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Meshless Local Petrov-Galerkin Method for Stress and Crack Analysis in 3-D
Axisymmetric FGM Bodies

J. Sladek1, V. Sladek1, J. Krivacek1, Ch. Zhang2

Abstract: A meshless method based on the local
Petrov-Galerkin approach is presented for stress analy-
sis in three-dimensional (3-d) axisymmetric linear elastic
solids with continuously varying material properties. The
inertial effects are considered in dynamic problems. A
unit step function is used as the test functions in the local
weak-form. It is leading to local boundary integral equa-
tions (LBIEs). For transient elastodynamic problems the
Laplace-transform technique is applied and the LBIEs
are given in the Laplace-transformed domain. Axial sym-
metry of the geometry and the boundary conditions for a
3-d linear elastic solid reduces the original 3-d bound-
ary value problem into a 2-d problem. The geometry of
subdomains is selected as a toroid with a circular cross
section in the considered (x1,x3)-plane. The final form
of the local integral equations has a pure contour-integral
character only in elastostatic problems. In elastodynam-
ics an additional domain-integral is involved due to in-
ertia terms. The moving least-squares (MLS) method
is used for the approximation of physical quantities in
LBIEs.

keyword: Meshless method, local weak-form, unit
step function, moving least-squares approximation,
Laplace-transform, functionally graded materials
(FGMs), transient elastodynamics, crack problems

1 Introduction

Functionally graded materials (FGMs) possess continu-
ously nonhomogeneous material properties. These mate-
rials have been introduced in recent years to benefit from
the ideal performance of its constituents, e.g. high heat
and corrosion resistance of ceramics on one side, and
large mechanical strength and toughness of metals on the
other side. In FGMs, the composition and the volume
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fraction of their constituents vary continuously with spa-
tial coordinates. A review on various aspects of FGMs
can be found in the monograph of Suresh and Mortensen
(1998).

The solution of the boundary or initial boundary value
problems for continuously nonhomogeneous solids re-
quires advanced numerical methods due to the high
mathematical complexity. Conventional computational
methods with domain or boundary discretizations such
as the finite element method (FEM) and the boundary el-
ement method (BEM) have their own drawbacks in deal-
ing with such kind of problems. It is efficient to apply the
conventional BEM mainly to problems where the fun-
damental solution is available. The pioneering applica-
tions of the BEM to axisymmetric elasticity in homoge-
neous materials begun in the mid 1970s with the works
of Kermanidis (1975) and Cruse at al. (1977). Recently,
Lacerda and Wrobel (2001) have presented a hypersingu-
lar boundary integral equations formulation for axisym-
metric elasticity. However, for general nonhomogeneous
and linear elastic solids, elastostatic and elastodynamic
fundamental solutions are yet, to the best of the authors
knowledge, still not available. One way to avoid this dif-
ficulty is the application of a parametrix or Levi function
in lieu of the fundamental solutions [Mikhailov (2002)].
A parametrix describes the main part of the fundamen-
tal solutions correctly but does not necessarily satisfy the
original differential equations.

In spite of the great success of the FEM and the BEM as
accurate and effective numerical tools for the solution of
boundary value problems with complex domains, there is
still a growing interest in developing new advanced nu-
merical methods. In recent years, meshfree or meshless
formulations are becoming to be popular due to their high
adaptivity and low costs to prepare input data for numer-
ical analyses. A variety of meshless methods has been
proposed so far [Belytschko et al. (1994); Atluri and
Shen (2002)]. Many of them are derived from a weak-
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form formulation on global domain [Belytschko et al.
(1994)] or a set of local subdomains [Atluri and Shen
(2002), Sladek et al. (2003a,b); Mikhailov (2002); Sel-
lountos et al. (2005)]. In the global formulation back-
ground cells are required for the integration of the weak-
form. In methods based on local weak-form formulation
no cells are required and therefore they are often referred
to as truly meshless methods. If a simple form is chosen
for the geometry of the subdomains, numerical integra-
tions can be easily carried out over them. The meshless
local Petrov-Galerkin (MLPG) method is a fundamental
base for the derivation of many meshless formulations,
since trial and test functions can be chosen from differ-
ent functional spaces. By using the fundamental solu-
tion as the test function, accurate numerical results can
be obtained, which were reported in previous papers for
2-D problems in isotropic, homogeneous or continuously
nonhomogeneous and linear elastic solids under static
[Atluri et al. (2000); Sladek et al. (2000)] and dynamic
loading conditions [Sladek et al. (2003a,b); Sellountos
and Polyzos (2003)], and for 3-D problems in homoge-
neous isotropic and linear elastic solids under static and
dynamic loads [Han and Atluri (2004a,b)].

