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A Local Strictly Nondecreasing Material Law for Modeling Softening and
Size-Effect: a Discrete Approach

E. Ferretti 1

Abstract: In this study nonlocality is discussed with
regard to the differential and discrete formulations. Here,
nonlocality is found to be a concept attaining not to the
description of the material, but to the governing equa-
tions. This has made it possible to discuss the opportu-
nity of introducing nonlocality in the constitutive equa-
tions, in order to give respectability to strain-softening
damage models. When using the differential formula-
tion, a length scale must be introduced into the mate-
rial description of a strain-softening modeling, particu-
larly when the size-effect is involved. In the opinion
of the Author, this need lies in the basics themselves
of the differential formulation, performing the limit pro-
cess. Actually, with the reduction of global variables
to point (and instant) variables, we loose metrics. Con-
sequently, metrics must be reintroduced a-posteriori, by
means of a length scale, if we want to describe more than
0-dimensional (nonlocal) effects. Here it is shown how
a length scale is intrinsic in Physics. Avoiding the limit
process, that is, using a discrete formulation, we preserve
the length scale of Physics and do not need to recover it.
In this sense, it may be asserted that the discrete formu-
lation is nonlocal in itself and does not require nonlocal
constitutive relationships for modeling nonlocal effects.
Obtaining a nonlocal formulation by using local consti-
tutive laws and discrete operators seems to be possible
and physically appealing. Numerical results are provided
here, showing how a formulation using discrete opera-
tors and a local constitutive law is able to model soften-
ing and size-effect, which is impossible for differential
local approaches. The mathematical and physical well-
posedness and the existence itself of strain-softening are
also discussed.
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1 Introduction

Recently, a new experimental procedure for identifying
the constitutive law in uniaxial compression has been
proposed for brittle heterogeneous materials: the proce-
dure of the effective law [Ferretti (2001); Ferretti and Di
Leo (2003); Ferretti (2004b)]. This procedure produces
evidence against the existence of strain-softening (i.e.
the decline of stress at increasing strain) and identifies
a monotone strictly nondecreasing material law for con-
crete specimens in uniaxial compression (Fig. 2), whose
average stress versus average strain diagrams, σ− ε, are
softening (Fig. 1).

The procedure is based on the idea that strain-softening is
not a real material property, such as argued in several pa-
pers of last century, particularly of the ‘80s [Hadamard
(1903); Hudson et al. (1971); Dresher and Vardoulakis
(1982); Bergan (1983); Hegemier and Read (1983); San-
dler and Wright (1983); Wu and Freud (1983)], and in
a recent discussion on the existence of strain-softening
[Ferretti (2004a)], which analyses the problem from the
analytical and physical points of view. The effective law
is then identified experimentally, being careful to prop-
erly treat the acquired data when the material law is de-
rived from the experimental load-displacement curves,
N − u. Actually, it is a common practice to define the
stress and strain at a point as the average stress σ on
the nominal area, An, and the average strain ε on the
specimen height, L. This corresponds to assuming that
the cross-sectional area does not change until crushing,
which occurs suddenly, with propagation of sub-vertical
macro-cracks (Fig. 3a). However, the actual failure
mechanism of concrete specimens develops internally,
with internal macro-cracks propagating through the spec-
imens from the very beginning of the compression test.
In cylindrical specimens, these cracks isolate a resistant
inner core of bi-conic shape (Fig. 3b), while the outer
part is expelled along the radial direction and splits into
several portions (scheme in Fig. 3a). At the end of the
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Figure 1 : Size effect for the σ−ε diagrams

Figure 2 : Dispersion range of the effective law for vari-
able slenderness and average curve

a) b)

Figure 3 : Concrete specimen at the end of the test, with
scheme of splitting on the middle cross-section (a), and
concrete specimen at the end of the test, after removal of
the outer part (b)

test, no evident crack propagation seems to afflict the bi-
conic inner core (Fig. 3b). The sub-vertical cracks on the
external surface are a secondary effect of the actual fail-
ure mechanism, which gradually modifies the resistant
structure and, consequently, the effective cross-sectional
area, or resistant area Ares, of the specimen.

In Ferretti (2004a, b), the effective stress, σe f f , and the

effective strain, εe f f , have been introduced as constitutive
parameters describing the actual material behavior. Re-
ductions of Ares are evaluated experimentally, by means
of microseismic and energetic damage parameters, and
used for deriving σe f f = N

/
Ares from the experimental

N−u curves. εe f f is derived from the knowledge of σe f f

and the behavior of unloading-reloading (Fig. 2). In con-
clusion, the identification procedure of the effective law
does not consist of a mere scale factor: the material is
separated from the structure scale and the constitutive be-
havior is no more the mirror image of a structural prob-
lem at a lower scale [Ferretti (2004e)]. Thus, the two
curves, N −u (σ−ε) and σe f f −εe f f , are not identical in
shape. In particular, as previously said, σe f f −εe f f turns
out not to be softening even if N −u is.

As can be appreciated in Fig. 2, the effective law is size-
effect insensitive, since the dispersion range for speci-
mens of different slenderness is very narrow. Other in-
teresting results related to the identification procedure of
the effective law concern the Poisson’s ratio, the volu-
metric strain, and the viscosity. By means of strain ac-
quisitions into the presumed resistant structure, it was
found that the Poisson’s ratio is almost independent of
the longitudinal strain [Ferretti (2004c)], concrete never
exhibits dilatancy [Ferretti (2004c)], and viscosity has no
substantial effects on the macroscopic behavior of con-
crete solids [Ferretti (2004d)]. What we know as con-
crete dilatancy [Brace et al. (1966); Di Leo et al. (1979)]
is an apparent effect, due to a technique of data acqui-
sition which inadequately evaluates the influence on the
experimental data of a failure mechanism with splitting
and consequent crack openings [Ferretti (2004c)]. More-
over, since the displacement consists of two parts, one
constitutive and one related to crack openings, the time-
dependent behavior of displacements cannot be related
solely to a material property. Also crack openings play a
role in time-dependent effects. Therefore, displacement
time-dependence is, partly, a structural (and not material)
effect. The identification procedure of the effective law
shows that displacement time-dependence is determined,
mostly, not by material viscosity, but by crack propaga-
tion.

The question we want answer in this paper is whether or
not the effective law is suitable for numerical analysis.
Actually, the effective law is a local material law, with
the stress at a given point uniquely depending on the cur-
rent values, and also the previous history, of deformation
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at that point only, and many years of research have shown
that the classical local continuum concept, leading to
constitutive models falling within the category of simple
nonpolar materials [Noll (1972)], does not seem to be ad-
equate for modeling heterogeneous materials. Local con-
stitutive relationships between stress and strain tensors
are not adequate for describing the mechanical behavior
of solids in the classical differential formulation, since no
material is an ideal continuum, decomposable into a set
of infinitesimal material volumes, each of which can be
described independently. All materials, natural and man-
made, are characterized by microstructural details whose
size ranges over many order of magnitude [Bažant and
Jirásek (2002)]. In constructing a material model, one
must select a certain resolution level below which the
microstructural details are not explicitly visible. Instead
of refining the explicit resolution level, it is often more
effective to use various forms of generalized continuum
formulation, dealing with material that are nonsimple or
polar, or both. A list of enriched continuum models is
provided in Bažant and Jirásek (2002). Among these, a
great variety of nonlocal models was developed.

In the following, attention will be focused on nonlocal
models. Some preliminary ideas on nonlocal elastic-
ity can be traced back to the late 19th century [Duhem
(1893)]. Beginning with Krumhansl (1965), Rogula
(1965), Eringen (1966), Kunin (1966), and Kröner
(1968), the idea was promulgated that heterogeneous
materials should properly be modeled by some type of
nonlocal continuum. Nonlocal continua are continua in
which the stress at a certain point is not a function of the
strain at the same point, but a function of the strain dis-
tribution over a certain representative volume of the ma-
terial centered at that point [Bažant and Chang (1984)].
Thus, nonlocality is tantamount to an abandonment of
the principle of the local action of classical continuum
mechanics [Bažant and Jirásek (2002)].

It will be shown here (Section 2.2) that nonlocal con-
stitutive laws between stress and strain tensors are not
strictly needed to construct a material model. They are
required only if a differential formulation is used, since
differential operators are local. In other words, the effec-
tive law is suitable for modeling nonlocal effects if used
with a formulation which is nonlocal in itself (Section
4.3). A formulation involving nonlocality in itself, the
Cell Method, will be presented in Section 3.

2 The differential formulation: merits and limits

About three centuries ago, Newton made an epoch with
his Philosophiae Naturalis Principia Mathematica, by in-
troducing the notion of limit process, a wonderful con-
quest for mankind. Since then, the elegance of the limit
notion led to every experimental law being provided with
a differential formulation.

With the advent of computers, about fifty years ago, the
differential equations were discretized by means of one
of various discretization methods, since the numerical
solution cannot be achieved in the most general case if
a discrete description of physical laws is not provided
(Figs. 4, 5). The custom of operating in the context of
a differential formulation, from the introduction of cal-
culus forth, both when pursuing an analytical, approxi-
mated or numerical solution, did not leave any room to
the possibilityof attaining a direct discrete formulation of
field equations. Nevertheless, the very need to discretize
the differential equations in order to achieve a numerical
solution gives rise to the question of whether it is possi-
ble to formulate the physical laws directly in an algebraic
manner, through a direct finite formulation.

It was precisely the applicability to a wide range of real
cases, allowed by the numerical analysis, which high-
lighted the limits of the differential formulation, i.e., the
impossibility for the numerical solution to converge to
the actual result for some peculiar cases. The unlimited
trust in the powerful instrument of the limit process led
the researchers not to search the reason for this in the
differential formulation, but somewhere else. Here, we
want to discuss whether some numerical problems may
derive just from the consolidated custom of formulating
the problem in differential form. In particular, our at-
tention will be focused on modeling the size-effect, the
impossibility of which in the context of the classical lo-
cal continuum concept is one of the main reasons leading
to the development of nonlocal approaches.

