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Coupled Analysis of Independently Modeled Finite Element Substructures by
Moving Least Squares Displacement Welding Technique

Jin Yeon Cho1, Jae Mo An2, You Me Song1, Seungsoo Lee1 and Dong Whan Choi1

Abstract: A displacement welding technique is pro-
posed to carry out coupled analysis of the integrated
whole model which consists of independently modeled
finite element substructures. In the proposed method, the
incompatible displacement fields in the interfaces of in-
dependently modeled substructures are directly welded
together through a blended function that is newly de-
fined in the transient region of mismatching interface. To
construct the blended function, the moving least squares
function, which does not require well-defined nodal con-
nectivity, is utilized along with the original finite el-
ement shape function. The meshless character of the
moving least squares function makes it possible to ef-
ficiently handle the mismatching interfaces of indepen-
dently modeled finite element substructures. To prove
the validity of the proposed method, the patch tests and
convergence tests are carried out for various mismatching
models. To assess the performance of the proposed weld-
ing technique, several numerical examples are worked
out including beam type problem, plate with circular
hole, and L-shaped beam type problem. As a practical
application, example of three dimensional coupled analy-
sis of independently modeled substructures is presented.

keyword: Displacement Welding Technique, Mis-
matching Interface, Transient Region, Moving Least
Squares Function.

1 Introduction

Complex structural systems, such as aircrafts, space-
crafts, automobiles, are usually modeled collaboratively
in the form of substructures, and the substructures or sub-
parts are modeled independently by several engineers.
Thus, generally the independently modeled finite ele-
ment substructures do not satisfy the nodal compati-
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bility in the interfaces of each substructure. And the
nodal incompatibility makes it difficult to carry out the
coupled analysis of the integrated whole model. Due
to the reason, considerable attention has been given to
the coupled analysis of independently modeled finite el-
ement substructures during the past decade [Ransom,
McCleary, Aminpour (1993); Aminpour, Ransom, Mc-
Cleary (1995); Farhat and Mandel (1998); Park and Fe-
lippa, (2000); Aminpour, Pageau, Shin (2001)].

Of course, one easiest remedy may be the design of tran-
sition elements in the interface region of independently
modeled substructures [Bathe (1996); Kim (2002)].
However, this approach is somewhat cumbersome to ap-
ply and may need expensive human labor in practical sit-
uations because there are various cases and combinations
to be considered. Therefore, different approaches have
been explored to solve the trouble. Of these, one ma-
jor approach is the introduction of Lagrange multiplier
in the interface region to satisfy both of the displacement
compatibility and force equilibrium in variational sense
[Aminpour, Pageau, and Shin (2001)]. The approach is
more flexible to handle the independently modeled finite
element substructures than the transition element, and in
mathematical sense the nodal compatibility is no longer
required in the interface region. However this Lagrange
multiplier approach necessarily requires the additional
unknowns, and does not preserve the positive definite-
ness and banded structure of stiffness matrix of the whole
coupled system. Also it frequently needs some additional
interface meshes to appropriately enforce the constraint
conditions of displacement compatibility.

Therefore, in this work a novel approach, where the in-
compatible displacement fields of independently mod-
eled substructures are directly welded together, is pro-
posed to efficiently carry out the coupled analysis of in-
dependently modeled finite element substructures with-
out introducing any additional unknown or any remesh-
ing. Also, in the proposed method the positive definite-
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ness and banded structures of the system stiffness ma-
trix are no longer sacrificed because displacement fields
of the independently modeled finite element substruc-
tures are directly welded into a compatible displacement
field for whole coupled model. In displacement weld-
ing, moving least squares function [Lancaster and Salka-
uskas(1981); Nayroles, Touzot, and Villon (1992); Li,
Shen, Han, and Atluri (2003)], which does not require
any fixed nodal connectivity, is utilized along with the
original finite element shape functions. In the next sec-
tion, the moving least squares method is briefly reviewed.

2 Moving Least Squares Method

The moving least squares method is one of the most pop-
ular approximation schemes (along with Shepard func-
tion [Shepard (1968)], RKPM [Liu, Jun, and Chang
(1995)], PUM [Babuska and Melenk (1997)], etc.) which
does not need any element information. And for the most
part, it is equivalent to the Shepard function, RKPM, and
PU [Atluri and Shen (2002); Atluri (2004)]. The re-
quired smoothness of approximation function can be eas-
ily achieved by the moving least squares method. Due to
these reasons, the moving least squares technique may
give a good way to weld the displacement fields near the
mismatching interfaces between the substructures with
no regard to the nodal positions. In this section, the basic
idea of the moving least squares approximation is briefly
reviewed.

Consider a continuous function u defined on a domain Ω,
where the (fictitious) nodal values at the scattered points
xi (1 ≤ i ≤ n) in Ω, that enter the interpolation, are
given as ûi. To approximate the distribution of function
u in Ω, the global approximation form uh(x) for u(x) is
defined as follows.

For all x ∈ Ω, uh(x) = pT (x)a(x) =
m

∑
i=1

pi(x)ai(x) (1)

where pT (x) = [p1(x), p2(x), · · · , pm(x)] is a monomial
basis satisfying the conditions as

(i) p1(x) = 1

(ii) pi(x) ∈Cr(Ω), i = 1, · · · ,m

(iii) There exists {x̃1, · · · , x̃m} ⊂ {x1, · · · ,xn} such that

{p(x̃1), · · · ,p(x̃m)} is a linearly independent set.

where, Cr(Ω) denotes the set of functions, whose deriva-
tives are continuous up to the r-th degree. For example,

the (m−1)-th order monomial basis in one dimension has
the following form:

pT (x) = [1,x,x2, · · · ,xm−1] (2)

In two dimension, a quadratic monomial basis is written
as

pT (x) = [1,x,y,x2,xy,y2] (3)

Additionally, the paper [Atluri and Zhu (1998)] can be
referred to, for other forms of monomial bases in two
and three dimensional problems.

