Φ = Φ (A1,A2,A3) ; A1 = εnn

A2 = εnmεmn , A3 = εnmεmkεkn

(5)

Notations: Φ− elastic potential; A1 , A2 and A3− first,
second and third algebraic invariants of Green strains ten-
sor. Analytical results were received for isotropic mate-
rials with Murnaghan type elastic potential which is pre-
sented in form

Φ =
1
2

λA2
1 +µA2 +

a
3

A3
1 +bA1A2 +

c
3

A3. (6)

Notations: λ and µ− Lame constants, µ≡G− shear mod-
ulus; a,b and c− elastic constants of the third order, the

values of constants a,b and c for 39 various materials are
presented in [Guz (2004)].

Analytical results were received for quasiisotropic ma-
terials with insignificant orthotropy, in this case elastic
potential was presented in form of [Guz (2004)]

Φ =
1
2

Ei jnmεi jεnm +
a
3

A3
1 +bA1A2 +

c
3

A3. (7)

Square part of potential (7) corresponds to anisotropic
material in the framework of linear theory of elasticity,
cubic part of potential (7) corresponds to isotropic ma-
terial in the framework of non-linear, for example (6),
theory of elasticity.

Elastic potential (7) gives the possibility to take into
account the insignificant orthotropy of materials which
arises as result of some technological processes, for an
example, rolling process. Information on this subject was
presented in [Guz (2004)].

Regularities of elastic waves propagation in bodies with
initial or residual stresses can be described by elastic po-
tentials depending on third invariant A3 also, elastic po-
tentials depending on first A1 and second A2 invariants
only can not describe above mentioned regularities.

Φ = Φ (A1,A2,A3) describes,

Φ (A1,A2) does not describe.
(8)

Statement (8) was proved strictly, information on this
subject was presented in [Guz (2004)].

2.2 Main relationships.

Main relationships are considered in rectangular La-
grangian coordinates yn (n = 1,2,3) which are intro-
duced in second state (initial or residual stress-strain
state). In this case equations of motion have the form(

∂
∂yi

ω′
i jαβ

∂
∂yβ

−ρ′ ∂2

∂τ2

)
u j = 0 , yn ∈V ′ (9)

and boundary conditions in stresses on surface S′1 have
the form

Q′
j = P′

j , yn ∈ S′1 ; Q′
j ≡ N0

i ω′
i jαβ

∂uα

∂uβ
. (10)

Notations: N0
j − components of ort of normal to a sur-

face S′1 in second state; P′
j− components of external load



On Foundations of the Ultrasonic Non-Destructive Method of Determination of Stresses 219

vector. In general case tensor ω′ is presented in the form

ω′
i jαβ = ω′

i jαβ
(
Φ0,σ0

nm

)
. (11)

Notations: Φ0− elastic potential (5)-(7) in second state;
σ0

nm− initial or residual stresses. Concrete structure of
expression (11) was presented in [Guz (2004)]. The ex-
pressions (9) and (10) do not coinside with corresponding
expression of linear theory of elasticity as components of
tensor ω′ in (9) and (10) do not satisfy to the symmetry
conditions of linear theory

ω′
i jαβ �= ω′

jiαβ ; ω′
i jαβ �= ω′

i jβα ; ω′
i jαβ �= ω′

αβi j . (12)

Additional information on the theory under consideration
(theory of elastic waves propagation in bodies with initial
or residual stresses) was presented in [Guz (2004)].