In this paper the MLPG with a unit step function as the
test function is applied for 3-d axisymmetric isotropic
and linear elastic solids with continuously varying ma-
terial properties. Axial symmetry of the geometry and
the boundary conditions for a 3-d solid reduces the orig-
inal 3-d boundary value problem into a 2-d problem. A
3-d axisymmetric body is generated by the rotation of
the cross section around the axis of symmetry. Then, it
is sufficient to analyze only that cross section which is
covered by small circular sub-domains surrounding in-
terior nodes randomly spread on the analyzed domain.
Interior and boundary nodes are used for the spatial ap-
proximation of the displacements. The moving least-
squares (MLS) scheme is applied here for this purpose.
The MLPG yields a pure contour-integral formulation on
local boundaries of subdomain for elastostatic problems,
while in elastodynamics an additional domain-integral
due to inertia terms is involved. The Laplace-transform
is applied to eliminate the time variable. Then, the local
boundary integral equations are derived in the Laplace-
transformed domain. Several quasi-static boundary value
problems have to be solved for various discrete values
of the Laplace-transform parameter. The Stehfest’s in-
version algorithm is then applied to obtain the time-

dependent solutions. The integral equations have a very
simple nonsingular form. Moreover, both the contour
and the domain integrations can be easily carried out
on circular sub-domains. The boundary conditions on
the global boundary are satisfied by collocation of the
MLS-approximation expressions for the displacements at
global boundary nodes.

To demonstrate the accuracy of the present method, nu-
merical examples with simple and complex geometry are
presented for static and dynamic loading cases.

2 Local boundary integral equations

Let us consider an isotropic and linear elastic 3-d axisym-
metric body generated by the rotation of the planar do-
main Ω bounded by the boundary Γ around the axis of
symmetry as shown in Fig.1. The equilibrium equations
in elastodynamics can be expressed as

σi j, j(x, t)−ρüi(x, t) = −Xi(x, t) (1)

where σi j(x, t) is the stress tensor,Xi(x, t) is the body
force vector, ρ is the mass density, ui(x, t) is the dis-
placement vector, and the dots indicate the time deriva-
tives. A comma denotes partial differentiation with re-
spect to the spatial coordinates. An elastostatic problem
can be considered formally as a special case of the elas-
todynamic one by omitting the acceleration term üi(x, t)
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Figure 1 : Geometry of a 3-d axisymmetric body
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in the equilibrium equations (1). Therefore, both cases
are analyzed simultaneously in this paper.

For axisymmetric problem it is convenient to use cylin-
drical coordinates (r,ϕ, z) . The angular component of the
displacements vanishes and all physical fields are inde-
pendent on the angular coordinateϕ . In such a case the
equilibrium equations have the following form

σrr,r(r, z, t)+σrz,z(r, z, t)+
1
r

[
σrr(r, z, t)−σϕϕ(r, z, t)

]
−ρür(r, z, t) = −Xr(r, z, t),

σrz,r(r, z, t)+σzz,z(r, z, t)+
1
r

σrz(r, z, t)−ρüz(r, z, t)