The vector a(x) = [a1(x),a2(x), · · · ,am(x)]T is a vector
of undetermined coefficients, whose values can vary ac-
cording to the position x ∈ Ω. The coefficient vector
a(x) at each position x = x will be determined by a local
weighted least squares approximation ux(x) of the func-
tion u(x), in a sufficiently small neighborhood nbd(x) of
x = x.

A local approximation ux(x), for each point x ∈ Ω, is
defined as

u(x)∼= ux(x) = pT (x)a(x), for all x ∈ nbd(x) (4)

In order that the local approximation is the best approx-
imation to u in a certain least squares sense, the coeffi-
cient vector a(x) is selected as the m×1 vector that min-
imizes the following weighted least squares discrete L2

error norm.

Jx(b) =
n

∑
i=1

wi(x)
[
pT (xi)b− ûi]2

= [Pb− û]T w(x) [Pb− û] (5)

That is, the coefficient vector a(x) is selected to satisfy
the following condition.

Jx(a(x))≤ Jx(b), for all b ∈ Rm (6)

In Eq. (5), wi(x) is the weight function associated with
the position xi of node i, and wi(x) is greater than 0 for all
x in the support domain (i.e., the region of non-zero val-
ues) of wi(x), and n denotes the number of nodes. For ex-
ample, the support domain of the weight function wi(x)
can be taken to be a sphere in 3-D; and the weight func-
tion wi(x) centered at each node xi is usually adopted to
be positive and non-zero if the distance between node xi
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and x is less than a specified radius Ri, and to be zero if
the distance is greater than or equal to the radius Ri, in
order to preserve the local character of the MLS approx-
imation.

The matrix P is an n×m matrix, and w(x) is n×n diag-
onal matrix written as follows.

P = [p(x1),p(x2), · · · ,p(xn)]
T (7)

w(x) =

⎡
⎢⎢⎢⎢⎣

w1(x) 0 · · · 0

0 w2(x) · · · ...
...

...
. . . 0

0 · · · 0 wn(x)

⎤
⎥⎥⎥⎥⎦ (8)

And the vector û denotes the vector of given fictitious
values ûi of variable u at nodes i (1≤ i≤ n) as follows.

ûT =
[
û1, û2, · · · , ûn]= [u(x1),u(x2), · · · ,u(xn)] (9)

It is noted that the ûi (1≤ i≤ n) are not the nodal values
of the approximation function uh(x).

The method to approximate the function by the moving
least squares method is sketched in Fig. 1. At each posi-
tion x = x, a local weighted least squares approximation
is found by using Eqs. (4), (5) and (6), and its coefficient
vector a(x) is used in the global approximation form (1).
Actually, it is the same as the moving procedure of lo-
cal approximation to obtain the global approximation, as
stated in the previous work [Lancaster and Salkauskas
(1981)].

By applying the stationarity condition to the weighted
discrete error norm, the coefficient vector a(x) can be

x ix
x

i
i uxu ˆ)( =

)()()( xxxu T
x ap=

)( i
h xu

)(xuh

Figure 1 : Conceptual explanation of the moving least
squares interpolation scheme

obtained from the following matrix equation.

A(x)a(x) = B(x)û (10)

where,

A(x) = PT w(x)P
B(x) = PT w(x)

(11)

Solving Eq. (10) for a(x), and substituting it into Eq.(1)
at x = x, gives a relation which may be written in the form
of a linear combination of nodal shape functions similar
to that used in finite element method, as

uh(x) = ΨT (x)û =
n

∑
i=1

ûiψi(x) (12)

where

ΨT (x) = pT (x)A−1(x)B(x)

ψi(x) =
m
∑
j=1

p j(x)
[
A−1(x)B(x)

]
ji

(13)

In actual computations, various kinds of weight func-
tions can be adopted for MLS approximation procedure.
The required condition for the continuity of the approx-
imating function can be easily satisfied by changing the
weight function in the MLS approximation procedure. In
this work, we restrict ourselves to the twice differentiable
weight function that has the form of

wi(x) =

{
1−6

(
di
ri

)2
+8
(

di
ri

)3−3
(

di
ri

)4
, if 0≤ di ≤ ri

0 , if di > ri

(14)

where ri denotes the radius of support of weight func-
tion and di denotes the distance between the point x and
nodal point xi. If the derivatives of monomial basis in the
MLS approximation are continuous up to the r-th deriva-
tive, the resulting MLS approximation function from this
weight function is continuously differentiable up to the
minimum of 2 and r. One can also use other kinds of
weight functions such as Gaussian weight function [Al-
turi and Shen (2002)].

3 Displacement Welding Procedure

3.1 Terminology

Let us consider non-overlapping independently modeled
substructures which do not satisfy the nodal compatibil-
ities in the interfaces of each substructure as shown in
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I

III

IV

II

Nodal incompatibility
(mismatching interface)

Figure 2 : Independently modeled substructures and
mismatching interface

Figure 3 : Failure of coupled analysis induced by the in-
compatible displacement fields on mismatching interface

Fig. 2. If the substructures are assembled with no special
treatment, then the displacement field on the interface of
each substructure may become discontinuous, and as a
result coupled analysis of the whole model may not be
performed successfully as shown in Fig. 3.