2.3 General solution under homogeneous initial
(residual) states.

All concrete results of the theory of elastic waves prop-
agation in bodies with initial (residual) stresses were re-
ceived in case of homogeneous initial (residual) stresses

σ0
i j = const at i = j; σ0

i j = 0 at i �= j. (13)

In case (13) several general solutions of the equations
system (9) were received, information on this subject is
presented in [Guz (2004)]. As an example, in case

σ0
11 = σ0

22 = const ; σ0
33 = const ; σ0

11 �= σ0
33 (14)

the general solution is considered for body of arbitrary
curvilinear cross-section. The following notations are in-
troduced: N′ and S′− normal and tangent (lines) to an ar-
bitrary curvilinear contour in plane y3 = const (in second
state); u′N and u′S− components of displacement vector
along N′and S′. Displacements have the following form

u′N =
∂

∂S′
Ψ′ − ∂2

∂N′∂y3
X′ ;

u′S = − ∂
∂N′ Ψ

′ − ∂2

∂S′∂y3
X′;

u3 =
(
ω′

1133 +ω′
1313

)−1

(
ω′

1111∆′
1 +ω′

3113
∂2

∂y2
3
−ρ′ ∂2

∂τ2

)
X′;

∆′
1 =

∂2

∂y2
1

+
∂2

∂y2
2
.

(15)

Functions Ψ′ and X′ (15) are determined from equations

(
∆′

1 +ξ′21
∂2

∂y2
3

−ρ′ 1
ω′

1221

∂2

∂τ2

)
Ψ′ = 0;

[(
∆′

1 +ξ′22
∂2

∂y2
3

) (
∆′

1 +ξ′23
∂2

∂y2
3

)
−

ρ′(
ω′

1111 +ω′
1331

ω′
1111ω′

1331
∆′

1 +
ω′

3333 +ω′
3113

ω′
1111ω′

1331

∂2

∂y2
3

)+

ρ′2

ω′
1111ω′

1331

∂4

∂τ4

]
X′ = 0.

(16)

In (16) notations are introduced

ξ′ j = ξ′ j

(
ω′

mnαβ
)

; j,m,n,α,β = 1,2,3. (17)

Expression for determination of ξ′ j (17) are given in
[Guz (2004)].

In next chapter some materials (metals, alloys and sim-
ilar materials) will be considered. These compressible
materials can be named as relatively rigid materials, in
this case the following inequality has place

σ0
i j/µ � 1, (18)

where µ ≡ G− shear modulus. Taking into account the
inequality (18) in next chapters the linear approximation
as applied to parameters σ0

i j/µ will be used under analyt-
ical and numerical investigations.

Additional information on general solutions was pre-
sented in [Guz (2004)]. Similar results for 3-D linearized
theory of stability of deformable bodies were presented
in [Guz (1999)].

3 Main regularities of Rayleigh waves propagation
in bodies with initial(residual) stresses

All results were received in the framework of the previ-
ous chapter theory.

3.1 Planar problem. Influence of initial (residual)
stresses.

Planar problem is considered in plane y10y2 (fig.1) for
semiplane y2 ≤ 0, at fig.1 scheme of loading and wave
propagation are presented.
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Figure 1 :

Additional condition is used

σ0
22 = 0, (19)

thus, the conditions are used

σ0
22 = 0; σ0

11 = const ; σ0
33 = const. (20)

Rayleigh waves propagate along the axis 0y1 on fig.1.

Solution includes the expressions of following type

[exp(kα1y2)] [exp i (ky1 −ωτ)] ; CR = ω/k, (21)

where CR - Rayleigh waves velocity in body with initial
stresses.

The dependences of the value ∆CR/CR0 on initial stresses
σ0 for steel, aluminium alloy and titanium alloy are pre-
sented at fig.2 in case of uniaxial loading

σ0
11 = σ0; σ0

22 = 0; σ0
33 = 0. (22)

Value ∆CR/ CR0 is defined by expression

∆CR/CR0 = (CR−CR0)/CR0. (23)

Notations: CR− Rayleigh waves velocity in material with
initial (residual) stresses; CR0− Rayleigh waves velocity
in material without initial (residual) stresses; “o” - exper-
imental results; solid lines - theoretical result on the base
of Murnaghan type potential (6); dotted lines - theoretical
results on the base of square potential

Φ =
1
2

λA2
1 +µA2. (24)