= −Xz(r, z, t) (2)

where

σrr = (2µ+λ)ur,r +λ
(

uz,z +
ur

r

)
,

σzz = (2µ+λ)uz,z +λ
(

ur,r +
ur

r

)
,

σϕϕ = (2µ+λ)
ur

r
+λ(uz,z +ur,r) ,

σrz = µ(uz,r +ur,z) (3)

Applying the Laplace-transform to the equilibrium equa-
tions (2), we have

σrr,r(r, z, p)+σrz,z(r, z, p)+
1
r

[
σrr(r, z, p)−σϕϕ(r, z, p)

]
−ρp2ur(r, z, p) = −Fr(r, z, p)

σrz,r(r, z, p)+σzz,z(r, z, p)+
1
r

σrz(r, z, p)

−ρp2uz(r, z, p) = −Fz(r, z, p) (4)

where

Fa(r, z, p) = Xa(r, z, p)+ρ(r, z)pua(r, z,0)
+ρ(r, z)u̇a(r, z,0)

is the redefined body force in the Laplace-transformed
domain with the initial boundary condition for the dis-
placements ua(x,0)and the velocities u̇a(x,0). Here,
a ∈ {r, z} .

The Laplace-transform of a function f (x, t) is defined as

L [ f (x, t)] = f (x, p) =
∞∫

0

f (x, t)e−ptdτ

where p is the Laplace-transform parameter.

Instead of writing the global weak-form for the above
governing equations, the MLPG methods construct the
weak-form over local subdomains such as Ωs , which is a
small region taken for each node inside the global domain
[Atluri and Shen (2002)]. The local subdomains overlap
each other, and cover the whole global domain Ω . The
local subdomains could be of any geometric shape and
size. In the present analysis, the local subdomains are
taken to be of a circular shape. The local weak-form of
the governing equations (4) on the subdomain Ωs lying
in the global domain Ω can be written as∫

Ωs

(σrr,r +σrz,z)u∗dΩ +
∫
Ωs

1
r

(
σrr −σϕϕ

)
u∗dΩ

−
∫
Ωs

ρp2ur(r, z, p)u∗dΩ = −
∫
Ωs

Fr(r, z, p)u∗dΩ

∫
Ωs

(σzr,r +σzz,z)v∗dΩ +
∫
Ωs

1
r

σrz(r, z, p)v∗dΩ

−
∫
Ωs

ρp2uz(r, z, p)v∗dΩ = −
∫
Ωs

Fz(r, z, p)v∗dΩ (5)

In view of the Gaussian divergence theorem, one can
rewrite the first domain-integral in (5) as∫
Ωs

σab,bg∗dΩ =
∫

∂Ωs

σabnbg∗dΓ−
∫
Ωs

σabg∗,bdΩ.

If the test functions g∗ ∈ {u∗(x), v∗(x)} are selected as
the unit step functions in each subdomain

g∗(x) =
{

1 at x ∈ Ωs

0 at x /∈ Ωs
,

one can rewrite equations (5) into the form∫
∂Ωs

σrbnbdΓ+
∫
Ωs

1
r

(
σrr −σϕϕ

)
dΩ−

∫
Ωs

ρp2urdΩ

= −
∫
Ωs

FrdΩ,

∫
∂Ωs

σzbnbdΓ+
∫
Ωs

1
r

σrzdΩ−
∫
Ωs

ρp2uzdΩ = −
∫
Ωs

FzdΩ .(6)

In the MLPG method the test and the trial functions are
not necessarily from the same functional spaces. For in-
ternal nodes, the test function is chosen as the Heaviside
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step function with its support on the local subdomain.
The trial function, on the other hand, is chosen to be the
moving least-squares (MLS) interpolation over a num-
ber of nodes randomly spread within the domain of in-
fluence (see Fig.2). While the local subdomain is defined
as the support of the test function on which the integra-
tion is carried out, the domain of influence is defined as
a region where the weight function is not zero and all
nodes lying inside are considered for interpolation. The
approximated function can be written as [Atluri and Shen
(2002)]