To solve the trouble, a novel displacement welding tech-
nique is proposed in this work. For clear explanation of
the proposed procedure, the following terminologies are
used in this work. Firstly, common edge set for each fi-
nite element edge Γ(e)

α (the α-th edge of e-th element)
inside the domain is defined by the edge of which inte-
rior has a nonempty intersection with the interior of the
considered finite element edge Γ(e)

α . Common edge set
can be written in mathematical form as follows.

C(e)
α =

{
Γ(c)

β

∣∣∣ int(Γ(c)
β )∩ int(Γ(e)

α ) �= φ , 1≤ c ≤ Nel
}

(15)

where ‘Nel’ denotes the number of elements, and int(.)
denotes the interior. For example, common edge set
for the finite element edge Γ(e8)

4 in Fig. 4 is C(e8)
4 ={

Γ(e4)
2 ,Γ(e5)

2 ,Γ(e8)
4

}
. It is denoted by bold line in Fig.

4. Similarly, common edges for Γ(e1)
2 are Γ(e6)

4 and Γ(e1)
2

itself.

Secondly, mismatching element edge is defined with the
aid of the common edge concept. The finite element edge

Γ(e)
α is defined as mismatching edge, if there is any com-

mon edge for Γ(e)
α which is not identical to Γ(e)

α itself.
If the sets of nodal points defined in each edge are dif-
ferent, the edges are considered not to be identical even
though the line segments of each edge are the same. And
the mismatching element boundary Γ(e)

mis for each element
(e) is defined as the union of mismatching element edges
for the element (e). For example, the mismatching ele-
ment boundaries for element (e3) and (e7) in Fig. 5 are
Γ(e3)

2 ∪Γ(e3)
3 and Γ(e7)

1 ∪Γ(e7)
4 , respectively.

If a node of element (ei) is contained in the mismatching

element boundary Γ(ei)
mis , then the node is called the mis-

matching node of element (ei) as shown in Ωe5 of Fig. 6.
Additionally, if a nodal point of element (ei) is contained

I III

IVII

Common edges for FE edge         of element (e8)

)5(
4

eΓCommon edges for FE edge         of element (e1))1(
2

eΓ

1eΩ
)1(

2
eΓ )6(

4
eΓ 6eΩ

5eΩ )5(
2

eΓ

)4(
2

eΓ
4eΩ

8eΩ
)8(

4
eΓ

2eΩ

3eΩ

7eΩ

)8(
4

eΓ

Figure 4 : Explanation of terminology I (common edges
for each finite element edge)
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in some element (e j) but it is not the node of the element
(e j) as shown in Ωe2 of Fig. 6, then it is also defined
as the mismatching node of element (ei). The index set
for the mismatching nodal points for each element (ei) is

denoted by N (ei)
mis .

By collecting the mismatching element boundaries over
the whole elements, the mismatching interface Γmis for
the given problem can be constructed as shown in Fig. 6.

Γmis =
Nel∪
e=1

Γ(e)
mis (16)

where ‘e’ and ‘Nel’ denote the element number and the
number of elements, respectively.

Finally, the index set Nmis of mismatching nodal points is
defined as the nodal point numbers on the mismatching
interfaces. It can be also constructed by collecting the set
of mismatching nodal points for each element.

Nmis = {k| node xk ∈ Γmis, 1≤ k ≤ Nnode}
=

Nel∪
e=1

N (e)
mis (17)

where ‘Nnode’ denotes the total number of nodal points.
In Fig. 6, the mismatching nodal points are denoted
by hollow circle. The transient element is defined as
an element of which boundary has a nonempty intersec-
tion with the mismatching interface, and the union of
those domains will be called the transient region Ωtran

as shown in Fig. 7. Additionally, the union of domains
of non-transient elements will be called the compatible
region Ωcomp, and the intersection between Ωtran and
Ωcomp will be called the compatible-transient interface.
The transient nodal points imply the nodal points located
in transient region. Its index set Ntran can be written as
follows.

Ntran = {k| node xk ∈ Ωtran, 1≤ k ≤ Nnode} (18)

Conversely, the non-transient nodal points means the
nodal points outside the transient region, and its index
set Nnont is as follow.

Nnont = {k| node xk /∈Ωtran, 1≤ k ≤ Nnode} (19)

It is noted that the set of non-transient nodal points is not
identical to the set of nodal points located in the compat-
ible region Ωcomp. Additionally, the transient nodal point

I III

IVII

)7(
4

eΓ
)7(

1
eΓ

)3(
2

eΓ

)3(
3

eΓ

)5(
2

eΓ

5eΩ
7eΩ

3eΩ

Mismatching element boundary for 
element (e3)  

I III

IVII

                     Mismatching element
                     boundaries  

Figure 5 : Terminology II (incompatible element bound-
ary)

I III

IVII

             Mismatching element boundary
             Mismatching node for element

2eΩ

5eΩ

   

I III

IVII

             Mismatching interface
             Mismatching nodal points    

Figure 6 : Terminology III (mismatching interface, mis-
matching nodal points)

I III

IVII

             Transient region
             Compatible- transient interface    

I III

IVII

                Transient nodal points

  

Figure 7 : Terminology IV (Transient region,
compatible-transient interface, transient nodal points)

index set and non-transient nodal point index set satisfy
the relations as shown below.

{
Ntran∩Nnont = φ
Ntran∪Nnont = { k| 1≤ k ≤ Nnode} (20)
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3.2 Displacement Welding

In the present displacement welding procedure for cou-
pled analysis of independently modeled substructures, a
newly defined nodal shape function is utilized instead of
the conventional finite element shape functions for the
transient nodal points to eliminate the discontinuity in
mismatching interface as written in Eq. (21).