Results on fig.2 prove that the potential (6) depending
on first and second invariants only (Φ = Φ (A1,A2)) does
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Figure 2 :

not describe the regularities under consideration. Results
on fig.2 correspond to the case of Rayleigh waves prop-
agation in direction of loading as the expressions (21)
and (22) take place. The dependences of the value (23)
on initial stresses σ0 for some steels and some aluminium
alloys are presented at fig.3 in two cases of uniaxial load-
ing. First case corresponds to uniaxial loading along di-
rection of waves propagation, expression (21) and (22)
take place. Notations: “o” - experimental results; solid
lines with number 1 - theoretical results. Second case
corresponds to uniaxial loading along perpendicular to
direction of waves propagation, expression (21) and fol-
lowing expression

σ0
11 = 0, σ0

22 = 0; σ0
33 = σ0 (25)
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take place.

Notations: “•” - experimental results; solid lines with
number 2 - theoretical results. All theoretical results on
fig.3 were received on the base of Murnaghan type po-
tential (6). Conclusion. Elastic potential of Murnaghan
type (6) gives the possibility to describe the regularities
under consideration.

3.2 Axisymmetrical problem. Influence of initial
(residual) stresses.

Axisymmetrical problem is considered for semispace
y3 ≤ 0. Additional condition is used

σ0
33 = 0 , (26)

thus, the conditions are used

σ0
11 = σ0

22 = const; σ0
33 = 0. (27)

Phase surface is circular cylinder with 0y3 axis.

Solution includes the expression of following type

b(y3)
[
H(1)

0 (kr)
]

[exp(−iωτ)] ; CR = ω/k . (28)

Notations: r− radial coordinate; H
(1)
0 (x)− Hankel func-

tion of first type and zero order, as the waves propagate
from r = 0 to r = ∞
Theoretical results were received, these results are simi-
lar to corresponding results for plane problem.

3.3 Rayleigh waves on a circular cylinder. Influence
of initial (residual) stresses

Scheme of loading and direction of the surface waves
propagation are presented at fig.4. Results were received
for two cases.

First case corresponds to omnidirectional loading of
cylinder by “tracking” load or “follower”, the following
conditions have place

σ0
11 = σ0

22 = σ0
33 = σ0 . (29)

Second case corresponds to uniaxial loading of cylinder
by “dead” load, the following conditions have place

σ0
11 = σ0

22 = 0;σ0
33 = σ0. (30)
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Solution includes the expressions of following type

[Jp (klr)] [exp i (pθ−ωτ)] ;

[Jp (ktr)] [exp i (pθ−ωτ)] ;
CRö = ω/k = ωR/p.

(31)
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Notations: Jp(x)− Bessel function of p-th order; r and
θ− the radial and angular coordinates of the polar sys-
tem in the plane y3 = const ;p− angular wave number,
−∞ ≤ p ≤ +∞ ; CRö− Rayleigh wave velocity along cir-
cular surface in cylinder with initial (residual) stresses.
Rayleigh waves along the cylindrical surface in circu-
lar cylinder propagate with dispersion. Dispersion equa-
tion has very complex structure. Computational methods
were used for solution of these dispersion equations.

For a steel cylinder (Steel 09Γ2CΦ) the dependences of
the value η on the value

(−σ0/µ ·105
)

are presented at
fig.5 in first case (omnidirectional loading of cylinder by
“tracking” load or “follower”). In this case the following
expressions have place

η =
(
C0

Rö −CRö
) · (C0

Rö

)−1 ·104;

σ0
11 = σ0

22 = σ0
33 = σ0.

(32)

Notations: C0
Rö− Rayleigh wave velocity along circular

cylindrical surface in cylinder without initial (residual)
stresses; solid lines with numbers 1,2,3 and 4 on fig.5
correspond to dimensionless frequencies

k0
t R = 8.75;13.75;25.00;35.00. (33)

For a steel cylinder (Steel 09Γ2CΦ) the dependences of
the value η on the value

(
σ0

33/µ ·105
)

are presented at
fig.6 in second case (uniaxial loading of cylinder along
axis 0y3 on fig.4 by “dead” load). In this case the follow-
ing expressions have place

η =
(
C0

Rö −CRö
) · (C0

Rö

)−1 ·105;

σ0
11 = σ0

22 = 0; σ0
33 = σ0.