2.1 Nonlocal approaches

Nonlocal models take into account possible interactions
between the given point and other material points. The-
oretically, the stress at a point can depend on the strain
history in the entire body, but the long range interactions
certainly diminish with increasing distance, and can be
neglected when the distance exceeds a certain limit called
the interaction radius R [Jirásek and Bažant (2001)]. The
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Figure 4 : Discretization as an obligatory step in passing from Physics to its numerical analysis

Figure 5 : How to achieve the solution thought the Cell Method and the differential formulation
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interval, circle or sphere, of radius R is called the domain
of influence.

As discussed in Bažant and Jirásek (2002), physical justi-
fications of the nonlocality well-posedness may be sum-
marized as follows:

1. Homogenization of the heterogeneous microstruc-
ture on a scale sufficiently small for it to be impossi-
ble to consider the smoothed strain field as uniform.

2. Homogenization of regular or statistically regular
lattices or frames.

3. Need to capture the size-effects observed in experi-
ments and in discrete simulations.

4. Impossibility to simulate numerically the observed
distributed cracking with local continuum models.

5. Dependence of the microcrack growth on the aver-
age deformation of a finite volume surrounding the
whole microcrack, and not on the local stress or
strain tensor at the point corresponding to the mi-
crocrack center [Bažant (1991)].

6. Microcrack interaction, leading to either amplifica-
tion of the stress intensity factor or crack shielding
depending on the orientations of the microcracks,
the orientation of the vectors joining the centers, and
the size of the microcracks [Bažant (1994)].

7. Density of geometrically necessary dislocations in
metals, whose effect, after continuum smoothing,
naturally leads to a first-gradient model (metal plas-
ticity).

8. Paradoxical situations or incorrect predictions aris-
ing from a Wiebull-type weakest link theory of qua-
sibrittle structural failure on the assumption that the
failure probability at a point of a material depends
on the continuum stress at the point, rather than on
the average strain from a finite neighborhood of that
point.

Some studies have also been made to justify the charac-
teristic length in the nonlocal approach by microstructure
[Bažant and Pijaudier-Cabot (1989)]. A sophisticated ex-
planation of the need for nonlocal terms in homogenized
elastic models of random composites has been given by
Drugan and Willis (1996) and Luciano and Willis (2001).

Nonlocal approaches were employed in various branches
of physical sciences, e.g. in optimization of slider bear-
ings [Rayleigh (1918)], or in modeling of liquid crys-
tals [Oseen (1933)], radiative transfer [Chandrasekhar
(1950)], electric wave phenomena in the cortex [Hodgkin
(1964)], and solid mechanics [Rogula (1965)]. As far as
the last branch is concerned, solid mechanics, there ex-
ist two types of problem motivated by the need to im-
prove the classical continuum description with the in-
corporation of an internal length parameter: those with
strain-softening and those with no strain-softening at all.
They all share the common need of modeling the size-
effect, which is impossible in the context of the classi-
cal plasticity. Only discrete numerical simulations, such
as the random particle and lattice models [Bažant et
al. (1990); Schlangen and van Mier (1992); Schlangen
(1993); Jirásek and Bažant (1995); van Mier (1997)],
have succeeded in bringing to light the existence of a
nonstatistical size-effect.

Earlier studies on nonlocal elasticity [Duhem (1893);
Krumhansl (1965); Rogula (1965); Eringen (1966);
Kunin (1966); Kröner (1968)] were addressed to prob-
lems in which the size-effect is not caused by material
softening. For the most part, these studies were moti-
vated by homogenization of the atomic theory of Bravais.
They aimed at a better description of phenomena taking
place in crystals on a scale comparable to the range of
interatomic forces [Jirásek and Rolshoven (2002)]. They
showed that nonlocal continuum models approximately
reproduce the dispersion of short elastic waves and im-
prove the description of interactions between crystal de-
fects such as vacancies, interstitial atoms and disloca-
tions.

The term “nonlocal” has in the past been used with two
meanings, one narrow and one broad. In the narrow
sense, it refers strictly to the models with an averaging
integral. In the broad sense, it refers to all the constitu-
tive models that involve a characteristic length (material
length), which also include the gradient models [Bažant
and Jirásek (2002)]. Generally speaking, integral-type
nonlocal models replace one or more state variables by
their nonlocal counterparts, obtained by weighted aver-
aging over a spatial neighborhood of each point under
consideration [Jirásek and Bažant (2001)]. This leads
to an abandonment of the principle of local action, as
previously stated. In gradient-type nonlocal models, the
principle of local action is preserved and the field in the
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immediate vicinity of the point is taken into account by
enriching the local constitutive relations with the first or
higher gradients of some state variables or thermody-
namic forces. A length scale is incorporated into the ma-
terial description of both the integral- and gradient-type
nonlocal models.

2.2 Where to include the length scale

According to Rogula’s mathematical definition of nonlo-
cality in the narrow sense, an operator A is called local
if, whenever u(x) = v(x) for all x in a neighborhood of
the point x0, then Au(x0) = Av(x0) [Rogula (1982)]. As
pointed out in Bažant and Jirásek (2002), the differential
operators satisfy this condition, because the derivatives
of an arbitrary order do not change if the differentiated
functions change only outside a small neighborhood of
the point at which the derivatives are taken. On the basis
of this statement, the opportunity of including a length
scale in the constitutive relationships is discussed here:
in the opinion of the Author of the present paper, the lo-
cality of the differential operators is the main reason why
nonlocal material models must be introduced in solid me-
chanics, in order to satisfy the nonlocality of physical
phenomena. In other words, if the differential operators
are local, any formulation using differential operators is
local. Thus, the differential formulation is not adequate
in itself for describing nonlocal effects.

The reason for this non-adequateness lies in the basics
themselves of the differential formulation: performing
the limit process. Actually, the differential formulation
requires field functions (Fig. 5), which have to depend
on point position, x, y, z, and instants, t. Only on this
condition is it possible to find the derivatives and, then,
to apply the differential formulation.

If the field functions are not directly described in terms
of point position and instants, they are obtained from
global variables by performing densities and rates (Fig.
5). Global variables are domain variables, depending
on point position, x, y, z, and instants, t, but also on
line extensions, L, areas, S, volumes, V , and time in-
tervals, ∆t. By performing a limit analysis of the mean
global variables, we obtain a set of non-metric equations,
with no reference to measures of length, area, and vol-
ume. Also the information on time-intervals dependence
is lost. Thus, the multi-dimensional geometrical content
of the global variables vanishes and we loose the pos-
sibility of describing more than 0-dimensional effects,

that is, the nonlocal effects. In other words, performing
the limit process acts as a projection from 3D Physics
into 0D Physics. A description of phenomena living in
more-than-zero-dimensional Physics is not possible in
0D Physics if a length scale is not supplied.

It is now a commonly accepted fact that the solution
of a problem can be governed by the ratio of the phys-
ical dimensions of a structure to an intrinsic material
length. Since this dependence on the size-effect cannot
be resolved by a differential formulation, due to having
lost the geometrical information, metrics must be reintro-
duced a-posteriori, in the discretization stage (Fig. 5), if
we want to model the nonlocal effects. We are thus faced
with two processes, one the inverse of the other, with no
guarantee of them being perfectly dual as stands the ge-
ometrical content of the variables we are dealing with.
The material lengths that are present in various forms of
generalized continuum theories arise from the homoge-
nization procedure and have their origin in the charac-
teristics of the heterogeneous microstructure that are not
explicitly resolved by the differential formulation. Non-
local models have, as a matter of fact, two parameters
with the dimension of length, one of them characterizing
the length and the other the width of the process zone
[Bažant and Jirásek (2002)].

One may ask, now, where the length scale must be rein-
troduced. In nonlocal approaches, a length scale is incor-
porated in constitutive laws, but there is no evidence that
this choice is the only, or the physically most appealing
one. In order to answer the question about where to rein-
troduce the length scale, let us examine the physical vari-
ables and their classification. In accordance with Hallen
(1962), Penfield and Haus (1967), and Tonti (1972), all
physical variables belong to one of the following three
classes:

1. Configuration variables, describing the field config-
uration (displacements for solid mechanics, spatial
velocity for fluidodynamics, electric potential for
electrostatics, temperature for thermal conduction,
etc.). All variables linked to configuration variables
by operations of sum, integration, difference, divi-
sion by a length, an area, a volume, and an interval,
limit process, time and space derivatives are config-
uration variables.

2. Source variables, describing the field sources
(forces for solid mechanics and fluidodynamics,
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masses for geodesy, electric charges for electro-
statics, electric currents for magnetostatics, heat
sources for thermal conduction, etc.). All variables
linked to source variables by operations of sum,
integration, difference, product and division by a
length, an area, a volume, and an interval, time and
space derivatives are source variables.

3. Energetic variables, resulting from the product of a
configuration variable for a source variable.

The equations relating configuration variables to each
other and source variables to each other are structure
equations, while those relating configuration to source
variables are constitutive equations.

Now, each physical phenomenon occurs in space, and
space has a multi-dimensional geometrical structure. If
the physical variables are able to describe phenomena in
space, such as they actually are, then the physical vari-
ables themselves have a multi-dimensional geometrical
structure. Consequently, the variables are implicitly as-
sociated with geometrical objects provided with an ex-
tension (points, but also lines, areas and volumes). As
an example, a flux is associated with a surface, a volt-
age with a line, and a mass content with a volume (Fig.
6). Displacements in solid mechanics, the kinetic po-
tential in flow mechanics, the gauge function of elec-
tromagnetism, and the iconal function in optics are ex-
amples of variables associated with points in space (and
time), without being densities or rates. In order to attain a
proper description of Physics, this strict relationship be-
tween variables and geometrical structure of space must
be preserved in the solving equations. As discussed pre-
viously, this preservation is not guaranteed by perform-
ing the limit process. Thus, reduction of global variables
to point and instant variables is not physically appealing.