uh(x, p) = ΦΦΦT (x) · û(p) =
n

∑
a=1

φa(x)ûa(p) (7)

where the nodal values ûa(p) are fictitious parameters
and φa(x) is the shape function associated with the node
a. The number of nodes n used for the approximation of
ui(x, p) is determined by the weight function wa(x) . In
the present analysis, a 4th order spline-type weight func-
tion is chosen as

wa(x) =

{
1−6

(
da

ra

)2
+8

(
da

ra

)3 −3
(

da

ra

)4
0 ≤ da ≤ ra

0 da ≥ ra

(8)

where da = ‖x−xa‖ and ra is the size of the support do-
main. It is seen that the C1continuity is ensured over the
entire domain, therefore the continuity condition of the
tractions is satisfied.

Substituting the approximation formula (7) into the stress
expressions (3) and subsequently into the local integral
equations (6) a system of linear algebraic equations for

subdomain =Ω Ωs s'

∂Ωs

∂  Ω ∪ Γs s s=L

∂Ωs=  ∂ Ls Ωs=

Ωs
''

Ls

Γs

ri

node zi

support of node zi

local boundary '

x

Ωx

Figure 2 : Global and local boundaries

the unknown fictitious parameters {ûr, ûz} is obtained as

n

∑
α=1

ûr(p)

⎧⎨
⎩

∫
∂Ωs

[
(2µ+λ)nrφα

,r +
λ
r

nrφα +µnzφα
,z

]
dΓ

+
∫
Ωs

[
2µ

(
φα

,r −
1
r

φα
)
− p2ρφα

]
dΩ

⎫⎬
⎭

+
n

∑
α=1

ûz(p)
∫

∂Ωs

(
λnrφα

,z +µnzφα
,r

)
dΓ

= −
∫
Ωs

Fr(r, z, p)dΩ,

n

∑
α=1

ûz(p)

⎧⎨
⎩

∫
∂Ωs

[
(2µ+λ)nzφα

,z +µnrφα
,r

]
dΓ

+
∫
Ωs

(µ
r

φα
,r − p2ρφα

)
dΩ

⎫⎬
⎭

+
n

∑
α=1

ûr(p)

⎧⎨
⎩

∫
∂Ωs

(
µnrφα

,z +λnzφα
,r +

λ
r

nzφα
)

dΓ

+
∫
Ωs

µ
r

φα
,z dΩ

⎫⎬
⎭ = −

∫
Ωs

Fz(r, z, p)dΩ . (9)

The local boundary∂Ωs of the local subdomain consists
of three parts ∂Ωs = Ls ∪Γst ∪Γsu. Here, Ls is the local
boundary that is totally inside the global domain, Γst is the
part of the local boundary which overlaps with the global
traction boundary, i.e., Γst = ∂Ωs ∩Γt , and similarly Γsu

is the part of the local boundary that overlaps with the
global displacement boundary, i.e., Γsu = ∂Ωs ∩Γu (see
Fig. 2). Equations (9) are considered on the subdomains
around each interior node and the boundary nodes on
Γst . On the part of the global boundary Γsu with pre-
scribed displacements the approximation formula (7) is
collocated atζ , i.e.,

n

∑
α=1

φα(x)uα
b (p) = ũb(ζ, p) (10)

Collecting the discretized LBIEs together with the dis-
cretized boundary conditions for the displacements, we
get the complete system of linear algebraic equations for
the unknown quantities {ûr, ûz} .
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The time dependent values of the transformed field quan-
tities can be obtained by an inverse Laplace-transform.
There are many inversion methods available for the
Laplace-transform. In the present analysis, the Stehfest’s
inversion algorithm [Stehfest (1970)] is applied. Accord-
ingly, an approximate value fa of the inverse f (t) for a
specific time t is given by

fa(t) =
ln2

t

N

∑
i=1

vi f

(
ln2

t
i

)
(11)

where

vi =

(−1)N/2+i
min(i,N/2)

∑
k=[(i+1)/2]

kN/2(2k)!
(N/2−k)!k!(k−1)!(i−k)!(2k− i)!