(34)
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Notations: C0
Rö− Rayleigh wave velocity along circular

cylindrical surface in cylinder without initial (residual)
stresses; µ− shear modulus.

Solid lines with numbers 1, 2, 3, 4 and 5 on fig.6 corre-
spond to dimensionless frequencies:

k0
t R = 7.50;15.00;22.50;30.00 and ∞. (35)

Solid line with number 5 on fig.6 (dimensionless fre-
quence = ∞) corresponds to plane surface (Rayleigh
waves propagate along plane boundary surface of semis-
pace).

3.4 Rayleigh waves on a sphere. Influence of initial
(residual) stresses.

Scheme of loading and direction of the surface waves
propagation are presented at fig.7 for a solid sphere. Re-
sults were received for the case

σ0
11 = σ0

22 = σ0
33 = σ0 (36)

as applied to the “tracking” or “follower” and “dead”
loading. Rayleigh waves propagate along spherical sur-
face of a solid sphere from upper pole to lower pole and
in opposite direction. Phase surface is a conical surface
of circular cross-section with 0y3 axis.
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Solution includes the expression of following type

[
Jl+ 1

2
(ktr) ; Jl− 1

2
(ktr)

]
· [Ylm (θ,ϕ)] [exp(−iωτ)]

CRC = ω/k = ωR/l.
(37)

Notations: Jl± 1
2
(x)− Bessel function of

(
l± 1

2

)
-th or-

der; r, θ, ϕ− coordinates of spherical coordinate system;
θ = const− phase surface; l− angular wave number for
sphere; CRC− Rayleigh wave velocity along spherical
surface in solid sphere with initial (residual) stresses;
Ylm (θ,ϕ)− spherical harmonic of following type

Ylm (θ,ϕ) = [Pm
l (cosθ)] [exp imϕ] , (38)
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where Pm
l (cosθ)− joined Legendre function of l-th

power and m-th order.

For a steel solid sphere (Steel 09Γ2CΦ) the dependences
of the value η on the value

(−σ0/µ ·105
)

are presented
in case of loading by the “tracking” load or “follower” at
fig.8

η =
(
C0

RC −CRC
)(

C0
RC

)−1 ·104;

σ0
11 = σ0

22 = σ0
33 = σ0

(39)

Notations: C0
RC− Rayleigh wave velocity along spherical

surface in solid sphere without initial (residual) stresses;
µ− shear modulus; solid lines with numbers 1,2,3 and 4
correspond to dimensionless frequencies

k0
t R = 8.75;13.75;25.00;32.00. (40)

Case of R → ∞ or l → ∞ corresponds to axisymmetrical
Rayleigh waves along plane boundary in semispace.

Rayleigh waves along the spherical surface in solid
sphere propagate with dispersion. Dispersion equation
has very complex structure. Computational methods
were used for solution of these dispersion equations.
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3.5 General regularity.

General or main regularity of the Rayleigh waves prop-
agation along planar and curvilinear boundary surface in
bodies with initial (residual) stresses are received from
analysis of the results presented at fig.2, 3, 5,6, and 8.
The results at fig.2 and 3 correspond to the Rayleigh
waves along plane boundary surface of semispace. The
results at fig.5 and 6 correspond to the Rayleigh waves
along circular cylindrical surface of solid circular cylin-
der. The results at fig.8 correspond to the Rayleigh waves
along spherical surface of solid sphere. Above mentioned
results correspond to the compressible relatively rigid
materials (metals, alloys, . . . ). Above discussed general
or main regularity for these materials may be formulated
by following manner.