As far as Solid Mechanics is concerned, volume forces,
which are source variables, are associated with a length
scale in dimension 3, since their geometrical referent is
a volume. Analogously, surface forces, which are source
variables, have a two-dimensional geometrical referent
(the surface); strains, which are configuration variables,
have a one-dimensional geometrical referent (the line);
and displacements, which are configuration variables,
have a zero-dimensional geometrical referent (the point).
In conclusion, it seems that dimensional scales and non-
local effects are associated with the variables directly,
and not with the equations relating variables by each

other. Nonlocality seems to be a property of the govern-
ing equations, and not of the constitutive laws. In other
words, Physics has an intrinsic length scale, in the sense
that nonlocality attains to the physical phenomenon in
its complex, and not necessarily to some type of mate-
rial model. Consequently, if the problem is studied in the
context of a formulation not preserving nonlocality, the
differential formulation, nonlocality must be recovered
by means of some type of enriched continuum models.
Otherwise, if nonlocality were preserved by the formula-
tion, there would be no longer any need to employ non-
local material models.

Since performing the limit process is the main cause of
nonlocality non-preservation in the differential formula-
tion, such as previously discussed, we can then expect
that a discrete formulation, which avoids the limit pro-
cess, could be nonlocal in itself. Actually, if the differen-
tial formulation is abandoned in favor of a discrete one,
the limit process is no longer performed and we can di-
rectly operate in 3D Physics. In this case, the length scale
is naturally associated with global variables and nonlocal
effects are intrinsically taken into account. As a proof
of what has been asserted, one should consider that the
theories of nonlocal elasticity advanced by Eringen and
Edelen in the early 1970s [Edelen et al. (1971); Eringen
(1972); Eringen and Edelen (1972)] attributed a nonlo-
cal character to body forces, mass, entropy, and internal
energy. These are all global variables whose geometri-
cal referent is a volume. It is thus clear that they, like all
variables whose geometrical referent is more than zero-
dimensional, cannot be properly described in a context in
which all variables are related to points.

Moreover, it is worth noting that, in the theories of non-
local elasticity developed by Eringen and Edelen, nonlo-
cality was a property of the elastic problem in its com-
plex, and not only of the constitutive relationships. Thus,
in these theories of nonlocality we can already find the
idea that nonlocality is a property of the governing equa-
tions. Nevertheless, this idea was not developed any
more, since the theories of nonlocal elasticity were too
complicated to be calibrated and experimentally verified,
let alone to be applied to any real problems [Bažant and
Jirásek (2002)]. Treating only the stress-strain relation-
ships as nonlocal, while the equilibrium and kinematic
equations and the corresponding boundary conditions re-
tain their standard form, was needed later [Eringen and
Kim (1974); Eringen et al. (1977)], in order to provide
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Physical theory Global variable      Referent geometrical object 
 
Thermal conduction Temperature    P 
Thermal conduction Electrical potential   P 
Solid mechanics  Displacement    P 
Fluid mechanics  Velocity      P 
Electromagnetism  Voltage      L 
Solid mechanics  Stretching     L 
Acoustics   Velocity circulation   L 
Electromagnetism Charge flow     S 
Fluid dynamics  Discharge     S 
Thermal conduction  Heat      S 
Solid mechanics  Surface force    S 
Mechanics   Mass content    V 

Figure 6 : Association between physical variables and points (P), lines (L), surfaces (S), and volumes (V) for several
physical theories

a practical formulation of these early theories. Conse-
quently, incorporating the length scale in the constitutive
relationships only is a practical simplification of a more
general theory and has no evident justifications from the
physical point of view.

In conclusion, reintroducing or preserving nonlocality in
governing equations seems to be physically more correct
than reintroducing nonlocality in constitutive equations.
When speaking of reintroduction, we deal with a differ-
ential formulation, while, when speaking of preservation,
we deal with a discrete formulation. The difference is not
negligible, since, in order to reintroduce a length scale, it
is necessary to develop an adequate approach, the nonlo-
cal approach, while, in order to preserve the length scale,
it is sufficient to avoid the limit process, using discrete
approaches, and a nonlocal formulation is automatically
obtained. Obtaining a nonlocal formulation by using lo-
cal constitutive laws and discrete operators seems thus
to be possible, as well as physically appealing. If this
were the case, the new nonlocal formulation would be
advantageous from the numerical point of view, since the
numerical solution is achieved faster by using discrete
rather than differential operators.

The use of a discrete formulation instead of a differential
one also has a justification based on the microstructure of
matter. When performing densities and rates, the inten-
tion is to formulate the field laws in an exact form. Nev-
ertheless, the density finding process is carried out with-
out considering whether a physical significance exists for

the limit one is performing. In fact, since matter is dis-
crete on a molecular scale, performing the limit process
of the mean densities with the extent of the geometrical
object going to zero makes no sense. Moreover, the dif-
ferential formulation can only be solved for very simple
geometries and particular boundary conditions. To obtain
a solution in the general case, the differential equations
must be expressed in a discrete form (for any differen-
tial method, Fig. 5). Consequently, the final solution is
an approximation in all cases. It therefore seems unnec-
essary to use exact equations if, to solve them, we must
introduce some kind of approximation.

3 The discrete formulation: the Cell Method

3.1 Theoretical basics of the Cell Method

In a discrete nonlocal formulation, all operators must be
discrete and the limit process must be avoided at each
level of the formulation. The direct or physical approach
[Huebner (1975); Livesley (1983); Fenner (1996)], used
at the beginning of the finite element method (FEM), is
not suitable to this aim, since it starts from point-wise
conservation equations and the discrete formulation is
induced by the differential formulation. Even the Fi-
nite Volume Method (FVM) and the Finite Differences
Method (FDM) are based on a differential formulation.
The Cell Method (CM) is a new numerical method for
solving field equations [Tonti (2001a)], whose aim is
to provide a direct finite formulation of field equations,
without requiring a differential formulation (Fig. 5).
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The physical laws are formulated directly in an algebraic
manner, through a direct finite formulation which is very
simple, strictly related to experimental facts, and easy to
employ in numerical solutions of field problems, as many
years of research in this field have shown [Tonti (1995);
Mattiussi (1997); Nappi et al. (1997); Cosmi (2000);
Mattiussi (2000); Nappi et al. (2000); Tonti (2000);
Cosmi (2001); Cosmi and Di Marino (2001); Ferretti
(2001); Marrone (2001a); Marrone (2001b); Mattiussi
(2001); Nappi and Tin-Loi (2001); Tonti (2001a); Tonti
(2001b); Tonti (2001c); Tonti (2001d); Zovatto (2001);
Bellina et al. (2002); Ferretti et al. (2002a); Ferretti et
al. (2002b); Marrone et al. (2002); Tonti (2002); Fer-
retti (2003a); Ferretti and Di Leo (2003); Ferretti et al.
(2003); Ferretti (2004f); Ferretti (2004g)]. Some basic
concepts of the CM are very similar to those of the di-
rect or physical approach. The CM is also similar to the
vertex-based scheme of the FVM and can be considered
as a generalization of the FDM [Ferretti (2003)]. Nev-
ertheless, the similarity is apparent, since the CM is not
based on a differential formulation and can be used for
building a discrete nonlocal formulation.

The theoretical basics of the CM lead to a unified de-
scription of Physics, by highlighting the geometrical, al-
gebraic and analytical structure which is common to dif-
ferent physical theories.

The CM uses cell complexes (Fig. 7), which are not
simply the result of a domain discretization, needed by
the numerical analysis. They substitute the coordinate
systems when we need to describe not only points, but
also line, surfaces, and volumes. 0- and more than 0-
dimensional quantities are described directly, avoiding
the limit process and the subsequent discretization, by
associating them with nodes, edges, surfaces, and vol-
umes of the cell complexes. Consequently, the govern-
ing equations are expressed in the discrete form directly.
In conclusion, we could say that cell complexes repre-
sent the generalization of the coordinate systems, when
the geometrical counterpart of physical variables is taken
into account.

The geometrical structure of space is very rich with the
CM. Choose a set of points in space, said the set of primal
nodes P (black points in Fig. 7). The lines connecting the
primal nodes (black lines in Fig. 7) define a spatial mesh,
said the primal cell complex. Edges areas and volumes
of the primal cell complex are, respectively, the primal
sides L, surfaces S, and volumes V. These geometrical

Figure 7 : Correspondence between objects of the primal
and dual cell complexes in 3D space

objects can be endowed with orientation. Whenever the
orientation of a space element lies on the element itself,
an inner orientation is established, while, whenever the
orientation of a space element depends on the space in
which the element is embedded, an outer orientation is
established (Fig. 8). In Fig. 7, an inner orientation has
been defined for the elements in dimension 0, 1, 2 and 3
of the primal cell complex.

Now, consider the surfaces, locus of the points which are
equidistant from each pair of primal nodes (gray surfaces
in Fig. 7). These further surfaces can be used for building
a second spatial mesh (Fig. 7), said the dual cell complex.
Points, edges, areas, and volumes of the dual cell com-
plex are, respectively, the dual nodes P̃, sides L̃, surfaces
S̃, and volumes Ṽ. Once defined an inner orientation for
the primal cell complex, the dual cell complex turns out
to be provided with an outer orientation (Fig. 7). The re-
lationship between cell complexes, primal and dual, and
type of orientation, inner and outer, was discovered by
Veblen and Whitehead (1932), and introduced in Physics
by Schouten (1951) and van Dantzing (1956).

Each geometrical object of the dual cell complex can be
put in dual correspondence with one geometric object of
the primal cell complex, staggered with respect to the for-
mer one (Fig. 7):

• each node of the dual complex is contained in one
cell of the primal complex;

• each edge of the dual complex intersects a face of
the primal complex;

• each face of the dual complex is intersected by one
edge of the primal complex;

• each volume of the dual complex contains one node
of the primal complex.
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Figure 8 : Inner and outer orientations in three-dimensional space [Tonti (2001a)]

Following the practice of algebraic topology, the CM
considers the nodes, edges, faces, and volumes as cells of
dimension zero, one, two, and three, respectively. They
are also denoted as 0-cells, 1-cells, 2-cells, and 3-cells.
With this position, in a n-dimensional space the dual cor-
respondence is established between primal (dual) cells of
dimension p and dual (primal) cells of dimension n− p.