For i ∈Ntran,

NB
i (x) =

{
ΘB

i (x),x ∈Ωtran

Ni(x),x ∈Ωcomp

For i ∈Nnont(i.e., i /∈Ntran),

NB
i (x) =

{
Ni(x) = 0,x ∈ Ωtran

Ni(x),x ∈Ωcomp

(21)

where Ni(x) is the finite element shape function, and
ΘB

i (x) is a blended function defined over the transient
region. If the ΘB

i (x) is continuous over the transient re-
gion Ωtran, then the continuity of nodal shape function
across the mismatching interface is guaranteed. Also if
ΘB

i (x) = Ni(x) for x ∈ Ωtran ∩Ωcomp, then the continu-
ity between the transient and compatible regions can be
ensured.

To ensure the continuity across the mismatching and
compatible-transient interfaces, the blended function of
Eq. (22) is introduced. It is noted that a similar blended
form was adopted to couple the meshless system and fi-
nite element system in the previous works [Belytschko,
Krongauz, and Organ (1996); Chen and Raju (2002)].

For i ∈Ntran,

ΘB
i (x) = (1−λ(x))Ni(x)+λ(x)ψi(x)

(22)

where ψi(x) is the moving least squares nodal shape
function obtained from the transient nodal points{

xk|k ∈Ntran, 1≤ k ≤ Nnode
}

and it is continuous
over the transient region regardless of the mismatching
interface. Moreover, it is noted that the moving least
squares nodal shape function satisfies the consistency
conditions over the transient region as shown in Eq. (23)
since the functions are constructed by using the nodal
points in transient region.

For x ∈ Ωtran,

∑
i∈Ntran

ψi(x) = 1 and ∑
i∈Ntran

ψi(x)xi = x (23)

And the finite element shape functions satisfy the follow-

ing consistency over the whole domain.

For x ∈ Ω = Ωtran∪Ωcomp,
Nnode

∑
i=1

Ni(x) = 1 and
Nnode

∑
i=1

Ni(x)xi = x
(24)

Since the finite element shape functions for non-transient
nodal points are identically zero over the transient region
(i.e., Ni(x) = 0, for x ∈ Ωtran & i /∈Ntran), Eq. (24) can
be reduced to Eq. (25).

For x ∈ Ωtran,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Nnode
∑

i=1
Ni(x) = ∑

i∈Ntran

Ni(x) = 1

Nnode
∑

i=1
Ni(x)xi = ∑

i∈Ntran

Ni(x)xi = x

(25)

The λ(x) used in the blended function ΘB
i (x) is a continu-

ous function, and it is selected to be ‘1’ on the mismatch-
ing interface Γmis in order to eliminate the discontinuity
of finite element shape function on the mismatching in-
terface. Through the selection of λ(x), (1− λ(x))Ni(x)
becomes a continuous function of which value is zero
on the mismatching interface, and the blended func-
tion ΘB

i (x) becomes continuous because λ(x)ψi(x) is
also continuous. Also, λ(x) is chosen to be ‘0’ on the
compatible-transient interface Ωcomp∩Ωtran so as to sat-
isfy the displacement compatibility between the transient
region Ωtran and the compatible region Ωcomp. As a re-
sult, the blended nodal shape function satisfies the rela-
tion (26).

For i ∈Ntran,
(i) ΘB

i (x) is continuous for x ∈Ωtran

(ii) ΘB
i (x) = Ni(x), x ∈ Ωcomp∩Ωtran

(26)

By the relation, one can ensure the compatibility be-
tween the compatible region and the transient region.
Also the continuity across the mismatching interface can
be guaranteed. To obtain the value of λ(x) in element-
by-element manner, the relation (27) is adopted in the
present work.

For x ∈ Ωe,

λ(x) =

⎧⎨
⎩

∑
i∈N (e)

mis

Ni(x) if (x ∈) Ωe ⊂ Ωtran

0 if (x ∈) Ωe �⊂ Ωtran

(27)

where N (e)
mis denotes the index set of mismatching nodal

points for element (e). Ωe implies the domain of element
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Figure 8 : Typical shape of λ(x) for the system of inde-
pendently modeled substructures

(e). In Fig. 8, typical shape of λ(x) obtained from Eq.
(27) for the system of independently modeled substruc-
tures is presented.

Additionally, one can show that the newly defined nodal
shape functions (21) satisfy the consistency conditions as
follows. In the derivation of consistency conditions, Eqs.
(23)-(25) are utilized along with the fact that the finite
element shape functions associated with non-transient
nodal points are identically zero over the transient region.

0th order consistency of new shape function

Nnode

∑
i=1

NB
i (x) = 1 (28)

Proof:

For x ∈Ωtran,

Nnode
∑

i=1
NB

i (x) = ∑
i∈Ntran

NB
i (x)+ ∑

i∈Nnont

NB
i (x)

← NB
i (x) = 0 f or x ∈Ωtran and i /∈Ntran

= ∑
i∈Ntran

[(1−λ(x))Ni(x)+λ(x)ψi(x)]

= (1−λ(x)) ∑
i∈Ntran

Ni(x)+λ(x) ∑
i∈Ntran

ψi(x)

Since ∑
i∈Ntran

Ni(x) = 1, ∑
i∈Ntran

ψi(x) = 1 for x ∈Ωtran

Nnode
∑

i=1
NB

i (x) = (1−λ(x))+λ(x) = 1

For x ∈Ωcomp,

Since NB
i (x) = Ni(x) and

Nnode
∑

i=1
Ni(x) = 1,

Nnode
∑

i=1
NB

i (x) =
Nnode

∑
i=1

Ni(x) = 1

Therefore,
Nnode

∑
i=1

NB
i (x) = 1 for all x ∈ Ω.