GENERAL or MAIN REGULARITY

Rayleigh waves propagation velocities depend lin-
early on initial or residual stresses

Taking into account the linear property of above formu-
lated GENERAL or MAIN REGULARITY the RE-
VERSE FORM of GENERAL or MAIN REGULAR-
ITY can be formulated by following manner.

GENERAL or MAIN REGULARITY. REVERSE
FORM

Initial or residual stresses depend linearly on
Rayleigh waves propagation velocities

In this chapter information on the theory of the Rayleigh
waves propagation in bodies with initial (residual)
stresses was presented in very short form. Additional
information on this subject may be received in [Guz
(2004)].

4 Ultrasonic non-destructive method of determina-
tion of stresses in near-the-surface layers of solids

This method is intended for determination of uniaxial
and two-axial stresses in near-the-surface layers of solids
as applied to actual, assembly, operating, initial, resid-
ual, preload and other stresses. Theoretical foundation
of the ultrasonic non-destructive method under consider-
ation is the GENERAL or MAIN REGULARITY (RE-
VERSE FORM) which was formulated as applied to ini-

Notations: ©− emitter; - receiver; variant 1 - emit-
ter and receiver along 0y1 axis; variant 2 - emitter and
receiver along 0y3 axis; σ0

11 and σ0
33− stresses, which

must be determined.

Figure 9 :

tial or residual stresses in the end of the previous chap-
ter. In view of its in the method under consideration the
actual, assembly, operating, preload, prestress and other
stresses must be considered as initial or residual stresses
in the framework of the theory of first chapter. In this
case the disturbances (displacements and stresses of the
three-dimensional theory of elastic waves in bodies with
initial or residual stresses - the theory of first and second
chapters) arise due to ultrasonic vibrations.

4.1 Description of the non-destructive method.

Scheme of this method is given at fig.9, where L is the
distance between the emitter and the receiver of ultra-
sonic vibrations.

The ultrasonic non-destructive method under considera-
tion is intended for measurements of uniaxial and two-
axial stresses σ0

11 and σ0
33 in following cases:

1) relatively rigid elastic materials (metals, alloys and
similar materials);

2) near non-loading boundary surface (y2 = 0 at fig.9),
the following condition has place

σ0
22 = 0; (41)

3) bodies with planar or slight curved boundary surface;

4) in very thin near-the-surface layers of materials, where
the following conditions can be accepted as applied to the
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dependences on y2

σ0
11 ≈ const ; σ0

33 ≈ constat |y2| � L; (42)

5) for insignificant changing stresses σ0
11 and σ0

33 at dis-
tance L in the plane y10y2, the following conditions can
be accepted as applied to the dependences on y1 and y3

σ0
11 ≈ const ; σ0

33 ≈ const at min{∆y1,∆y3} ≤ L; (43)

6) for “elastic” stresses σ0
11 and σ0

33, but the sources of
these stresses can have different nature (electric welding,
plastic local loading, operating loading, local irradiation
and other sources).

Thus in the method under consideration the following
conditions are accepted

σ0
22 = 0; σ0

11 = const ; sigma0
33 = const. (44)

Conditions 1-6 define the limits of application of the
method under consideration. It must be remarked that
the conditions (43) (condition 5) are generally accepted
in any experimental method as the average value of the
measured quantity is determined in the limits of the trans-
ducer (sensor) dimension. In the method under consider-
ation the emitter and the receiver at fixed distance L must
be considered as the transducer (sensor) (fig.9). Tak-
ing into account the GENERAL or MAIN REGULAR-
ITY (the end of previous chapter) the MAIN RELA-
TIONSHIP of METHOD under consideration can be
presented in following form as applied to fig.9

σ0
11 −σ0

33 =
(

cR1 −c0
R

c0
R

− cR3 −c0
R

c0
R

)
AR ;

σ0
11 +σ0

33 =
(

cR1 −c0
R

c0
R

+
cR3 −c0

R

c0
R

)
BR .