The elements of both cell complexes turn out to be
strictly associated with variables (Fig. 9). In effect, the
variables of each physical theory are not related to the
physical objects of a single complex. In particular, source
variables are always associated with the elements of the
dual complex only and configuration variables are always
associated with the elements of the primal complex only.
Incidentally, it is worth noting that not only variables, but
also their classification can be put in relationship with ge-
ometry: since the objects of the primal cell complex are
natural geometrical referents of configuration variables,
while the objects of the dual cell complex are natural ge-
ometrical referents of source variables, by providing the
primal cell complex with an inner orientation, the config-
uration variables of any field theory are associated with
cells endowed with an inner orientation, while the source
variables are associated with cells endowed with an outer
orientation (Fig. 9). This further states the strong rela-
tionship existing between geometry and Physics.

In conclusion, a strict correspondence between variables
and geometry exists, never highlighted before the CM.
Due to this correspondence, a proper mathematical de-
scription of any physical phenomenon cannot leave out
of consideration the geometrical structure of the phe-
nomenon itself. The coordinate systems of the differ-
ential formulation are not sufficient for describing the
properties of orientation and dual correspondence be-
tween cells of dimension 1, 2, . . . n in a n-dimensional
space, since they are only adequate to describe points
(in space and time). On the contrary, a system of dual
cells seems to be quite adequate to preserve the geomet-
ric structure of all involved variables. The association of
physical variables to elements of a cell complex and its
dual was introduced by Okada and Onodera (1951) and
Branin (1966). In the CM, the strong coupling between
physical variables and oriented space elements becomes
the key to give a direct discrete formulation to physical
laws of fields. In the opinion of the Author, this coupling
can be considered as a further justification of the non-
locality physical well-posedness, since speaking of geo-
metric content and nonlocality is substantially the same
thing.

In a two-dimensional domain with triangular-shaped pri-
mal cells, the dual cells can be obtained by joining the
circumcenters, the barycenters, or the incenters of primal
cells. Inner and outer orientations for primal and dual
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Figure 9 : Association between physical variables and cell complexes [Tonti (2001a)]

cell complexes in a two-dimensional domain are shown
in Fig. 10, for the case of triangular-shaped primal cells
and circumcentric dual cells. An example of barycentric
dual cells for triangular-shaped primal cells is provided
in Fig. 13. Time elements and their duals can be built
analogously to the primal and dual cell complexes (Fig.
11).

In order to preserve the geometrical content of cells, the
primal mesh is provided with a thickness also in two-
dimensional domains, which is a unit thickness (Fig. 12).
Moreover, since each dual volume must contain one node

of the primal complex, in two-dimensional domains pri-
mal and dual cell complexes turn out to be shifted along
the body thickness (Fig. 12). The use of two cell com-
plexes shifted in thickness somewhat resembles the use
of imbricate elements in FEM analysis. Imbricate el-
ements represent the first application of nonlocal con-
tinuum to regularization of material instability problems
for strain-softening materials [Bažant et al. (1984); Be-
lytschko et al. (1986)]. They overlap like tiles on a roof
(Fig. 13). In the FEM, imbrication is a way to provide
the continuum with nonlocality properties. In the CM,
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Primal cell complex   
Dual cell complex 

Figure 10 : Inner and outer orientation in 2D cell
complexes with circocentric dual cells
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Figure 12 : Staggering in 2D cell complexes with
barycentric dual cells

Figure 13 : Two examples of imbrication (overlap-
ping) of finite elements [Bažant et al. (1984)]

shifting and overlapping only have a meaning linked to
the classification of physical variables into configuration
and source variables. The equilibrium is then enforced
on dual polygons, such as in the vertex-based scheme of
the FVM [Mavripilis (1995)], and they never overlap in
the classical CM.

It is worth noting that the cumbersome double transfor-
mation from finite to differential and then back to fi-
nite, typical of the differential formulation (Fig. 5, Sec-
tion 2.2), is avoided by starting directly from physical
laws in finite form, such as the CM does. The advan-
tage, besides being numerical, is also of physical well-
posedness, since the correspondence between variables,
which are global variables, and relative geometrical ref-
erent is never lost with the CM. In conclusion, the dis-
crete formulation is more appealing than the differential
formulation from the physical point of view.

The CM is also more appealing as far as the aforemen-
tioned discussion on the discrete nature of matter is con-
cerned. Actually, since the use of point functions is no

longer necessary because of leaving the differential for-
mulation, the CM deals with (discrete) equations that are
not in conflict with the discrete nature of matter.

3.2 Linear interpolation in two-dimensional domains

The linear interpolation of the CM has been shown in
Ferretti (2003a). Here, only the basics of the interpola-
tion are provided.

As discussed previously, in the CM the displacement vec-
tors ui, u j, uk are associated with the nodes Pi, P j, Pk

of the primal cell Ai jk, while the interface forces, Qnm

(n = i, j,k; m = j,k, i), and the volume forces, Fn, are as-
sociated with the dual edges intersecting the primal edge
PnPm and the dual cell surrounding the primal node Pk,
respectively (Fig. 15).

The linear interpolation of the CM is obtained by em-
ploying affine interpolation functions of the displacement
field in every primal cell. The dimensions of primal cells
are chosen so that the assumption of uniform strain is ac-
curate. A homogeneous state of strain is associated with
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Figure 14 : Primal nodes (a), displacement field (b), and
displacement components (c) assuming an affine field

Figure 15 : Property of the stress field

the complex of primal cells, represented by the affine
transformation related to the displacement components
of the primal nodes (Fig. 14).

The affine transformation can be expressed in the form:

hnm = Hi jkLnm, (n = i, j,k;m = j,k, i). (1)

In Eq. 1, Hi jk, displacement gradient of Ai jk, is a dou-
ble tensor which, in general, is not symmetric, and hnm

is the relative displacement associated with the oriented
side Lnm = (Pm −Pn) = [∆xnm∆ynm]T . The determinant
of the transformation is twice the magnitude of the ori-
ented area of Ai jk, with its sign (corkscrew rule):

∆i jk = detHi jk =

∣∣∣∣∣∣
xi yi 1
x j y j 1
xk yk 1

∣∣∣∣∣∣ = 2Ai jk. (2)

The components of the infinitesimal strain tensor ε =
[εx εy 2εxy]

T can be evaluated as:

εεε = Bu, (3)

where,

u =
[

wk vk wi vi wj v j
]T

, (4)

B =
1

∆i jk

⎡
⎣ ∆y ji 0 ∆yk j 0 ∆yik 0

0 ∆xi j 0 ∆x jk 0 ∆xki

∆xi j ∆y ji ∆x jk ∆yk j ∆xki ∆yik

⎤
⎦ . (5)

The equilibrium equations, written for the dual cells, take
the form:

Qk j = −Q jk, (6)

∑ j
Qk j +Fk = 0, (7)

∑ j

(
P jk −O

)×Qk j +(Gk −O)×Fk = 0. (8)

It is then possible to express each interface force as a
function of the two stress tensors associated with the
junctions of the corresponding interface:

Qk j = σσσ jhkR
(
P jk −P jhk

)−σσσi jkR
(
P jk −Pi jk

)
. (9)

R represents a counter-clockwise rotation by 90 ˚ :

R =
[

0 −1
1 0

]
. (10)

For each Ak dual cell, the following property follows
from assuming a uniform stress field (Fig. 15):

σσσi jkR
(
P jk −Pi jk

)−σσσi jkR
(
Pik −Pi jk

)
= σσσi jkR

(
P jk −Pik

)
=

1
2

σσσi jkR(P j −Pi) (11)

By means of Eq. 11, Eq. 7 can then be written as:

1
2 ∑ j

σσσi jkR(P j −Pi) = Fk. (12)

For cells located on the boundary, Eq. 7 takes the form:

∑ j
Qk j +Qk +Fk = 0. (13)

Qk is the interface force to the boundary.

These equations are implemented in the same manner as
for FEM:

• a compatibility equation: Eq. 3;
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• the constitutive law:

σσσ = Dεεε. (14)

• an indefinite equilibrium equation: by means of
Eqs. 9, 14, and 3, the interface force can be ex-
pressed as a function of displacement:

S = RL, (15)

N =
[

Sx 0 Sy

0 Sy Sx

]
, (16)

Q = Nσσσ = NDεεε = (NDB)u. (17)

By using Eq. 7, a linear system of equations can be writ-
ten for each dual cell, in the form:

F = KU. (18)

F and U are the force and displacement vectors respec-
tively, and K is analogous to the stiffness matrix in the
FEM, which is symmetric, and defined as positive for
properly constrained systems. To assemble K, the con-
tribution of each primal cell is computed, taking into ac-
count the relationship between the local and global node
numbering schemes (as in the FEM):

u = CU. (19)

C is a Boolean matrix describing the location of the ver-
tices.

3.3 Quadratic interpolation in two-dimensional do-
mains

One can obtain a quadratic interpolation of displace-
ments inside each primal triangle c of nodes h, i, and j, by
choosing the vertex h as the origin of affine coordinates.
Dispose the axes of the affine coordinates, ξ and η, along
the sides hi and hj, respectively (Fig. 16). Then, assume
the segments hi and hj as unit along the corresponding
axis.