1st order consistency of new shape function

Nnode

∑
i=1

NB
i (x)xi = x (29)

Proof:

For x ∈ Ωtran,

Nnode
∑

i=1
NB

i (x)xi = ∑
i∈Ntran

NB
i (x)xi + ∑

i∈Nnont

NB
i (x)xi

← NB
i (x) = 0 for x ∈ Ωtran and i /∈Ntran

= ∑
i∈Ntran

[(1−λ(x))Ni(x)xi +λ(x)ψi(x)xi]

= (1−λ(x)) ∑
i∈Ntran

Ni(x)xi +λ(x) ∑
i∈Ntran

ψi(x)xi

Since ∑
i∈Ntran

Ni(x)xi = x, ∑
i∈Ntran

ψi(x)xi = x for x ∈Ωtran

Nnode
∑

i=1
NB

i (x)xi = (1−λ(x))x+λ(x)x = x

For x ∈ Ωcomp,

Since NB
i (x) = Ni(x) and

Nnode
∑

i=1
Ni(x)xi = x,

Nnode
∑

i=1
NB

i (x)xi =
Nnode

∑
i=1

Ni(x)xi = x

Therefore,
Nnode

∑
i=1

NB
i (x)xi = x for all x ∈ Ω.

It is noted that the necessary conditions for describing the
rigid body and constant strain modes are ensured through
the consistency conditions.

3.3 Weak Form and Its Approximation

Let us consider the general linear elastic problem in do-
main Ω. Then the weak form of equilibrium equation can
be written in engineering matrix notation as follows.
∫

Ω
δεT Dε dΩ =

∫
Ω

δuT f dΩ+
∫

∂Ωt

δuT t dΓ (30)

where u, ε, f and t denote displacement, strain, force per
unit volume and traction, respectively. D is the elastic
modulus matrix, and ∂Ωt is the traction boundary. As-
sume that the elastic body is modeled by several sub-
structures with mismatching interfaces as shown in Fig.
4. Then the weak form may be rewritten as the form of
Eq. (31), since the integral domain of weak form can
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be divided into the transient region and the compatible
region of substructures.∫
Ωcomp

δεT Dε dΩ+
∫

Ωtran

δεT Dε dΩ

=
∫

Ωcomp

δuT f dΩ+
∫

Ωtran

δuT f dΩ

+
∫

∂Ωt∩Ωcomp

δuT tdΓ+
∫

∂Ωt∩Ωtran

δuT t dΓ (31)

In case of two dimension, the displacement and strain
fields in Eq. (31) are approximated by the newly intro-
duced blended nodal shape function NB

i (x) as denoted in
Eq. (32) and (33).{

u(x)
v(x)

}
∼=

Nnode

∑
i=1

[
NB

i (x)
0

0
NB

i (x)

]{
ui

vi

}

= ∑
i∈Nnont

[
NB

i
0

0
NB

i

]{
ui

vi

}

+ ∑
i∈Ntran

[
NB

i
0

0
NB

i

]{
ui

vi

}

=
[

NB
nont NB

tran

]{ Unont

Utran

}
= NBU (32)

⎧⎨
⎩

εxx(x)
εyy(x)
γxy(x)

⎫⎬
⎭∼=

Nnode

∑
i=1

⎡
⎢⎢⎣

∂NB
i (x)
∂x 0

0 ∂NB
i (x)
∂y

∂NB
i (x)
∂y

∂NB
i (x)
∂x

⎤
⎥⎥⎦
{

ui

vi

}

= ∑
i∈Nnont

⎡
⎢⎢⎣

∂NB
i

∂x 0

0 ∂NB
i

∂y
∂NB

i
∂y

∂NB
i

∂x

⎤
⎥⎥⎦
{

ui

vi

}

+ ∑
i∈Ntran

⎡
⎢⎢⎣

∂NB
i

∂x 0

0 ∂NB
i

∂y
∂NB

i
∂y

∂NB
i

∂x

⎤
⎥⎥⎦
{

ui

vi

}

=
[

BB
nont BB

tran

]{ Unont

Utran

}
= BBU (33)

Considering the fact that the blended shape function
NB

i (x) is the same as the original finite element shape
function Ni(x) in the compatible region, the approxi-
mated forms for the displacement and stain fields in the
compatible region are rewritten as Eq. (34) and Eq. (35),
respectively.

For x ∈ Ωcomp ,

{
u
v

}
∼= ∑

i∈Nnont

[
Ni

0
0
Ni

]{
ui

vi

}

+ ∑
i∈Ntran

[
Ni

0
0
Ni

]{
ui

vi

}

=
[

Nnont Ntran
]{ Unont

Utran

}
= NU (34)

For x ∈ Ωcomp,

⎧⎨
⎩

εxx

εyy

γxy

⎫⎬
⎭∼= ∑

i∈Nnont

⎡
⎢⎣

∂Ni
∂x 0

0 ∂Ni
∂y

∂Ni
∂y

∂Ni
∂x

⎤
⎥⎦
{

ui

vi

}

+ ∑
i∈Ntran

⎡
⎢⎣

∂Ni
∂x 0

0 ∂Ni
∂y

∂Ni
∂y

∂Ni
∂x

⎤
⎥⎦{ ui

vi

}

=
[

Bnont Btran
]{ Unont

Utran

}
= BU (35)

Similarly, the approximations in the transient region can
be rewritten as follows because only the shape functions
associated with transient nodal points are not zero in the
transient region.

