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Numerical Modeling of the Influence of Water Suction on the Formation of Strain
Localization in Saturated Sand

X. Liu and A. Scarpas 1

Abstract: Numerical investigations of strain localiza-
tion have been performed on 3D dense fully saturated
sand specimens subjected to triaxial loading and simul-
taneous inflow or outflow conditions. The role of the wa-
ter suction field on the formation and evolution of strain
localization is addressed computationally. It has been
shown that, in a porous medium, the fluid (water) phase
plays indeed an important role in strain localization. The
formation and evolution of strain localization are influ-
enced both by the material behaviour of the solid com-
ponent and the interaction between components. In this
contribution, after a presentation of the incremental for-
mulation of the coupled problem and the discretization
in time, a nonlinear constitutive model is presented for
the solid component. In the last part of the contribution,
results are presented for the influence of water inflow or
outflow on the development of strain localization in a lab-
oratory specimen.

keyword: Strain localization, constitutive modeling,
soil hardening and softening, flow surfaces, porous
medium, solid fluid phase interaction, water suction, cav-
itation.

1 Introduction

Localized deformations in the form of narrow shear
bands are often observed to develop after large inelastic
deformation in materials. Within the shear band, the ma-
terial behaviour is inelastic. Typical examples of material
that are prone to strain localization are frictional materi-
als such as concrete, rocks and soils. These materials
show a reduction of load carrying capacity, after reach-
ing the limit load, accompanied by increasing localized
deformations. The mechanisms responsible for strain lo-
calization can vary widely from one material to another.
Normally, strain localization is treated as the result of lo-
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cal inhomogeneities, stress concentrations or the onset
of some physical mechanism that degrades abruptly the
strength of the material at a point. Alternatively, strain
localization can be considered as a bifurcation from a
smoothly varying pattern of deformation, which arises
as a result of instability in the inelastic behaviour of the
material.

The analysis of strain localization is of importance in en-
gineering practice because localization is a precursor to
sudden failure. Localized deformations in the form of
narrow shear bands are often observed to develop after
large inelastic deformation in materials. Within this shear
band, the material behaviour is inelastic.

Strain localization has been extensively studied in re-
cent years, in particular in connection with single phase
solids. Among others Needleman (1988), Loret and Pre-
vost (1990), Sluys (1992) have investigated the problem
of dynamic strain localization in single phase solids.

Since the end of the 70’s, several authors have stud-
ied strain localization in multiphase materials. Rudnicki
(1984) analyzed a fluid saturated rock mass with an em-
bedded weakened layer. Rice (1985) studied the effect
of material dilatancy on strain localization in fully sat-
urated frictional material. Vardoulakis (1986) showed
the importance of dynamic stability analysis in case of
undrained simple-shear deformation of water-saturated
granular soil. Loret and Prevost (1991) studied the for-
mation of localization in a fully saturated soil specimen
using dynamic strain localization theory. A model based
on the general framework of averaging theories and ca-
pable of simulating shear band dominated processes in
saturated porous media was presented by Schrefler, Ma-
jorana and Sanavia (1995), Schrefler, Sanavia and Majo-
rana (1996).

However, due to the complexities associated with solid
fluid phase interactions, the mechanisms responsible for
strain localization in a porous medium can vary signif-
icantly from case to case. Several problems need to be
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addressed such as: the role of the fluid component, the
influence of test conditions on strain localization, the reg-
ularizing effect of the phase interactions on the constitu-
tive equations of the multiphase medium.

An important observation by Liu (2003), Liu, Scarpas
and Blaauwendraad (2004b) is that the suction field in a
specimen under undrained conditions can influence sig-
nificantly the onset and development of strain localiza-
tion.