Now, denote the three midpoints of sides hi, ij, and hj, as
p, q, and r, respectively (Fig. 16). On the assumption of
knowing the displacements at nodes h, i, j, p, q, and r, a
quadratic interpolation of the displacements at each node

Figure 16 : Relationships between global Cartesian and
local affine coordinates [Tonti (2001a)]

of the triangle is given by (affine coordinates):

(
uc (ξ,η) vc (ξ,η)

)

=
(

1 ξ η ξ2 ξη η2
)
⎡
⎢⎢⎢⎢⎢⎢⎣

ah bh

ai bi

a j b j

ap bp

aq bq

ar br

⎤
⎥⎥⎥⎥⎥⎥⎦

c

. (20)

The coefficients ak and bk must be determined by impos-
ing to Eq. 20 to be satisfied at nodes h, i, j, p, q, and r.
By considering the affine coordinates of nodes h, i, j, p,
q, and r, we obtain:

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1 0 1 0 0
1 0 1 0 0 1
1 1

/
2 0 1

/
4 0 0

1 1
/

2 1
/

2 1
/

4 1
/

4 1
/

4
1 0 1

/
2 0 0 1

/
4

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ah bh

ai bi

a j b j

ap bp

aq bq

ar br

⎤
⎥⎥⎥⎥⎥⎥⎦

c

=

⎡
⎢⎢⎢⎢⎢⎢⎣

uh vh

ui vi

u j v j

up vp

uq vq

ur vr

⎤
⎥⎥⎥⎥⎥⎥⎦

c

. (21)

Said [C] the reciprocal of the matrix of the nodal affine
coordinates, it is possible to express the unknown coeffi-
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cients in function of the nodal displacements:

[
ak bk

]
c = [C]

[
uk vk

]
c . (22)

With the use of affine coordinates, the matrix [C] is the
same in each triangle. Finally, the displacement at each
point of the triangle in function of its nodal values is
given by Eq. 20 with the use of Eq. 22:

(
uc (ξ,η) vc (ξ,η)

)
=

(
1 ξ η ξ2 ξη η2

)
[C]

[
uk vk

]
c
. (23)

The operations of making gradients, expressing the con-
stitutive equation, and deriving the fundamental equation
follow as shown for the linear interpolation. Contrarily
to what happens with the FEM, the stiffness matrix with
quadratic interpolation does not turn out to be symmetric.

Figure 17 : Construction of the influence polygons and
orientation of their edges [Tonti (2001a)]

Figure 18 : Primal (thin line) and dual (thick line) mesh
for a plane domain [Tonti (2001a)]

As far as the convergence rate is concerned, it has been
shown [Tonti (2001a)] that it depends on the choice of
dual polygons. The most convenient choice, giving a
convergence rate equal to four [Cosmi (2000)], is the use
of Gauss points for building the dual polygons around
nodes h, i, and j (Fig. 17). Said L the length of the given
triangle side, the distance of the two Gauss points from
the ends of that side is equal to:

g =
1
2

(
1− 1√

3

)
L. (24)

As far as the dual polygons for nodes p, q, and r are con-
cerned, they are built using Gauss points, side midpoints
of the dual polygon around nodes h, i, and j, and the tri-
angle barycentre, as shown in Fig. 17. The arising mesh
for a plane domain is shown in Fig. 18.

Attaining a fourth-order convergence with the quadratic
interpolation of the CM is all the more relevant as it was
not possible to attain convergence greater than second or-
der for any of the methods which are similar to the CM,
such as the direct or physical approach of the FEM, the
vertex-based scheme of the FVM, and the FDM.

3.4 A meshfree approach for the CM

A meshfree approach of the CM is due to Zovatto (2001).
Meshfree and meshless approaches are very useful in
those problems of fracture mechanics in which the crack
is simulated as a discontinuity of the displacement field.
Actually, crack geometry updating and remeshing on the
whole domain are very expensive from the computational
point of view. A critical analysis of the state of the art
on meshfree and meshless techniques is provided in Be-
lytschko et al. (1996).

When applied to the CM, the meshfree technique leads to
the generation of one dual polygon on each node of the
primal complex, independently from the shape of other
dual polygons. At the generic node i of the primal com-
plex, the local generation of the dual polygon directly fol-
lows from the local generation of the primal mesh around
i. Primal nodes defining the local primal mesh around
i are called boundary nodes. The number of boundary
nodes, n, is the same for each primal node internal to
the domain. A different number of boundary nodes can
be chosen for the nodes internal to the domain and the
nodes on the contour (Fig. 19). For geometrical rea-
sons of mesh distortion, n can vary from four to eight.
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Figure 19 : Generation of local dual polygons for nodes
on the domain contour (d), and for nodes internal to the
domain and primal local meshes with four (a), eight (b),
and six (c) boundary nodes [Zovatto (2001)]

P
Q

direction 
of refining

Figure 20 : The nearest n nodes for nodes P and Q in a
mesh with local refining (n = 6)

Once fixed n, the algorithm of local mesh generation at
the generic node i proceeds as follows:

1. the n nodes lying nearest to i are chosen as boundary
nodes;

2. boundary nodes are ordered in anticlockwise sense,
starting from the node for which the segment col-
lecting i with the node itself forms the minor angle
with the axis of the abscises;

3. the local primal mesh is generated by the segments
joining i with the n boundary nodes, and the bound-
ary nodes to each other in anticlockwise sense.

With this algorithm, the local primal mesh turn out to
be triangular shaped (Fig. 19). The local dual polygon

is then generated by joining the barycenters of the local
primal mesh in an anticlockwise sense (Fig. 19).

The analysis presented in the following of this paragraph
belongs to a study on the meshfree CM, recently devel-
oped by the Author of the present paper. It was seen that
attention must be paid in assuring that the union of all
dual polygons is equal to the domain. Actually, portions
of the domain not covered by dual polygons would be
treated by the CM as local imperfections. Moreover, lo-
cal dual polygons may overlap somewhere. Due to the
automatic generation of dual polygons when the number
of boundary nodes is fixed a-priori, the degree of over-
lapping depends on the distribution of primal nodes. If
the distance between primal nodes is almost constant, the
degree of overlapping is the same for each primal node,
while, in case of a primal mesh with local refining or
coarsening, the degree of overlapping may change from
node to node. Since overlapping increases the nonlocal-
ity degree at the given node i, this second case results
in changing the nonlocality degree from node to node. In
order to make sure that the nonlocality degree is the same
at each node, n must be changed node by node.

In the case of n fixed and primal mesh with local refin-
ing or coarsening, a further case may occur: if P belongs
to the n nodes nearest to Q, Q does not necessarily be-
long to the n nodes nearest to P (Fig. 20). Thus, the
stiffness matrix is not symmetric if primal nodes are not
distributed in a sufficiently regular manner. This results
in a non-biunique interaction between P and Q.

The fact that the interaction between two material nodes
may not be biunique raises some doubts from the theoret-
ical point of view. Even in this further case, the problem
may be avoided by adjusting n at each node. For exam-
ple, n may represent the number of nodes internal to a
circle of given radius, centered on the node i. An exam-
ple of n adjusting is provided in Fig. 21, for a plate with
internal crack. A high degree of refining is imposed both
on the crack and on an internal contour. In Fig. 21, all
primal and dual meshes are plotted, in order to show the
biuniqueness of the relationship between nodes. Due to
the biuniqueness, with this modified algorithm the stiff-
ness matrix is symmetric.

The problem of nonsymmetric stiffness matrix is shared
by many nonlocal models, such as Eringen’s nonlo-
cal theories of plasticity in the strain [Eringen (1981)]
and stress [Eringen (1983)] space, the nonlocal plastic-
ity model of Bažant and Lin [Bažant and Lin (1988b)],
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the plasticity with nonlocal softening variable [Planas et
al. (1993), Hu and Wittmann (2000)], and the combina-
tion of nonlocal and local softening variables [Vermeer
and Brinkgreve (1994); Planas et al. (1996); Strömberg
and Ristinmaa (1996)]. The causes of nonsymmetry in
nonlocal damage models were explained by Bažant and
Pijaudier-Cabot (1988). They lie in the nonsymmetric
character of interaction weights. The studies on the struc-
ture of the nonlocal matrix [Huerta and Pijaudier-Cabot
(1994)] and on numerical implementation and conver-
gence rates [Jirásek and Patzák (2002)] did not show any
convergence problem attributed to nonsymmetry. The
same can be asserted for the nonsymmetric matrix of the
meshfree CM [Zovatto (2001)].

Finally, it is worth noting that no problem arises when
the boundary conditions of Dirichlet or Neuman are im-
posed in the implementation of the meshfree CM [Zo-
vatto (2001)], while this is not the case in the implemen-
tation of the meshfree FEM. A proposal for solving the
problem of the boundary conditions in the meshfree FEM
can be found in Zhu and Atluri (1998).

As pointed out by Chen et al. (2000), a meshfree ap-
proximation in FEM possess intrinsic nonlocal proper-
ties, since the approximation functions are not locally
constructed. In FEM simulations, nonlocal properties of
meshfree approximations are exploited to incorporate an
intrinsic length scale, regularizing problems with mate-
rial instabilities. In the CM, a meshfree approach does
not directly involve increasing the CM intrinsic degree
of nonlocality. Actually, only the procedure of mesh
building has changed, and not the approximations used
to achieve the solution. This happens since the CM is
very ductile and can be easily adapted to a meshfree for-
mulation without having to change the structure of the
method. Nevertheless, an increase in the degree of non-
locality can occur if the local mesh building leads to local
primal meshes which overlap.

In order to clarify last statement, let us classify primal
nodes in function of their degree of relationship with the
given node (Fig. 22). Nodes belonging to the local pri-
mal mesh at the given point are nodes of first level (Fig.
22). The strain at these nodes directly influences the
stress at the given point. Some of these nodes may be
shared by two or more local primal meshes (Fig. 21).

We can then define a set of primal nodes whose local pri-
mal mesh shares some node with the local primal mesh
at the given point. This set of primal nodes is said the

set of nodes of second level (Fig. 22). The strain at a
node of second level directly influences the stress at the
corresponding node of first level and, thus, indirectly in-
fluences the stress at the given point. That is, nodes of
second level are not directly connected to the given node.