(12)

The selected number N = 10 with a single precision arith-
metic is optimal to receive accurate numerical results.
It means that for each time t, it is needed to solve N
boundary value problems for the corresponding Laplace-
parameters p = i ln2/t with i = 1, 2, ..., N . If M denotes
the number of the time instants in which we are interested
to know f (t) , then the number of the Laplace-transform
solutions f(p j) is M×N .

3 Numerical examples

3.1 Hollow cylinder

A nonhomogeneous and linear elastic hollow cylinder
subjected to a static pressure on the internal surface as
shown in Fig. 1 is analyzed as a test example. Func-
tionally graded hollow cylinder with a length L = 0.3 and
radii a = 4 and b = 5 is investigated. The finite-length
cylinder is considered as a part of the infinite-length tube.
Hence, the axial displacements on the top and the bottom
of the hollow cylinder are assumed to be vanishing. An
exponential spatial variation of Young’s modulus is cho-
sen as

E = E1 exp[β(r−a)] (13)

whereβ = 1
b−a ln(E2/E1)with E1 = E(a)and E2 = E(b) .

Poisson’s ratio is taken as constant ν = 0.25 and E1 =
104. For a homogeneous hollow cylinder, E(r) = E1 and

β = 0. In this case, under the plane strain condition corre-
sponding to an infinite-length tube, an analytical solution
is available and it is given by

σϕϕ = σ0

[
(b/r)2 +1

]
σ0 =

p

(b/a)2 −1

ur =
σ0

E1
r
[
(1+ν)(b/r)2 +1−ν

]
. (14)

For error and convergence analysis, the following relative
percentage errors of L2-norm are introduced for the radial
displacement and the hoop stress as

eu =
‖unum−uexact‖

‖uexact‖

es =
‖σnum −σexact‖

‖σexact‖ (15)

where

‖u‖ =

⎛
⎝∫

Ω

(ur)2dΩ

⎞
⎠

1/2

‖σ‖ =

⎛
⎝∫

Ω

(σϕϕ)2dΩ

⎞
⎠

1/2

The relative percentage errors and the convergence rates
for three different node distributions are presented in Fig.
3, where s represents the node-distance. The accuracy is
very high especially for the finest node distribution con-
sisting of 105 (21x5) nodes uniformly distributed in the
rectangular domain with 21 nodes in the radial direction.
In other two cases, 44 (11x4) and 24 (6x4) nodes have
been used.

Next, the influence of the gradation of the material prop-
erties on the radial displacements and the hoop stresses
is analyzed. In Figs. 4 and 5 the following no-
tation is used: u1 = ur(a), u2 = ur(b), s1 = σϕϕ(a)
and s2 = σϕϕ(b). Numerical results provided by the
MLPG method are compared with those obtained by
the FEM-code MSC/NASTRAN. Axisymmetric triangu-
lar elements with a quadratic approximation have been
used in the FEM analysis. In the FEM calculations, 100
elements in the radial direction and 10 elements in the
axial direction, with a total number of 1000 elements
for the rectangular cross-section of the hollow cylin-
der with the axial plane. A good agreement between
both results is achieved, which verifies the accuracy of
the present meshless method. For convenience, the ra-
dial displacements are normalized by ur(a)and the hoop
stresses byσϕϕ(a) .
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Figure 3 : Relative errors and convergence rates

The hollow cylinder under an impact load σrr(t) =
pH(t−0)on the internal surface of the hollow cylinder is
analyzed too. The same material constants as in the pre-
vious static case are chosen. The mass density is taken as
ρ = 500.