(45)

Notations: σ0
11 and σ0

33− stresses, which must be deter-
mined; c0

R− Rayleigh waves velocity in material with-
out stresses σ0

11 and σ0
33; cR1− Rayleigh waves velocity

along the 0y1-axis (fig.9) in material with stresses σ0
11

and σ0
33 ; cR3− Rayleigh waves velocity along the 0y3-

axis (fig.9) in material with stresses σ0
11 and σ0

33 ; AR and
BR− constant values for each material.

The MAIN RELATIONSHIP of METHOD in form
(45) corresponds to two-axial stresses. In case of uniaxial
stresses at σ0

33 = 0 taking into account the first expression

(45) the MAIN RELATIONSHIP of METHOD can be
presented in following form as applied to fig.9

σ0
11 =

(
cR1 −cR3

c0
R

)
AR (46)

The MAIN RELATIONSHIP of METHOD in form
(45) for two-axial stresses includes the expression for the
difference of two main stresses (first expression (45)) and
the expression for the sum of two main stresses (second
expression (45)). In view of its two main stresses σ0

11
and σ0

33 can be determined separately from the expres-
sion (45). First expression (45) resembles the main rela-
tionship of the photoelasticity method for the difference
of two main stresses, but the photoelasticity method does
not have the relationship for the sum of two main stresses.
In view of its two main stresses σ0

11 and σ0
33 can not be

determined separately by the expression of the photoe-
lasticity method directly. In the photoelasticity method
the additional procedures are used in order to separate
the main stresses σ0

11 and σ0
33.

The constant values AR and BR (45) can be determined
for each materials by two ways. First way is theoretical
determination, in this case the constant values AR and BR

(45) were defined by expression

AR = AR
(
c0

R,λ,µ,a,b,c
)

;BR = BR
(
c0

R,λ,µ,a,b,c
)

(47)

Second way is experimental determination which in-
volves the following. For the material under consider-
ation, from experimental studies the value c0

R is deter-
mined. Then for specified values σ0

11 and σ0
33 (arbitrary

values which are realized convenient under experimental
studies), also from experimental studies the values cR1

and cR3are determined. Then for specified values of σ0
11

and σ0
33 and experimentally determined values c0

R, cR1

and cR3 from expressions (45) the values of AR and BR

are determined. Perhaps the experimental method of de-
termination of values of AR and BR for each materials is
preferable as these results do not depend on the theory
under consideration and take into account microinhomo-
geneous for each material.

4.2 On instruments and devices for measurements.

General view of the device for ultrasonic measurements
is presented at fig.9. Experimental studies were done
at the E.O.Paton Electric Welding Institute of National
Academy of Sciences of Ukraine under the supervision
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Figure 10 :

of DSc O.I.Gushcha. The device (fig.10) used for the
measurements is based on the pulse recirculation method
and provides a relative measurement error no higher than
10−5.

Excitation and reception of Rayleigh waves is done us-
ing a “wedge” type transducer, it operates at frequency
5MHz.
Transducer includes CTS-19 piezocerzmic plates (sizes
10×4 mm, resonant frequency 3 MHz) rigidly fastened
to each other (at the distance L on fig.9). The general
view of portable device (acoustic transducer with elec-
tromagnets) is present at fig.11. Before the ultrasonic
measurement the surface of the specimen or the struc-
ture element should be polished. The merit of the method
under consideration is the possibility to make measure-
ments not only on models but also on structure elements.

The drawback of the method under consideration is the
necessity of carrying out measurements of velocity with
high degree of precision.

Block-scheme of the precise device is presented at fig.12,
general view of this device is presented at fig.10.

Additional information on the instruments and the de-
vices for ultrasonic measurements as applied to the
method under consideration may be received in [Guz
(2004)] and in publications cited in [Guz (2004)].

4.3 Verification of the non-destructive method.

Verification of the non-destructive ultrasonic method of
determination of two-axial stresses in near-the-surface
layers of material was carried out for circular disk

Figure 11 :
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5 
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3

Notations: 1 - generator; 2 - high-power generator; 3
- acoustic transducer (transformer); 4 - specimen; 5 -
key device; 6 - amplifier; 7 - regulated delay line; 8 -
coincidence scheme; 9 - delay line; 10 - discriminator;
11 - counting type electronic frequency meter.