They are connected to i through the nodes of first level
(Fig. 22). Analogously, we can then define nodes of
third level, fourth level, and so on (Fig. 22). This estab-
lishes a sort of chain of interaction between nodes (Fig.
22), with the strain at each node influencing the stress
at the given node by an amount which is proportional to
its position into the chain. The chain is also established
in the classical formulation of the CM, since the need to
cover the whole domain is sufficient to impose the node
sharing. In conclusion, in the CM the stress at a point
actually depends on the strain history in the entire body,
and interactions between nodes diminish with increasing
distance. In the CM meshless approach, overlapping be-
tween local primal meshes increases the number of con-
nections at each level. This results in an increased non-
locality degree at each level. Due to the nonlocal nature
of Physics, we can expect an increased degree of non-
locality to lead to a better approximated solution. We
can thus expect that the approximation degree of the so-
lution would decrease with the increase of the degree of
overlapping. Since the higher degree of overlapping is
obtained with circular tributary areas, we can finally ex-
pect that the highest accuracy of the solution would be
reached with circular dual polygons. Numerical analyses
confirming this statement are in progress, at the moment.

4 Strain-softening modeling

The enrichment of the classical continuum by incorporat-
ing nonlocal effects into the constitutive equations is of-
ten used in order to avoid the ill-posedness of boundary
value problems with strain-softening constitutive mod-
els. When the material tangent stiffness matrix ceases
to be positive definite, the governing differential equa-
tions may lose ellipticity. Finite element solutions of
such problems exhibit a pathological sensitivity to the el-
ement size and do not converge to physically meaningful
solutions as the mesh is refined [Jirásek (1999)]. Actu-
ally, the boundary value problem does not have a unique
solution with continuous dependence on the given data
[Jirásek and Bažant (2001)]. To remedy the loss of el-
lipticity, a length scale must be incorporated, implicitly
or explicitly, into the material description or the formula-
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crack

contour for refining

Figure 21 : Local mesh generation for a cracked plate with refining on an internal contour and on the crack, when
the interaction between nodes is forced to be biunique (barycentric dual polygons)
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nodes of second 
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Figure 22 : Connections between several levels of node to node interaction

tion of the boundary value problem [Chen et al. (2000)].
From experimental tests on heterogeneous brittle materi-
als with traditional identification process, it appears that
the strain-softening zone is of finite size and dissipates a
finite amount of energy. However, when strain-softening
is applied in conjunction with the classical local contin-
uum concept and the differential formulation, the strain-
softening zone is found to localize, in those simple cases
for which exact solutions have been found, into a zone of
zero thickness [Bažant and Chang (1984)]. Thus, the nu-
merical solution by finite element converges with mesh
refinement to a strain-softening zone of zero thickness
and to zero energy dissipated by failure. Strain local-
izes into a narrow band whose width depends on the ele-
ment size and tends to zero as the mesh is refined [Jirásek

(1998b)]. This is not a realistic result. The correspond-
ing load-displacement diagram always exhibits snapback
for a sufficiently fine mesh, independent of the size of the
structure and of the ductility of the material.

Incorporating a length scale remedies the loss of elliptic-
ity, since the actual width of the zone of localized plastic
strain is related to the heterogeneous material microstruc-
ture and can be correctly predicted only by models hav-
ing a parameter with the dimension of length [Jirásek and
Rolshoven (2002)]. As previously said, the length scale
is absent from standard theories of elasticity or plasticity,
and must be introduced by an appropriate enhancement.
A properly formulated enhancement has a regularizing
effect in differential formulations, since it acts as a local-
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ization limiter restoring the well-posedness of the bound-
ary value problem. As far as the reasons for the absence
of a length scale from standard theories are concerned,
it has been shown above (Section 2.2) how they follow
directly from performing the limit process. The lack of
a length scale is thus directly bonded to the use of the
differential formulation.

Early extensions of the nonlocal concept to strain-
softening material, leading to the so-called imbricate
continuum, are due to Bažant in 1984. They were
later improved by the nonlocal damage theory [Pijaudier-
Cabot and Bažant (1987); Bažant and Pijaudier-Cabot
(1988)] and adapted for concrete [Saouridis (1988);
Saouridis and Mazars (1992)]. Nonlocal formula-
tions were elaborated for a wide spectrum of models
[Jirásek and Bažant (2001)], including softening plas-
ticity [Bažant and Lin (1988b); Vermeer and Brinkgreve
(1994); Nilsson (1994); Planas et al. (1996); Strömberg
and Ristinmaa (1996); Nilsson (1997); Borino et al.
(1999)], hardening crystal plasticity [Gao and Huang
(2001)], progressively cavitating porous plastic solids
[Leblond et al. (1994); Tvergaard and Needleman
(1995); Needleman and Tvergaard (1998)], smeared
crack models [Bažant and Lin (1988a); Jirásek and Zim-
mermann (1998)], and microplane models [Bažant and
Ožbolt (1990); Ožbolt and Bažant (1996)].

Form the purely phenomenological point of view, the
choice of the variable to be averaged remains to some
extent arbitrary. This leads to a great number of possible
nonlocal formulations. Nevertheless, one must be careful
when selecting a certain formulation from the literature,
because almost all of them capture the onset of localiza-
tion properly, but some fail to give physically reasonable
results at later stages of the localization process [Jirásek
(1998b)]. The basic model with damage evolution driven
by the damage energy release rate is not suitable for qua-
sibrittle materials, since it gives the same response in ten-
sion and in compression. A number of nonlocal dam-
age formulations of the simple isotropic damage model
with one scalar damage variable appeared during the last
decade, aimed at emphasizing the effect of tension on
the propagation of cracks. A unified nonlocal formula-
tion applicable to any inelastic constitutive model with
softening as a reliable localization limiter is not available
at present.

On the basis of the discussion on where nonlocality must
be introduced (Section 2.2), the question we want to an-

swer in the following is whether or not is it possible to
model softening by means of a discrete approach, the
Cell Method, and a local material law, the effective law.

4.1 How to formulate the constitutive law in a discrete
nonlocal approach

The last point to consider in building a discrete nonlo-
cal formulation using local constitutive laws is how to
formulate the constitutive law in order for it to be actu-
ally local, with the nonlocality of governing equations
not automatically extending to the constitutive laws by
scale change. In accordance with the identification pro-
cedure of the effective law (Section 1), we can, and actu-
ally must, separate the material from the structure scale
[Ferretti (2004a,b)], since the constitutive behavior is not
the mirror image of a structural problem at a lower scale.
The separation between the two scales is motivated by
experimental observation [Ferretti (2001)], stating that
we cannot study the behavior of compressed concrete in
the context of continuum mechanics, since macro-cracks
isolating the inner resistant core develop from the very
beginning of the compression test forth.

Only on the assumption of scales separation is it possible
to associate the nonlocality with the governing equations
only, without automatic extension to the material laws.
We can thus state that the discrete nonlocal formulation
with the CM and local constitutive laws strongly needs
to be used with the effective law, since it is the only local
material law satisfying the qualification of scales separa-
tion. On the other hand, the effective law strongly needs
to be used with the Cell Method, if we intend to model
nonlocal effects, since the CM is the only truly discrete
formulation, and only a truly discrete formulation affords
the possibility of modeling nonlocal effects by using a lo-
cal material law.

It is worth noting that the governing equations of the dis-
crete nonlocal formulation never lose ellipticity, since
the effective law is monotone strictly nondecreasing.
Consequently, by introducing the scales separation the
ill-posedness of boundary value problems never poses.
There remains to prove, however, the ability of a CM
code with effective law of modeling the softening behav-
ior of load-displacements curves. We also need to prove
the ability of the code to model the size-effect, in order
this new approach could actually be called nonlocal. Nu-
merical results on the structural softening and size-effect
modeling will be provided in Section 4.3.
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4.2 Comparison between discrete and differential
nonlocal approaches

As an example of nonlocal damage formulation, con-
sider the nonlocal version of the simple isotropic dam-
age model [Pijaudier-Cabot and Bažant (1987)]. Said σσσ
the stress tensor, εεε the strain tensor, De the elastic mate-
rial stiffness matrix, and ωωω the scalar damage parameter,
this model postulates the stress-strain relationship for the
given integration point xp in the form:

σσσ(xp) = (1−ωωω (xp))De (xp)εεε(xp) . (25)

In Eq. 25, the evolution of the damage parameter is con-
trolled by the weighted average of the damage energy re-
lease Y over a certain neighborhood of the given integra-
tion point xp:

Y (xp) =
∫

V
α (xp,ξ)Y (ξ)dξ. (26)

α (xp,ξ) in Eq. 26 is a given nonlocal weight function.

Initially, the damage parameter is equal to zero, and the
response of the material is linear elastic. When the stored
energy reaches a certain critical value, the damage pa-
rameter starts growing, reflecting the gradual loss of in-
tegrity of the material. During unloading, the damage
parameter remains constant even if Y decreases. That is,
ω depends on the maximum previously reached value of
Y :

ω(xp) = f
(
max

(
Y

))
. ω(xp, t) = f

(
max
τ≤t

Y (τ)
)

(27)

Applying the nonlocal averaging to a variable that can
never decrease is motivated by instability modes aris-
ing when the averaging operator is applied to the total
strain tensor εεε, such as happens in the original nonlocal
model for strain softening with imbricate finite elements
[Bažant et al. (1984)]. The function f in Eq. 27 can be
identified from the uniaxial stress-strain curve.