For x ∈ Ωtran,

{
u
v

}
∼= ∑

i∈Ntran

[
ΘB

i
0

0
ΘB

i

]{
ui

vi

}

=
[

0 ΘB
tran

]{ Ucomp

Utran

}
= ΘBU (36)

For x ∈ Ωtran

⎧⎨
⎩

εxx

εyy

γxy

⎫⎬
⎭∼= ∑

i∈Ntran

⎡
⎢⎢⎣

∂ΘB
i

∂x 0

0 ∂ΘB
i

∂y
∂ΘB

i
∂y

∂ΘB
i

∂x

⎤
⎥⎥⎦
{

ui

vi

}

=
[

0 ΞB
tran

]{ Ucomp

Utran

}
= ΞBU (37)

Substitution of Eqs. (34-37) into Eq. (31) gives a relation
as shown below.
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For all δU,

δUT

(∫
Ωcomp

BT DB dΩ
)

U+δUT

(∫
Ωtran

ΞT
BD ΞB dΩ

)
U

= δUT
{∫

Ωcomp

NT f dΩ
}

+δUT
{∫

∂Ωt∩Ωcomp

NT t dΓ
}

+δUT

{∫
Ωtran

ΘT
B fdΩ

}

+δUT
{∫

∂Ωt∩Ωtran

ΘT
B tdΓ

}
(38)

Since the Eq. (38) should hold for all δU, one can obtain
the following system of linear algebraic equations.

(Kcomp +Ktran)U = Fcomp +Ftran (39)

where the subscripts ‘comp’ and ‘tran’ imply the terms
originated from the compatible and transient regions,
respectively. In implementation, a higher order Gauss
numerical integration is utilized for the transient re-
gion, since the moving least squares function is ratio-
nal function [Atluri, Cho, and Kim (1999); Dolbow
and Belytschko (1999)]. Also other numerical integra-
tion schemes may be considered for the transient region
[Chen, Wu, Yoon, and You (2001); Atluri, Han, and Ra-
jendran (2004); Han and Atluri (2004)].

It should be noted that the terms Kcomp and Fcomp from
the compatible region are exactly the same as the origi-
nal finite element system. And the terms, that should be
modified for coupled analysis, are related to only the lim-
ited number of transient nodal points in transient domain
as shown below.

KtranU =
[

0 0
0

∫
Ωtran

(ΞB
tran)

T DΞB
trandΩ

]{
Unont

Utran

}

Ftran =

⎧⎨
⎩

0( ∫
Ωtran

(ΘB
tran)

T f dΩ
+
∫

∂Ωt∩Ωtran
(ΘB

tran)T tdΓ

) ⎫⎬
⎭ (40)

Therefore, one can carry out the coupled analysis of the
integrated whole model of independently modeled sub-
structures by simple replacement of the stiffness matrix
and the load vector for transient region as shown in Fig.
9. Also, unlike the Lagrange multiplier approaches, the

proposed displacement welding procedure does not re-
quire any additional unknown, and preserves the posi-
tive definiteness and banded structure of the system stiff-
ness matrix, since the incompatible displacement fields
in the transient region for mismatching interface of inde-
pendently modeled substructures are directly welded into
a compatible displacement field over the whole model.

Original FE 

stiffness/load
New blended 
stiffness/load

Coupled analysis
by the interface

welding method

Mismatching 
interface and

transient region

� Detec tion of 
- Mismatching interface

- Transient region
- Transient nodes

� C onstruc ting 

- Blended shape func tion
  (displacement welding)
- New stiffness/load

� Disassemble & Assemble
(Replacement of 

stiffness/ load)

� C oupled analysis
for the whole system

� Solution 
� post- processing

Figure 9 : Coupled analysis by displacement welding

4 Numerical Examples

4.1 Patch Test

In this section, patch tests are carried out to prove the
validity of the currently proposed welding technique. In
patch tests, two models in Fig. 10 and Fig. 11 are con-
sidered. The first model in Fig. 10 consists of three sub-
structures and has two mismatching interfaces. And the
second model in Fig. 11 consists of three substructures
and has three mismatching interfaces.

Young’s modulus and Possion’s ratio are E=10 and ν =
0.3, respectively. Because the newly constructed blended
nodal shape function in the transient region is a rational
function, the function may not be integrated accurately.
Therefore, we investigate the effect of Gaussian integra-
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Table 1 : Results of patch test for model I according to
Gaussian quadrature order. (Displacement of node A)

u v
Gauss order 1.2 (exact)) -0.24 (exact)
2×2 1.2137729261 -0.25994973813
4×4 1.2004204015 -0.24037344008
8×8 1.2000420922 -0.24006613642
16×16 1.1999945714 -0.23999102101
32×32 1.2000004006 -0.24000052754

Table 2 : Results of patch test for model II according to
Gaussian quadrature order. (Displacement of node B)

u v
Gauss order 0.6 (exact) -0.18 (exact)
2×2 0.61289027104 -0.1816811702
4×4 0.60000209594 -0.1800195193
8×8 0.59999398587 -0.1799923851
16×16 0.59999512494 -0.1799946816
32×32 0.59999515627 -0.1799946985

tion order on the results of the patch tests. As presented
in table 1 and table 2, one can identify that the numerical
solution is getting improved as the integration order is in-
creased. Also it is observed that more than 8×8 points in-
tegration scheme gives quite acceptable solution in prati-
cal sense. Based on the the observation, 8×8 points inte-
gration rule is adopted for other numerical examples.

In Fig. 12, the deformed shapes for patch tests are pre-
sented. The results show that the proposed method passes
the patch tests successfully in practical sense.

4.2 Beam Type Problem

To investigate the convergence of the proposed welding
technique, a cantilevered beam type problem is analyzed.
The model is presented in Fig. 13.