In this investigation, in order to provide further insight
into the role of water suction in the phenomenon of strain
localization in fluid saturated sands, a fully saturated 3D
sand specimen subjected to true triaxial loads was cho-
sen. It is of interest to investigate what happens on onset
and development of strain localization in the specimen
when the naturally build suction field in the specimen is
disturbed. To achieve this, in this study, by introducing
artificially the inflow or outflow at the center of the spec-
imen, the influence of the water suction on the formation
and evolution of strain localization are identified.

In order to simulate the elastoplastic characterization of
a porous medium properly, the establishment of govern-
ing equations for the solid and fluid phase and the de-
velopment of the constitutive model will be presented
first. The solution procedure for solving the unsymmetric
coupled governing equations with the help of Sherman-
Morrison formula will be illustrated. Also, the character-
istics of the utilized elsatoplastic constitutive model will
be elaborated. At the last section of the paper, by uti-
lization of the numerical examples, the contribution of
water suction to the initiation and formation of strain lo-
calization in fully saturated 3D sand specimen will be
presented in detail.

2 Governing equations

The governing equations for the description of the defor-
mation and the motion of a porous medium are carried
out on the basis of modern mixture theory, see Bowen
(1976), Ehlers (1989), Lewis and Schrefler (1998) and
Liu (2003). The porous medium is postulated to be
a mixture, consisting of two basic continua, superposi-
tioned in time and space. The first continuum represents
the solid phase and second one represents the fluid phase.
In the following, the governing equations are briefly re-
called.

2.1 Incremental equations and discretization in time

The equilibrium equation for the solid skeleton can be
written as:

∫
V

(Ns)T ·ρ · ta ·dV +
∫
V

BT ·
t∫

t−∆t

σ̇′dt ·dV

+
∫
V

BT ·
⎛
⎝ t∫

t−∆t

α̃ · I · ṗs ·dt

⎞
⎠ ·dV =

∫
Γ

(Ns)T · t t ·dΓ

+
∫
V

(Ns)T ·ρ ·g ·dV −
∫
V

BT ·t−∆t σ ·dV (1)

where Ns is the interpolation (or shape) function for the
displacement and B is termed the strain-displacement
matrix.. t is the vector of the applied surface trac-
tions. a is the acceleration vector. g is the gravity.
ρ = (1−n)ρs + nSwρw in which ρs and ρw is the ma-
terial density of the solid and water constituent respec-
tively. n represents the porosity as defined in classical
soil mechanics.

σ′in Eq. (1) is called the “modified effective stress”
which represents the stress associated with the total de-
formation of the porous medium and I is the identity ten-
sor. α̃ =

(
1−KT

/
K

)
is Biot’s constant and K and KT are

the bulk and tangential bulk modulus of the solid grains,
see Biot (1941) and Zienkiewicz and Shiomi (1985).

ps = Sw · pw + Sa · pain which pw and pa represent water
and air phase pressure2. Sw and Sa are the degree of water
and air saturation.

In the context of this contribution, pa remains at atmo-
spheric pressure. Neuman first used this approach in
1975 for a rigid porous medium and later Schrefler and
Simoni in 1988 for partially saturated elastoplastic me-
dia. The assumption of the air phase being at atmo-
spheric pressure in the partially saturated zone of the
porous medium is feasible in soil mechanics and it en-
ables to simplify the governing equations.

Therefore, by setting pa = 0, the fluid pressure ps in Eq.
(1) can be expressed as:

ps = Swpw (2)

and its time derivative as:

ṗs = Sw · dpw

dt
+ pw · dSw

dt
=

(
Sw +

ws

n
· pw

)
· ṗw (3)

2 Following typical solid mechanics notation, tension is considered
positive
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where ws = n ·(∂Sw
/

∂pw
)

is termed the specific moisture
content, Lewis and Schrefler (1998).

The constitutive equation of the solid component is of the
type

σ′ = D · ε (4)

where D is the tangential stiffness matrix. The character-
istics of the utilized elastoplastic constitutive model will
be introduced in section 3.