Averaging of different variables gives rather different re-
sponses [Jirásek (1998b)]. The complete fracture is cor-
rectly reproduced by models that average the equivalent
strain, the energy release rate, or the compliance vari-
able. In a uniaxially stretched softening bar, these vari-
ables lead to residual strength approaching zero as the
applied elongation is increased. On the contrary, the eval-
uation of the inelastic stress from the nonlocal strain, the

same as the averaging of the damage variable, inelas-
tic stress, or inelastic stress increment, leads to spuri-
ous residual stresses and to an expansion of the softening
zone across the entire bar [Bažant and Jirásek (2002)].
From these last formulations, locking effects and, some-
times, loss of convergence follow. Once the number of
integration points, xp, has been chosen, the stiffness ma-
trix is found by replacing the integrals of the standard for-
mulae with a sum of contributions from the finite number
of integration points [Jirásek (1999)]. Said p the summa-
tion index running from 1 to the total number of inte-
gration points, w(xp) the integration weight, and B(xp)
the strain-displacement matrix defined through the stan-
dard approximation between strain and vector of nodal
displacements, εεε(xp) = B(xp)d, the vector of internal
forces takes the following form:

f = ∑
p

w(xp)BT (xp)σσσ(xp). (28)

The nonlocal averaging integral in Eq. 26 is also approx-
imated by a finite sum, in which αpq are interaction coef-
ficients depending on the weight function α and the vol-
ume in the neighborhood of the given integration point:

Y (xp) = ∑
q

αpqY (xp). (29)

By substituting Eq. 25 into Eq. 28, using the strain-
displacement matrix, and introducing the shorthand no-
tation, ω(xp) = ωp, B(xp) = Bp, etc., we obtain:

f = ∑
p

wp (1−ωp)BT
p De

pBpd = ∑
p

wp (1−ωp)Ke
pd.

(30)

Thus, the secant stiffness matrix, Ku, turns out to assume
the value:

Ku = ∑
p

wp (1−ωp)Ke
p. (31)

By differentiating the internal forces with respect to the
nodal displacements and introducing the vector fe

p =
Ke

pd, it is also possible to obtain the tangent stiffness ma-
trix, K [Jirásek (1999)]:

K = Ku −∑
p,q

wp f ′pαpqfe
p

(
fe
q

)T
. (32)

f ′p = f ′
(
Y p

)
for loading and f ′p = 0 for unload-

ing/reloading below the current damage threshold. The
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term wp f ′pαpqfe
p

(
fe
q

)T
represents the contribution of the

nonlocal interaction between xp and xq to the overall
stiffness. The sum is performed only over those pairs
of integration points that are closer than the interaction
radius. Reducing the interaction to points internal to
the interaction radius leads to assembling matrices much
smaller than usual ones. Actually, each pair of integra-
tion points, xp and xq, contributes only to the p− q el-
ement of the global stiffness matrix. On the other hand,
the bandwidth increases due to the nonlocal interaction.
Finally, the global stiffness matrix is in general not sym-
metric, since the interaction weights αpq are not sym-
metric. The assembly procedure of the global stiffness
matrix is similar to the usual one.

In the opinion of the Author, performing the sum only
over those pairs of integration points that are closer than
the interaction radius is equivalent to enforcing the equi-
librium on those local dual polygons, in which the dual
nodes are chosen as the nodes internal to the domain of
influence. That is, the nonlocal approach is equivalent
to a meshfree CM approach in which it is not the num-
ber of boundary nodes which has been fixed previously,
but their distance from the corresponding primal node.
Nevertheless, the interaction between the pairs of nodes
would be biunique if dual nodes were chosen internal to
the domain of influence. Thus, the global stiffness ma-
trix would be symmetric with the meshfree CM. Finally,
due to the intrinsic CM nonlocality and the equivalence
between nonlocal approaches and meshfree CM, we can
state that damage can be properly described by means of
the local isotropic damage model if it is used in conjunc-
tion with the CM.

Most nonlocal damage formulations lead to a progres-
sive shrinking of the zone in which local strains increase
[Pijaudier-Cabot and Bažant (1987); Jirásek and Zim-
mermann (1998)]. The thickness of the zone of increas-
ing damage can never be smaller than the support diame-
ter of the nonlocal weight function. Numerical problems
thus occur, when the residual stiffness of the material in-
side this zone becomes too small. These numerical prob-
lems are all the more severe if body forces are present,
leading to divergence of the equilibrium iteration pro-
cess. Transition from highly localized strains to displace-
ment discontinuities embedded in the interior of finite el-
ements (Fig. 23) can be used to remedy the loss of con-
vergence when body forces are present [Jirásek (1998a)].
As pointed out in Jirásek (1999), this approach is ap-

Figure 23 : Transition from a continuum model to a dis-
continuity [Jirásek (1999)]

ε

gε•

Quasistatic

Figure 24 : Behavior of the dynamic continuum rate-
dependent model

pealing from the physical point of view, since in the fi-
nal stage of degradation the material should no longer be
considered as a continuum. However, the Author of the
present paper argues that the transition technique corre-
sponds to a description of the stress field in terms of dis-
placements, and not of strains (Fig. 23). Thus, the stress
field is not related to the microscopic behavior of the ma-
terial, assumed to be strain-softening, but to the macro-
scopic behavior of the structure, which is not necessar-
ily homothetic to the former (Section 1). The transition
technique is thus equivalent to introducing a scale sep-
aration between the load-displacement and stress-strain
relationships. In particular, the stress-strain relation-
ships modeled by the transition technique may not be
strain-softening. In other words, is not clear whether a
case of strain-softening is actually modeled by the tran-
sition technique. In conclusion, the existence itself of
the strain-softening behavior would not be ensured by
this approach. Therefore, in the opinion of the Author,
capturing the correct crack trajectory without any nu-
merical instabilities through a transition technique can-
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not be considered a proof of the strain-softening mathe-
matical well-posedness and, thus, of the existence itself
of strain-softening. In effect, as better shown in Section
4.3, displacement discontinuity with opening of macro-
scopic cracks has shown itself to be per-se sufficient to
model the softening branch (Fig. 25) and size-effect (Fig.
26) in load-displacement diagrams of compressed spec-
imens, even if a monotone and local constitutive law is
used [Ferretti (2003b); Ferretti and Di Leo (2003)].

It is worth noting that even the proposal of Sandler and
Wright (1983) for dynamic continuum problems intro-
duces a modified constitutive relationship, in order to
avoid the problem of hyperbolic rather than elliptic gov-
erning equations. Actually, Sandler and Wright treat
strain-softening in the rate-dependent manner, with a
rate-dependent viscoelastic correction factor applied to
the stress (Fig. 24). With this choice, a bounded solution
exists for any instant, and the problem turns out to be
dynamically well-posed. However, the correction of the
value of σ provided by the term gε̇ in Fig. 24 is equiv-
alent to changing the shape of the quasistatic constitu-
tive relationship. That is, it is equivalent to introducing a
scale separation. Once more, it is not clear whether or not
the modified constitutive relationship is of the softening
type. Finally, it is possible to show [Ferretti (2004d)] that
the difference σe f f −σ in the identification procedure of
the effective law (Fig. 2) plays the same role as the term
gε̇ in Fig. 24, and the viscoelastic term is equal to a
rate-independent factor which is related to the decrease
of cross-sectional area. Consequently, the rate-dependent
correction factor by Sandler and Wright and the correc-
tion factor of the effective law give the same value of
stress. Since the effective law is monotone strictly non-
decreasing, this result and the former discussion on the
transition technique further prove how the problem of the
existence of strain-softening is actually still an open is-
sue. The apparent contradiction in establishing equality
between a rate-dependent and a rate-independent factor
has been extensively debated in Ferretti (2004d).

As far as the observation that in the final stage of the
degradation process the material should no longer be
considered as a continuum is concerned [Jirásek (1999)],
it must be recalled that the identification procedure of the
effective law (Section 1, Fig. 2) ceases to consider the
concrete specimen as a continuum from the early begin-
ning of the compression test forth. As previously said
(Section 4.1), this assumption is motivated by the ex-

perimental evidence. It may be then asserted that the
transition technique and the identification process of the
effective law are two alternative ways for introducing a
scale separation between load-displacement and stress-
strain. This may be considered as a further indirect val-
idation of the identifying procedure of the effective law,
both as far as the monotone strictly nondecreasing be-
havior of the effective law and the results on Poisson’s
ratio, dilatancy, and viscosity are concerned. Actually,
in the identification procedure of the effective law, both
the non-softening behavior of the effective law, the con-
stancy of the Poisson’s ratio, the absence of real increase
in the volume of a solid when placed under pressure,
and the insignificant contribution of viscosity to the time-
dependent behavior at constant load of concrete are direct
results of having assumed that strain measurements ac-
quired on the specimen surface are not real strains from
the moment in which starts to propagate an inner crack
[Ferretti (2004c); Ferretti (2004d)], quite similar to the
discrete crack of Fig. 23. As previously recalled (Sec-
tion 1), surface strains, and, particularly, the average cir-
cumferential strain usually employed for deriving Pois-
son’s ratio and volumetric strain, are affected by the crack
openings (Fig. 3a). Consequently, they cannot be di-
rectly used in the identification process, while the strain
acquisitions into the presumed resistant core can, since
we have assumed that macro-cracks do not occur in the
inner core.

4.3 Results of the discrete nonlocal approach

When modeling the propagation of a crack through a
mesh, the geometry of the mesh must be modified as
the crack propagates. Two different strategies are avail-
able to study fracture mechanics using the FEM. The first
strategy describes fracture as a sharp drop in the normal
stress, due to the evolution of damage to the material
[Gurson (1977), Rousselier (1981)]. The second strategy
describes the crack as a displacement discontinuity rep-
resented by the separation of its edges. Having to simu-
late the failure mechanism with propagation of dominant
cracks assumed by the effective law, the code we have
employed here uses the second strategy, together with
a technique of intra-element propagation and automatic
remeshing [Ferretti (2003a)]. The numerical constitutive
law we have used, derived by the identified effective law,
is shown in Fig. 27. The numerical analysis has been
carried out on cylindrical specimens of concrete. On Fig.
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28, one can see the final crack path provided by the code
for the bottom left quarter of the longitudinal section.