Figure 12 :

(fig.13). For originate of the two-axial stress state at
fig.13 the circular disks were compressed by concen-
trated load along the vertical diameter. The measure-
ments were carried out along the horizontal diameters of
steel and aluminium alloy discs. The experimental re-
sults for above mentioned discs were received by two
ways according to the end of first part of this chapter.
First way corresponds to case when constant values AR

and BR in the expressions (45) were determined by theo-
retical way. Second way corresponds to case when con-
stant values AR and BR in the expressions (45) were de-
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termined by experimental way. The theoretical solutions
in the framework of classical linear theory of elasticity
for the situation at fig.13 were considered also.

Corresponding results for steel disc are presented at
fig.14 and for aluminium alloy disc are presented at
fig.15.

Conclusion. Acceptable coincidence of the experimental
results obtained by first and second ways and the theoret-
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Notations at fig.14 and 15: σ0
11 ( - by the first way, �-

by the second way, solid line corresponds to the theo-
retical solution); σ0

33 (∆− by the first way, ©− by the
second way, solid line corresponds to the theoretical
solution).

Figure 15 :

ical results as applied to fig.14 and 15 may be declared.

4.4 Examples of non-destructive determination of
uniaxial and two-axial stresses in near-the-
surface layers of materials.

In this part the determination of the residual stresses aris-
ing at electric welding and the determination of the oper-
ating stresses arising at loading are considered.

The determination of the residual stresses arising at elec-
tric welding. The residual stresses at electric welding
were determined in the case of two rectangular steel of
171 plates butt welded, these results are presented at
fig.16 and fig.17. Distribution of σ0

11 and σ0
33 in perpen-

dicular direction to the weld (along line L) is presented
at fig.16. Distribution of σ0

11 and σ0
33 along weld at the

distance from weld (along line L) is presented at fig.17.

The sizes of the butt welded plates and the directions of
axis are presented in the upper parts of fig.16 and fig.17.
It must be remarked the directions of axis at fig.9 and
fig.13-17 coincide.

The determination of the operating stresses arising at
loading. The operating stresses arising at loading were
determined as applied to a vessel of internal pressure. In
this situation the measurements of stresses with applica-
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tion of Rayleigh surface waves (method of this paper)
combined with measurements on the basis of waves in
an infinite solid [Guz (2004)]. Such approach allows to
determine more complex stresses fields.

Cross-section of a cylindrical closed thick-walled ves-
sel of internal pressure and distribution of three-axial
stresses are presented at fig.18.

Conclusion. More acceptable coincidence of the exper-
imental results and the theoretical results was received
in the case when the method of Rayleigh surface waves
(method of this paper) was used also.
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Notations: dotted lines correspond to the results of ex-
perimental method of this paper; solid lines correspond
to the results of theoretical solution in the framework
of classical linear theory of elasticity; index “∆” corre-
sponds to the experimental results of the joined method
(Rayleigh surface waves and waves in an infinite solid
[Guz (2004)]); index “◦” corresponds to the experi-
mental results of the method of waves in an infinite
solid [Guz (2004)] only.

Figure 18 :

5 Conclusion

Taking into account above analyzed results on the foun-
dations of the ultrasonic non-destructive method of deter-
mination of stresses in near-the-surface layers of solids
the following conclusion may be formulated.

The approach of this paper and obtained results can be
considered as the joined approach corresponding to solid
mechanics, computational mechanics and experimental
mechanics.

Additional information can be received in [Guz (2004)],
[Guz, Makhort (2000)] and [Guz (2002)].

Similar problems for linearized solid mechanics were
considered in [Guz (2003,a)], [Guz (2003,b)] and [Guz
A.N., Guz I.A. (2004)].
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