Substituting the constitutive relation Eq. (4) and the time
derivative of the fluid pressure Eq. (3) into Eq. (1) and
considering the interpolation (or shape) function Nwfor
the fluid pressure, the equilibrium equation (1) can be
rewritten as:

∫
V

(Ns)T ·ρ ·Ns · t d̈ ·dV +
∫
V

BT

t∫
t−∆t

t−∆t D ·B · ḋ ·d t ·dV

+
∫
V

BT

t∫
t−∆t

α̃ · I ·Nw ·
(

Sw +
ws

n
·Nw ·p

)
· ṗ ·dt ·dV

=
∫
Γ

(Ns)T · t t ·dΓ+
∫
V

(Ns)T ·ρ ·g ·dV

−
∫
V

BT ·t−∆t σ ·dV (5)

in which d and p are the nodal displacement and pore
fluid pressure respectively.

The continuity equation of the pore fluid is the following:

−
∫
V

(∇Nw)T ·kkrw

µw
∇Nw · tpdV

−
∫
V

(∇Nw)T ·kkrw

µw
∇ρwgdV

+
∫
Γq

(Nw)T · q̂ ·dΓ+
∫
V

(Nw)T ·Qw ·Nw · t ṗ ·dV

+
∫
V

(Nw)T · α̃ ·Sw · IT ·B · t ḋ ·dV = 0 (6)

where Qw = (n−α̃)
K ·Sw

(
Sw + pw

ws
n

)
+ nSw

Kw
+ws, Kw is the

bulk modulus of water, k is the absolute permeability ma-
trix of the medium which depends only on the current
geometry of the porous network through which the fluid
flow occurs, krw is the relative permeabilities of water

phase which depends in general on the relative saturation
state of the medium, Neuman (1975). µw is the dynamic
viscosity of water phase. q̂ is the imposed mass flux nor-
mal to the boundary.

The shape functions Ns and Nw in Eq. (5) and (6) are ex-
pressed in terms of the local coordinates. In the follow-
ing, the same shape function N is utilized to define both
displacements and pore pressures within the element.

Furthermore, the incremental forms of nodal displace-
ments and pore pressures can be expressed as:

∆td = td− t−∆t d =
t∫

t−∆t

ḋ ·dt (7)

∆tp = tp− t−∆t p =
t∫

t−∆t

ṗ ·dt (8)

Substituting Eq. (7) and (8) into (5), the new form of the
equilibrium equation is obtained as:
∫
V

NT ·ρ ·N · t d̈ ·dV +
∫
V

BT · t−∆t D ·B ·∆td ·dV

+
∫
V

BT · α̃ · I ·N ·
(

Sw +
ws

n
·N ·p

)
·∆tp ·dV

=
∫
Γ

NT · tt ·dΓ+
∫
V

NT ·ρ ·g ·dV

−
∫
V

BT ·t−∆tσ ·dV (9)

For brevity, Eq. (9) can be written in matrix form:

M · t d̈+ t−∆t K ·∆td+J ·∆t p = tF− t−∆t fint (10)

in which:

M =
∫
V

NT ·ρ ·N ·dV (11)

t−∆tK =
∫
V

BT · t−∆tD ·B ·dV (12)

J =
∫
V

BT · α̃ · I ·N ·
(

Sw +
ws

n
·N ·p

)
·dV (13)

tF =
∫
Γ

NT · tt ·dΓ+
∫
V

NT ·ρ ·g ·dV (14)
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t−∆t fint =
∫
V

BT ·t−∆t σ ·dV (15)

Similarly, the continuity equation (6) can be also ex-
pressed in matrix form as:

LT · t ḋ +G · t ṗ+H · t p = Fw (16)

in which:

LT =
∫
V

NT · α̃ ·Sw · IT ·B ·dV (17)

G =
∫
V

NT ·Qw ·N ·dV (18)

H = −
∫
V

(∇N)T ·kkrw

µw
∇N ·dV (19)

Fw =
∫
V

(∇N)T ·kkrw

µw
∇ρwgdV−

∫
Γq

NT · q̂ ·dΓ (20)

By now, the generalized semi-discrete governing equa-
tions for simulating solid-fluid interaction have been de-
veloped. The complete solution may now be obtained by
means of an appropriate time integration method.