The numerical curves of Figs. 25 and 26 refer to
plain concrete, while those of Fig. 29 refer to concrete
wrapped with sheets of carbon fiber composites (CFRP)
[Ferretti and Di Leo (2003)]. These curves confirm that
softening in plain concrete attains to the structure and
does not necessarily correspond to material softening,
whose existence is not guaranteed. Moreover, wrapped
cylinders are modeled by means of a single material
law, without any correction factor taking into account the
triaxial state of stress induced by wrapping, as usually
done. This is very appealing from the physical point of
view and indirectly validates the effective law as a con-
stitutive law. Actually, material models depending on
the amount of wrapping are not strictly speaking con-
stitutive. They are models of structural and not mate-
rial behavior, which need to be calibrated on the single
test. Also the size-effect is modeled without any parame-
ter calibration: the different behaviors in Fig. 26 merely
come from the faster decrease of Ares at increasing L/D
ratios, well reproduced numerically on the basis of the
different velocity of crack propagation

Finally, these results allow us to conclude that the mono-
tone behavior of wrapped specimens is not induced by
the composite stiffness, very high in comparison with the
concrete one. It follows from the wrapping ability to op-
pose the modifications of resistant structure, leading the
load-displacement and the effective law not to differ sub-
stantially in shape. The softening behavior of unwrapped
specimens follows merely from the large modifications
of resistant structure.

It is worth noting that, in order to simulate the modi-
fied interactions between material points, due to fracture
propagation, nonlocal models must be able to continu-
ously recompute the interaction weights for all interact-
ing pairs of integration points. Recomputation is needed
since long-range interaction between material points be-
comes more and more difficult, and finally impossible,
as the fracture propagates. Thus, the interaction length
must be decreased as the fracture propagates. This re-
flects in a high computational burden. Matters are differ-
ent if a CM code with intra-element propagation is used
[Ferretti (2003a)]. Actually, since the nonlocal approach
is implicit into the CM, the modified nonlocal behavior is
automatically taken into account as the geometry is up-
dated. No further computational burden is required when

an internal point becomes a boundary node due to the
fracture propagation.

Figure 25 : Comparison between numerical and experi-
mental results for compressed concrete specimens

Figure 26 : Numerically evaluated size-effect on average
stress-average strain diagrams (see Fig. 1)

In Bažant and Chang (1984) and Jirásek and Rolshoven
(2002), it was shown that numerical instabilities do not
occur only if softening laws taking into account both the
local and nonlocal effects are used. This means that the
principle of the local action of the classical continuum
mechanics must somehow be taken into account even in a
nonlocal approach. This is exactly what happens in a CM
code with a local constitutive model, nonlocality being
ensured by the discrete formulation. In the opinion of the
Author, the use of a local/nonlocal constitutive model in
the FEM is thus equivalent to the use of a local constitu-
tive model in the CM. This equivalence is also proved by
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Figure 27 : Monoaxial constitutive law adopted for concrete modeling
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the capability of the CM with local constitutive model to
succeed where classical plasticity fails, requiring an im-
provement of the classical continuum description: mod-
eling the size-effect (Fig. 26). Thus, one of the main
historical reasons for improving the classical continuum
description ceases to exist if the differential formulation
is abandoned in favor of a discrete one. Numerical sim-
ulations of size-effect provided by a CM code with local
constitutive model are collected in Ferretti (2003b).

It must be noticed that nonlocal theories aiming at regu-
larizing the localization problem usually neglect the non-
local elastic effects, and apply nonlocal averaging only
to an internal variable (or thermodynamic force) linked
to dissipative processes [Jirásek and Rolshoven (2002)].
This choice is justified on the basis of the smooth strain
distribution characterizing the elastic regime, leading to a
good approximation provided by the standard local the-
ory. The implicit nonlocal approach of the CM allows
us to take into account nonlocal effects in the elastic
regime automatically too. This occurs since the CM non-
locality is derived from geometrical properties naturally
linked to physical variables, and not from dissipative pro-
cesses. Due to this implicit nonlocality, the transition be-
tween elastic regime and strain-localization regime is no
longer critical for the accurateness of the numerical anal-
ysis. Thus, distinguishing between ante and after strain-
localization regime is no longer necessary.

5 Conclusions

In this paper, two topics have been discussed, which
usually are not put in direct relationship: nonlocal ap-
proaches and the existence of strain-softening. As far as
the second topic is concerned, it has been shown how
some of the expedients used for treating strain-softening
by avoiding the numerical instability associated with a
material tangent stiffness matrix that ceases to be pos-
itive definite are equivalent to introducing a scale sep-
aration between the load-displacement and stress-strain
laws. That is, they are equivalent to employing a relation-
ship between effective stress and effective strain that is,
not necessarily, softening. On the other hand, the iden-
tification procedure of the effective law, assuming that
strain-softening is not a real material property but the re-
sult of inhomogeneous deformation caused by the experi-
mental technique, is based just on the assumption that we
can and actually must separate the material (stress-strain)
from the structure (load-displacement) scale. Such a pro-
cedure provides the first experimental evidence against
the existence of strain-softening in concrete and iden-
tifies a monotone strictly nondecreasing effective law.
However, we could argue that this law is not interesting
from the numerical point of view, since, being a local
law, it is not suitable for modeling problems in which the
size-effect is involved.

As far as nonlocality is concerned, it has been observed
that there is no evident physical justification for incor-
porating a length scale into the numerical formulation.



A Local Strictly Nondecreasing Material Law 43

0

200

400

600

800

1000

1200

1400

1600

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Displacement   [mm]

Lo
ad

   
[k

N
]

Unwrapped
1 layer CFRP wrapped
3 layers CFRP wrapped

N

N

Figure 29 : Numerical load-displacement curves for un-
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This need is only due to the use of a differential formula-
tion, in which the length scale is absent since the metric
notions have been lost in performing the limit process.
The impossibility of treating some kind of problems in
the context of a differential formulation with classical
continuum description comes from the ill-posedness of
describing Physics without taking into account the ge-
ometrical counterpart of variables. Moreover, incorpo-
rating a length scale into the constitutive relationships
only, leaving unchanged the equilibrium and kinematic
equations and the corresponding boundary conditions, is
motivated by the need to provide a practical formulation
and, once more, has no real physical justification. In ef-
fect, the discussion on where nonlocality must be taken
into account (Section 2.2) concludes that it is physically
more appealing to have governing rather than constitu-
tive nonlocal laws. Thus, the incorporation of a length
scale into the material description is not per-se necessary
at all. What is really necessary is to describe the nonlocal
nature of physical phenomena, that is, preserve the met-
rics of Physics. This may also be achieved by avoiding
the limit process, with a discrete formulation. It has also
been discussed here (Section 3.1) how the Cell Method
(CM) is the only formulation that is truly discrete, at
present. This method allows us to express the governing
equations in discrete form directly, without loosing met-
rics. Several numerical similarities between the nonlocal
approach and the CM, both in its classical and meshfree
formulations, have also been highlighted in the present
paper. In conclusion, if the goal is to perform a non-
local analysis by means of the differential formulation,
the constitutive equations must necessarily be modified

in order to incorporate nonlocal effects. On the contrary,
if the goal is to perform a nonlocal analysis by means
of the CM, no need to modify the constitutive equations
arises, since the CM is nonlocal in itself.

The question is not merely which type of continuum to
associate with a differential or discrete formulation, non-
local or local, respectively. The discussion takes on a
deeper meaning and allows us to find an unexpected link
between nonlocality and existence of strain-softening. If
the discrete formulation is nonlocal in itself, any local
law can be used in modeling size-effect, even the mono-
tone effective law. The results provided here actually
shows that a CM code using the effective law is able
to model the size-effect on compressed concrete cylin-
ders. This legitimates the effective law from the nu-
merical point of view. Moreover, the use of the effec-
tive law in a CM code with nodal relaxation technique
and automatic remeshing allows us to simulate the prop-
agation of the dominant cracks during loading. Due to
the scale separation involved by crack propagation, the
load-displacement curve associated with the monotone
effective law turns out to be softening, in good agree-
ment with the experimental data. Consequently, the dis-
crete nonlocal approach also provides proof of how the
structural behavior may be softening even if the material
behavior is not. This result together with the identifica-
tion procedure of the effective law definitely reopens the
question of strain-softening, whose existence and math-
ematical well-posedness seemed to be no longer under
discussion after the numerical successes of nonlocal ap-
proaches. The existence of strain-softening must not to
be taken as a dogma, even if the experiments seem to in-
dicate so [Reinhardt and Cornelissen (1984)]. Interpre-
tation of experimental data is a very delicate matter. If
the current interpretation is too simplistic, such as both
numerical and experimental results seem to indicate for
strain-softening, it must be subjected to discussion. The
identification procedure of the effective law moves in this
direction, and provides an experimental local law that is
suitable for numerical analyses with a CM code.

Finally, it is worth noting that, while a nonlocal formu-
lation applicable to any inelastic constitutive model with
softening is not available at present (Section 4), the abil-
ity which the CM code with effective law has of model-
ing both the size-effect and the wrapping using a single
material law, without any parameter to calibrate on the
specimen slenderness or load conditions, configures the
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discrete nonlocal approach as very promising in view of a
unified formulation for solid mechanics. The constitutive
nature of the effective law is proved just by the absence
of any parameter to calibrate on the single test.
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Jirásek, M.; Bažant, Z. P. (2001): Inelastic Analysis of
Structures, John Wiley and Sons.
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Pijaudier-Cabot, G.; Bažant, Z. P. (1987): Nonlocal
Damage Theory. J. Eng. Mech., 113: 1512-1533.

Planas, J.; Elices, M.; Guinea, G. V. (1993): Cohesive
Cracks versus Nonlocal Models: Closing the Gap. Int J.
Fract., 63: 173-187.

Planas, J.; Guinea, G. V.; Elices, M. (1996): Basic
Issues on Nonlocal Models: Uniaxial Modeling. Tech.
Rep., No. 96-jp03, Departamento de Ciencia de Materi-
ales, ETS de Ingenieros de Caminos, Univ. Politécnica
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