The time variations of the radial displacement on the in-
ternal surface of the hollow cylinder are shown in Figs.
6 and 7 for two different gradient parameters of Young’s
modulus. A node distribution consisting of 105 (21x5)
nodes uniformly distributed in the rectangular domain
is used for our MLPG analysis. In the FEM analysis,
the same mesh as in the previous static analysis is used
now. The time step is selected as 0,0002. A very good
agreement between the FEM and the MLPG results is
obtained. It verifies again the accuracy of the present
method. In the FGM hollow cylinder with a gradually
increasing Young’s modulus in the radial direction char-
acterized by E2/E1 = 5., the frequency of the oscillations
is higher as compared to that in a homogeneous hollow
cylinder, but the amplitude is decreased. The opposite
phenomena are observed in Fig. 7, where Young’s mod-
ulus is gradually decreasing with radial coordinate. The
radial displacements on the external surface of the hollow
cylinder are presented in Figs. 8 and 9. The difference
between the displacements on the internal (A) and exter-
nal surfaces (B) is negligible in the investigated case.
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Figure 5 : Variation of the normalized hoop stress with
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Figures 10 and 11 show the time variations of the hoop
stresses on the internal surface of the hollow cylinder for
the material gradations E2/E1 = 5., 0.2 , respectively. In
contrast to the displacement variations, the FEM results
for hoop stresses show a non-smooth behavior. This is
due to the fact that in MSC NASTRAN-code the ma-
terial properties are assumed to be uniform within each
element. Numerical results for a homogeneous and an
FGM hollow cylinder are given here to analyze the in-
fluence of the material gradation on the variation of the
hoop stresses. Figure 10 shows that if Young’s modulus
is gradually increasing with radial coordinate the hoop
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Figure 6 : Time variation of the radial displacement on
the internal surface of the FGM cylinder forE2/E1 = 5.

stress at the internal surface is significantly reduced com-
pared to that in a homogeneous cylinder. It should be
noted here that the same values of Young’s modulus on
the internal surface are used in both homogeneous and
FGM hollow cylinders. Higher values of hoop stresses
are observed on the external surface of the cylinder as
can be seen in Fig. 12.

It is interesting to understand the influence of the mass
density on the time variation of the hoop stresses. For this
purpose, we have investigated the case where the Young’s
modulus and the mass density have the same exponential
variation according to Eq. (13). The corresponding nu-
merical results are given in Fig. 13. Since both material
parameters have the same spatial variation, the velocity
of the wave propagation is constant in the whole cylin-
der. Thus, the peaks of the hoop stresses should appear at
the same time instants as in the homogeneous case (i.e.,
uniform or constant Young’s modulus and mass density),
denoted here by a dashed line. Figure 13 verifies that
the peak hoop stresses for a constant and a variable mass
density under the same Young’s modulus variation are al-
most the same in both cases. This implies that the mass
density has a minimal influence on the peak values of the
hoop stresses, at least in the case considered here. The
peak hoop stresses are mainly influenced by the varia-
tion of Young’s modulus. In Fig. 13, numerical results
for a uniform mass density and an exponentially graded
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Figure 10 : Time variation of the hoop stresses on the
internal surface of the FGM cylinder forE2/E1 = 5.
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Figure 11 : Time variation of the hoop stresses on the
internal surface of the FGM cylinder forE2/E1 = 0.2
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Figure 12 : Time variation of the hoop stresses on both
surfaces of the FGM cylinder forE2/E1 = 5.
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Figure 13 : Influence of the mass density variation on
the hoop stress at internal surface of the FGM hollow
cylinder

mass density are compared, assuming the same exponen-
tial variation of the Young’s modulus with E2/E1 = 0.2 .
In the former case (solid line with full circles) the ve-
locity of the wave propagation is lower than in the latter
case.

3.2 A penny-shaped crack in a finite cylinder

In the last numerical example a penny-shaped crack in a
finite cylinder as depicted in Fig. 14 is analyzed. The
following geometry is considered: crack radiusa = 0.5 ,
cylinder radius w = 1., and cylinder length L = 0.3. The
penny-shaped crack is located at the center of the cylin-
der which is subjected to a uniform tension σ = 1., or to a
fixed-grip loading with a prescribed uniform static defor-
mation ε0 . Also in this example, an exponential spatial
variation of Young’s modulus is assumed

E = E0 exp[β(r−a)].