By applying Newmark’s scheme for Eq. (10) and (16) ,
the governing equations can be discretized in the time do-
main. Then, at time t, the dynamic equilibrium condition
of Eq. (10) can be rearranged in matrix form as:

K̂ ·∆td +J ·∆t p = tS− t−∆t fint (21)

in which

K̂ = c0 ·M+ t−∆t K (22)

tS = tF−M
(−c1 · t−∆t ḋ−c2 · t−∆t d̈

)
(23)

and c0 = 1
β∆t2 , c1 = 1

β∆t , c2 = 1
2β −1 and β is Newmark’s

parameters.

Similarly, at time t, the dynamic continuity condition of
Eq. (16) can be rearranged as:

LT ·∆td+(G+H · γ ·∆t) · β
γ2 ·∆tp =

F̃w ·∆t−H · t−∆t p · c5 ·∆t (24)

in which:

F̃w =
[
Fw −(

c3 · t−∆t d̈ +c4 · t−∆t ḋ
) ·LT

+G · (1− γ) · t−∆t ṗ
] · c5 (25)

c3 =
(

1− γ
2β

)
∆t; c4 = 1− γ

β
; c5 =

β
γ

(26)

and γ is Newmark’s parameters.

For sake of convenience, Eq. (21) and (24) can be com-
bined in matrix form as:[

K̂ J
LT (G+H · γ ·∆t) · β

γ2

]
·
{

∆td
∆tp

}

=
{

tS− t−∆t fint

F̃w ·∆t−H · t−∆t p · c5 ·∆t

}
(27)

These are the incremental coupled governing equations
that constitute the basis of finite element solutions for
porous media under fully or partially saturated condi-
tions. They can be utilized not only for solving dynamic
problems but also for static or quasi-static ones without
loss of computational efficiency. The governing equa-
tions have been implemented into the finite element code
INSAP-PM by Liu and Scarpas (2001).

It can be seen that Eq. (27) is not symmetric and hence
requires a nonsymmetric solver. Symmetry can be re-
stored, if the condition ws p � Swn is satisfied or if the
material is fully saturated. The general solution tech-
niques for solving the nonsymmetric coupled governing
equations will be discussed in the next section.

2.2 Solution procedure

The simplest way to solve the coupled governing equa-
tions indicated in Eq. (27) is the so called monolithic
(or direct) approach first proposed by Lewis and Kara-
hanoglu (1981), by which the system of equations is
solved simultaneously. However, because of the non-
symmetric characteristics, the matrices at the left side of
Eq. (27) need to be evaluated at every time step. There-
fore, for partially saturated conditions, the monolithic ap-
proach is a time consuming procedure while for fully sat-
urated condition, due to symmetry, it is probably the best
choice.

In order to overcome the limitation of the monolithic ap-
proach, a partitioned solution procedure can be utilized to
restore the symmetry of the coupled governing equations,
see Park and Felippa (1983) and Schrefler (1985). Using
this procedure, the coupled governing equations are first
partitioned into a proper form. Then a suitable predic-
tor scheme is set up to evaluate the partitioned equations
and to obtain part of the unknowns. Subsequently the
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remaining equations are solved to obtain the rest of the
unknowns. This procedure is repeated until the required
accuracy is achieved. The efficiency of this solution pro-
cedure is sometimes questionable due to the necessity of
iterations within each time step. Also the choice of a
suitable predictor can influence the numerical stability.