The traction force P =1000 is applied to the righthand
side of the beam, and displacement boundary condition
is enforced on the lefthand side of the beam. The exact
solutions are given as follows.

u =
P

6EI

(
y− h

2

)
[3x(x−2l)+(ν+2)(h−y)y] (41)

v =
P

6EI

[
x2(3l−x)−3ν(x− l)(y− h

2
)2 +(4+5ν)

h2

4
x

]

Table 3 : Error norms for each mesh division
Case Mesh Size

Ω1×Ω2

L2 Norm H1 Norm

1 0.25×0.5 3.40428×10−2 1.59251×10−1

2 0.125 ×0.25 8.98999×10−3 8.19196×10−2

3 0.0625×0.125 2.29263×10−3 4.13342×10−2

4 0.03125×0.0625 5.73131×10−4 2.08571×10−2

(42)

σxx =
P
I
(x−L)(y− h

2
) (43)

σyy = 0 (44)

σxy =
Py
2I

(
h
2
−y) (45)

Young’s modulus and Poisson’s ratio are E=1×107 and
ν = 0.3, respectively. The mismatching interface is lo-
cated at x=5.0, and initial mesh sizes for each substruc-
ture are h1=0.25 and h2=0.5, respectively. The 4 node
bilinear elements are used. For convergence test, meshes
in each sub-domain are refined, and the results are pre-
sented in Fig. 14 and table 3. The convergence rates for
the L2 norm and H1 norm [Atluri, Cho, and Kim (1999)]
are 2 and 1, respectively.

In Fig. 15, typical deformed shape obtained by the cou-
pled analysis of whole model is presented. The figure
clearly shows that the whole model with mismatching in-
terface is deformed just like the compatible model if the
proposed welding technique is utilized for coupled anal-
ysis.

4.3 Infinite Plate with Circular Hole

In this section, the infinite plate with a circular hole is an-
alyzed through the proposed welding technique. As pre-
sented in Fig. 16, the center part around the hole is inde-
pendently modeled. The displacement boundary condi-
tion is enforced on both of the lefthand side and bottom
side of the model because of its symmetry, and the ex-
act traction obtained from the exact solution is applied
to the righthand side and upper side of the finite model.
Young’s modulus and Poisson’s ratio are E=3×107 and
ν = 0.3, respectively.

The exact solutions for this problem are given as follows.

u =
1+ν

E

(
1

1+νr cosθ+ 2
1+ν

a2

r cosθ
+1

2
a2

r cos3θ− 1
2

a4

r3 cos3θ

)
(46)
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Figure 10 : The patch test model I Figure 11 : The patch test model II
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Figure 12 : Deformed shapes obtained from patch
tests

P

 

 

Substructure Substructure

Figure 13 : Beam type model with mismatching in-
terface

Figure 14 : Convergence rates for L2 and H1 error
norms

Figure 15 : Deformed shape obtained by the cou-
pled analysis of whole model
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1Ω

2Ω

a

P

1Ω

2Ω

a

P

Transition Region

Transient region

θ

r

a

Figure 16 : Plate with a circular hole made of two sub-
structures.

Figure 17 : Convergence rates for L2 and H1 error norms.

Figure 18 : Maximum value of σxx near the hole

Table 4 : Error norms for each mesh division
Mesh Divi-
sion L2 Norm H1 Norm

Ω1 Ω2

1 3X6 4X10 8.6871×10−3 1.1947×10−1

2 6X12 8X20 2.2504×10−3 6.3333×10−2

3 12X24 16X40 6.1445×10−4 3.2855×10−2

4 24X48 32X80 1.5187×10−4 1.6505×10−2

v =
1+ν

E

(
−ν
1+νr sinθ− 1−ν

1+ν
a2

r sinθ
+1

2
a2

r sin3θ− 1
2

a4

r3 sin3θ

)
(47)

σxx =
(

1− a2

r2 (
3
2

cos2θ+cos4θ)+
3
2

a4

r4 cos4θ
)

(48)

σyy =
(
−a2

r2 (
1
2

cos2θ−cos4θ)− 3
2

a4

r4 cos4θ
)

(49)

σxy =
(
−a2

r2 (
1
2

sin2θ+ sin4θ)+
3
2

a4

r4 sin4θ
)

(50)

The error norms are presented in table 4, and the con-
vergence rates are plotted in Fig. 17. In table 4, mesh
division (nr× nθ) means that the domain is divided by
nr-elements in the radial direction and nθ-elements in
the circumferential direction, respectively. Similar to the
case of beam type problem, the convergence rates for the
L2 norm and the H1norm are 2 and 1, respectively.

Fig. 18 shows the improvement of maximum stress value
of σxx near the hole according to the mesh refinement. As
the mesh is refined more and more, the maximum stress
value approaches the exact stress value (σmax = 3). From
the numerical results, one can confirm the validity and
convergence of the proposed displacement welding tech-
nique.

4.4 FE Model with Multiple Substructures

In this section, coupled analysis of finite element model
with multiple substructures is carried out. L-shaped
beam type problems with various substructures are an-
alyzed by the proposed displacement welding technique,
and the numerical solutions are compared with that of
conventional finite element method.

In Fig. 19-21, three models are presented. Each model
consists of several substructures of which interfaces are
not matched with each other. For all of the models,
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1Ω 2Ω

P

Figure 19 : L-shaped beam model I composed of
two substructures.

P

1Ω 2Ω

3Ω

Figure 20 : L-shaped beam model II composed of
three substructures.