Poisson’s ratio is taken as constant ν = 0.25, and the
Young’s modulus at the crack-front is selected as E0 =
104. It means that Young’s moduli at the crack-front in
the homogeneous and the FGM cylinders are chosen as
the same. A regular node distribution with 930 (31x30)
nodes is used for the MLS approximation of the displace-
ments in the analyzed domain ABCDE (see Fig.14).
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Figure 14 : A penny-shaped crack in a finite cylinder

Though there are many established methods available for
computing the stress intensity factors, we apply in this
analysis a simple approach based on the extrapolation
technique following directly from the asymptotic expan-
sion of the stresses or displacements in the vicinity of the
crack-front. For homogeneous and linear elastic solids,
Sih et al. (1972) have shown that the dynamic stress in-
tensity factors can be conventionally extracted from the
dynamic crack-tip stress field in the Laplace-transformed
domain. Since the spatial distribution of the Laplace-
transform of the asymptotic stresses is the same as in
the case of a static loading, it is only necessary to invert
the Laplace-transform of the stress intensity factors. For
non-homogeneous solids, Eischen (1987) has shown that
the asymptotic crack-tip stress and displacement fields
have the same form as those in homogeneous materi-
als. Although the spatial distribution of the asymptotic
crack-tip fields is not influenced by the material gradient
parameters in FGMs and the temporal variation of the dy-
namic loading, the stress intensity factors are dependent
on both material gradation and time, through the elas-
tic solution of the initial-boundary value problems of the
cracked solid. The elastodynamic stress intensity factors
are related to the crack-opening-displacements by⎧⎨
⎩

KI(t)
KII(t)
KIII(t)

⎫⎬
⎭ =

√
2π

4(1−ν)
µ(a,ϕ) lim

δ→0

1√
δ

=

⎧⎨
⎩

∆uζ(δ, t)
∆uξ(δ, t)
(1−ν)∆uη(δ, t)

⎫⎬
⎭ (16)

where KI(t), KII(t), and KIII(t) are the time-dependent

mode-I, mode-II and mode-III dynamic stress intensity
factors, µ(a,ϕ) is the local shear modulus at the crack-
front, δ is a small distance of a node on the crack-surface
to the crack-front, and ∆uξ(δ, t), ∆uη(δ, t) and ∆uζ(δ, t)
are the crack-opening-displacements in the local coordi-
nate system (ξ,η,ζ) at the crack-front, respectively. In
the local coordinate system, ξ is normal and η is tan-
gential to the crack-front, while ζ is perpendicular to the
(ξ,η)-plane. In the extrapolation technique, Eq. (16) is
used for computing the dynamic stress intensity factors.

To test the proposed method, a penny-shaped crack in an
FGM cylinder under a uniform static tensile load is first
considered. In this loading case, only the mode-I stress
intensity factor occurs, while the mode-II and the mode-
III stress intensity factors are identically zero. Numerical
results for the normalized mode-I stress intensity factors
fI = KI/σ

√
πa and fI = KI/E0ε0(1−ν2)

√
πa for a uni-

form stress and fixed-grip loading, respectively, and vari-
ous values of the material gradation exponent β are given
in Tab. 1. For a negative value of the gradation exponent
β the axial stresses at the axis of the cylinder are higher
in the fixed-grip loading case than in the uniform stress
loading case. An opposite phenomena is observed for
positive values of β. Therefore, stress intensity factors
(SIFs) for negative values of β are higher for fixed-grip
loading case than for a uniform stress loading case. How-
ever, the difference is not significant in the investigated
case because of the considered geometry a/w = 0.5 and
the exponential gradation originating at the crack-front.
The normalized stress intensity factors are given in Table
1, which shows a good agreement with the FEM results
for both loading cases. The relative error of the stress
intensity factors for a penny-shaped crack in a homoge-
neous cylinder is 2,5%, with reference to the result given
by Murakami (1987).