In this study, in order to solve the coupled equations ef-
ficiently, the Sherman-Morrison formula (Golub, 1989)
is applied. With the Sherman-Morrison formula, the
unsymmetric matrix in Eq. (27) can be reformed and
decomposed into one symmetric matrix and two vector
multiplications. The inversion of the matrix required for
the solution is computed only once at the beginning of
the calculation. The influences of in time pressure vari-
ation on the system solutions can be evaluated at every
time step by matrix multiplications.

Based on this solution strategy the coupled governing
equation (27) can be reformulated as:

[
K̂ L+∆L
LT (G+H · γ ·∆t) · β

γ2

]
·
{

∆td
∆tp

}

=
{

tS− t−∆t fint

F̃w ·∆t −H · t−∆t p · c5 ·∆t

}
(28)

in which:

∆L =
∫
V

BT · α̃ · I ·N · ws

n
·N ·p ·dV (29)

L =
∫
V

BT · α̃ · I ·N ·Sw ·dV (30)

Furthermore, Eq. (28) may be rearranged in the form:

[
K̂ L
LT I

]
·
{

∆td
∆tp

}

+

[
0 ∆L
0 (G+H · γ ·∆t) · β

γ2 − I

]
·
{

∆td
∆tp

}

=
{

tS− t−∆t fint

F̃w ·∆t −H · t−∆t p · c5 ·∆t

}
(31)

It can be observed that symmetry is restored in the first
matrix of Eq. (31). Formally, to solve this large system
of linear equation, inversion of matrices is required. Ac-
cording to the Sherman-Morrison formula, if A is a non-
singular n×n invertible matrix and 1 + vT ·A−1 ·u �= 0

in which u and v are two vectors with n entries, then the
following identity holds:

(
A+u ·vT )−1 = A−1 − A−1uvT A−1

1+vT A−1u
(32)

Applying Eq. (32) into Eq. (31), matrix A in Eq. (32)
becomes:

A =
[

K̂ L
LT I

]
(33)

and the vectors u and v can be defined as:

u =
[

∆L, (G+H · γ ·∆t) · β
γ2 − I

]T
(34)

vT =
[

0, 1
]

(35)

Hence, the solution of the governing equation (31) can be
obtained numerically by means of the Newton-Raphson
iterative procedure with one time matrix inversion. At
every time step, the contribution of the pressure update
on the system solution is evaluated by the matrix multi-
plications of Eq. (32).

Obviously, the required computer time with this solution
procedure depends mainly on the speed of matrix multi-
plications. Since this solution process involves only ma-
trix inversion and multiplications, without choosing any
predictor, numerical stability problems, which occur in
the partitioned solution procedure, can be avoided.

In algorithmic format, the steps necessary for the above
solution procedure of the governing equations are pre-
sented in Liu (2003).

3 Constitutive model

In order to be capable of simulating strain localization
phenomena, an appropriate constitutive model needs to
be specified. In the finite element analysis of geotech-
nical problems, the choice of an appropriate constitutive
model may have a significant influence on the numerical
results. The constitutive model should be able to cap-
ture the main features of the mechanical behaviour of
geotechnical materials under complex states of stress.

In this study, on the basis of the hierarchical approach
proposed by Desai (1980), a modified form of the De-
sai yield function is proposed to simulate the elastoplas-
tic characterization of the geomaterial, see Liu, Cheng,
Scarpas. and Blaauwendraad (2004a). The models are
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general and sufficiently simplified in terms of number
of material parameters and every parameter has a clear
physical meaning.

In general, the proposed model is applicable for any fric-
tional material. However, in this study, only geotechnical
materials will be considered. In this section, the empha-
sis is placed on the presentation of the model character-
istics in both the hardening and the softening ranges of
response, and the establishment of model nonassociativ-
ity.

3.1 Basic associative model

Every constitutive model has its advantages and limita-
tions. One of the major limitations of commonly used
cap or critical state models, is that the yielding is con-
trolled by two separate yield functions that intersect each
other with a slope discontinuity. In associated plastic-
ity theory, the incremental plastic strain is assumed to be
normal to the flow surface at the loading point. Thus,
in case of two intersecting flow surfaces, the direction
of the incremental plastic strain is not defined uniquely
at the point of surface intersection. Thus the volumet-
ric and shear response of the material cannot be properly
predicted.