P

1Ω 2Ω
3Ω

4Ω

Figure 21 : L-shaped beam model III composed of
four substructures.
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Figure 22 : Finite element model with fine meshes
(FE model II)
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Figure 23 : Comparison of deformed shapes for the
Model I and the fine mesh FE model (FEM II).
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Figure 24 : Comparison of deformed shapes for the
Model II and the fine mesh FE model (FEM II).
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Table 5 : The size of mesh and total number of elements
for each model.

Ω1 Ω2 Ω3 Ω4 No. of
Ele-
ments

Model I 0.25 0.125 - - 204
Model II 0.25 0.125 0.25 - 240
Model III 0.25 0.0714 0.125 0.25 516

Table 6 : Comparison of numerical solutions : u and v
are displacements at upper right tip of the model.

u v
FEM I 0.3576 -0.1872
FEM II 0.3659 -0.1897
Model I 0.3636 -0.1886
Model II 0.3621 -0.1883
Model III 0.3648 -0.1886

Young’s modulus E of 3×107 and Poisson’s ratio ν of 0.3
are used. The shear force P=8000 is applied to the upper
side of the model, and displacement boundary condition
is enforced on the lefthand side of the model.

In table 5, the size of mesh and the total number of ele-
ments for each model are presented. Additionally, con-
ventional finite element analyses are carried out for both
of coarse mesh system and fine mesh system, in order
to compare the accuracy of numerical solutions. In case
of coarse mesh (FEM I), the size of mesh is 0.25, and
the total number of element is 144. In case of fine mesh
(FEM II) in Fig. 22, the size of mesh is 0.04, and the total
number of elements is 5625.

In table 6, the tip displacements obtained by each method
are presented, and the deformed shapes of each model are
presented in Fig. 23-25. The results show that numeri-
cal solutions obtained by the proposed welding method
are more accurate compared to the case of coarse mesh
(FEM I), and comparable to the numerical solution ob-
tained by the fine mesh system (FEM II).

It means that the current welding technique makes it pos-
sible to improve the numerical solution greatly by simply
substituting the fine mesh substructure for the region of
stress concentration without considering the nodal com-
patibility between the original finite element model. Ad-
ditionally, the result, that the first case (model I) is more
accurate compared to the second case (model II) even

X

Y

0 1 2 3 4 5

0

1

2

3

4

5

Model III Nodes
FE Model Boundary

Figure 25 : Comparison of deformed shapes for the
Model III and the fine mesh FE model (FEM II)

though the total number of element of the first case is
smaller than that of the second case, shows that an ade-
quate refinement in the region of stress concentration is
essential to obtain enhanced numerical solution.

4.5 Three Dimensional Coupled Analysis

Preliminary example of 3D coupled analysis is worked
out to observe the potential and usefulness of the pro-
posed method in practical design and analysis proce-
dures. As shown in Fig. 26, three independently mod-
eled 3D substructures are considered. The nodal points
between cylindrical and rectangular sub-structures are
not matched with each other, and it is difficult to sat-
isfy the nodal compatibility in the mismatching inter-
face only with the regular shaped elements. Therefore,
considerable efforts may be paid if remeshing procedure
or conventional transition element method is adopted for

Table 7 : Comparison of deflections at the center of
cylindrical substructure.

Proposed FE model
1

FE model
2

A -0.317077 -0.312665 -0.317344

B -0.322968 -0.318474 -0.322442

C -0.322970 -0.318475 -0.322443
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coupled analysis. However, if the proposed method is
used, then the coupled analysis can be carried out with
no remeshing, no interface mesh, and no additional un-
known. The only process required in the proposed dis-
placement welding technique is a simple replacement of
stiffness matrix originated from the transient region re-
gardless of the nodal incompatibility.

In the analysis, fixed boundary condition is applied to
the bottoms of two rectangular substructures, and line
load is applied to the center of cylindrical substructure.
In table 7, the result obtained from the coupled analy-
sis by the proposed method is presented, and compared
with the solutions obtained from the compatible finite el-
ement models in Fig. 27. In Fig. 28, the deformed con-
figuration obtained by coupled analysis through the pro-
posed displacement welding technique is presented. The
result clearly shows a potential and practical usefulness
of the proposed method. It is expected that the proposed
method can be efficiently utilized in complex 3D coupled
analysis if further studies on 3D problems are carried out
as a forthcoming research effort.

5 Conclusions

In this work, a novel displacement welding technique is
proposed for coupled analysis of independently modeled
finite element substructures. In this method, the discon-
tinuity of displacement field at the mismatching inter-
face is eliminated by a new blended function, while pre-
serving the consistency of the displacement field. The
blended function is constructed by combining the mov-
ing least squares nodal shape function and the original
finite element shape function. And the meshless char-
acter of the moving least squares nodal shape function
makes it possible to weld the incompatible displacement
fields easily without any remeshing job or special treat-
ment. Moreover, the proposed welding technique does
not introduce any additional unknown, and preserves the
favorable positive-definiteness and banded structure of
the system stiffness matrix unlike the Lagrange multi-
plier approaches.

Various numerical tests are carried out, and it is observed
that the acceptable results can be obtained by using the
proposed welding technique. Additionally, it is known
that the proposed method is also highly useful in improv-
ing the numerical solution by substituting the fine mesh
substructures for the region of stress concentration with
no regard to the nodal compatibility between the origi-

Figure 26 : Structural system composed of three inde-
pendently modeled substructures with incompatible in-
terfaces. (722 elements, 1332 nodes)
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Figure 27 : Compatible finite element models

Figure 28 : Deformed shape obtained from 3D coupled
analysis of independently modeled substructures with in-
compatible interfaces (scale factor 5)
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nal finite element model. From the results, it is identified
that the proposed technique can be efficiently utilized in
the coupled analysis of independently modeled finite el-
ement substructures.
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