Table 1 : Stress intensity factors for a penny-shaped
crack in a finite FGM cylinder

β
fI

Uniform stress
load

fI

Fixed-grip load

MLPG FEM MLPG FEM
0 0.652 0.665 0.63 0.64
0.5 0.59 0.598 0.539 0.55
1. 0.528 0.535 0.455 0.468
-1. 0.82 0.819 0.86 0.854
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A circumferential crack with a ratio a/w = 0.5 is ana-
lyzed too. By using the same node distribution as for a
penny-shaped crack, the relative error of the stress inten-
sity factor for a circumferential crack in a homogeneous
cylinder with reference to the result of Murakami (1987)
is 2,1%.

Numerical results for a penny-shaped crack in a homo-
geneous linear elastic cylinder under an impact loading
are presented in Fig. 15. Our results are compared with
the FEM results. A quite good agreement between both
results is observed there. Figure 16 shows the time vari-
ation of the mode-I dynamic stress intensity factor for
a penny-shaped crack in an FGM cylinder. Numerical
calculations are carried out for a constant mass density
ρ = 500 and agradation exponent β = −1. On the exter-
nal surface of the cylinder the Young’s modulus is lower
than at the center, and its value at the crack-front is taken
as the same as in the homogeneous cylinder. Since the
crack radius is a half of the cylinder radius, the time
needed for the elastic waves traveling from the cylin-
der center to the outer surface is almost the same as in
the homogeneous case, despite that the wave velocity
is varying in radial direction due to the variation of the
Young’s modulus. Therefore, the peak values of the dy-
namic stress intensity factor for the homogeneous and the
FGM cylinders appear nearly at the same time instants.
To analyze the influence of the variation of the Young’s
modulus, the dynamic SIF for homogeneous and FGM
cylinders are given and compared in Fig. 16. Figure 16
implies that for a decreasing Young’s modulus in the ra-
dial direction, the peak dynamic stress intensity factor is
increased, which is unfavorable from the point of view
of linear elastic fracture mechanics. For an increasing
Young’s modulus in the radial direction, an opposite con-
clusion is expected.

4 Conclusions

The essential results of the present as follows:

A local boundary integral equation formulation based
on the MLPG in the Laplace-transformed domain with
a meshless approximation has been successfully imple-
mented to solve 3-d axisymmetric problems in isotropic
continuously nonhomogeneous and linear elastic solids
subjected to static and dynamic loads.

A unit step function is used as the test function in the lo-

-1

-0,5

0

0,5

1

1,5

2

2,5

3

0 0,5 1 1,5 2

Time [s]

K
I /

 K
Ist

at

  MLPG

  FEM

Figure 15 : Time variation of the stress intensity factor
for a penny-shaped crack in a homogeneous cylinder
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Figure 16 : Time variation of the stress intensity factor
for a penny-shaped crack in an FGM cylinder with β =
−1

cal symmetric weak-form. The derived local boundary-
domain integral equations are non-singular. Axial sym-
metry of the geometry and the boundary conditions for a
3-d body reduces the original 3-d boundary value prob-
lem into a 2-d problem. The analyzed domain is divided
into small overlapping circular sub-domains on which the
local boundary integral equations are applied. The pro-
posed method is a truly meshless method, which requires
neither elements nor background cells in either the inter-
polation or the integration.

The proposed method yields a pure contour-integral
method for static boundary value problems even for non-
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homogeneous material properties. The efficiency and the
adaptability of the present method is high in the sense
that a mesh generation is not needed.

One of the main drawbacks of the conventional BEM,
namely the limitation of its applications to homogeneous
solids, can be circumvented by using the present method.
The method does not require the fundamental solutions,
which are either not available or too complicated for con-
tinuously nonhomogeneous solids. The computational
accuracy of the present method is comparable with that
of FEM.
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