The single surface plasticity model proposed by Desai
(1980) includes most of the currently common used plas-
ticity models as special cases. The surface is continuous
(smooth) and hence avoids the above mentioned discon-
tinuity problems of multisurface models.

The particular form of employed yield function is given
by:

F =
J2

p2
a
−

[
−α ·

(
I1 +R

pa

)n

+ γ ·
(

I1 +R
pa

)2
]

= 0 (36)

where I1 and J2 are first and second stress invariants re-
spectively, pa is the atmospheric pressure with units of
stress, parameter R represents the triaxial strength in ten-
sion.

The yield function in Eq. (36) can be written also in
terms of effective mean normal stress p′ and deviator
stress q as:

F =
q2

3p2
a
−

[
−α ·

(
3p′

pa

)n

+ γ ·
(

3p′

pa

)2
]

= 0 (37)

The material isotropic hardening/softening is described
by means of parameter α in the yield function. The val-

Figure 1 : α influences on F in p′ −q space

Figure 2 : n influences on F in p′ −q space

ues of α control the size of the flow surface. It is typi-
cally defined as a function of deformation history. As α
decreases, the size of the flow surface increases, Figure
1. When α = 0, the ultimate stress response surface of
the material is attained.

The value of n determines the apex of the flow surface
on the I1 −

√
J2 or p′ −q space. Parameter n is related to

the state of stress at which the material response changes
from compaction to dilation. Its influence on the geomet-
ric characteristics of the surface is portrayed in Figure 2.
It is worth noticing that not only the shape but also the
size of the surface is influenced as well.

Parameter γ is related to the ultimate strength of the ma-
terial. It denotes the slope of the ultimate stress response
surface.

According to experimental observations in Cheng, den
Haan and Barends (2001), the ultimate stress response
surface of some geomaterials is not always a straight line
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Figure 3 : g influences on F in p′ −q space

on the I1 −
√

J2 or p′ − q space, but a curved one. In
order to enhance the applicability of the classical Desai
yield function in Eq. (36), a modified form of the yield
function has been utilized by Liu, Cheng, Scarpas. and
Blaauwendraad (2004a) and shown in Eq. (38). In this,
the exponent 2 in the multiplier of γ in Eq. (36) is re-
placed by the parameter g:

F =
J2

p2
a
−

[
−α ·

(
I1 +R

pa

)n

+ γ ·
(

I1 +R
pa

)g]
= 0 (38)

Similarity to Eq. (37), the modified yield function of Eq.
(38) can be written in terms of effective mean normal
stress p′ and deviator stress q as:

F =
q2

3p2
a
−

[
−α ·

(
3p′

pa

)n

+ γ ·
(

3p′

pa

)m]
= 0 (39)

Parameter g controls the shape of the ultimate response
surface of the material. The influence of g on the ultimate
stress response surface in p′−q space is presented in Fig-
ure 3. For g < 2, the ultimate response surface becomes
concave. If g = 2 the classical Desai ultimate stress re-
sponse surface is attained.

3.2 Modeling of hardening and softening behavior

3.2.1 Material hardening

According to experimental evidence, it is generally
known that during the process of incremental plastic de-
formation, the yield surface changes size, shape and loca-
tion. A law governing this aspect of response is called the
hardening rule. The manner in which hardening occurs
for geotechnical materials can be quite complicated. For
this reason, some simplified assumptions must be made
in the view of the numerical implementation.

Mathematically, hardening is characterized by parame-
ters that vary with the plastic loading history. The hard-
ening parameter is often a function of the effective plas-
tic strain or plastic work. There are several hardening
rules that have been proposed to describe the growth of
subsequent yield surfaces for material hardening. These
are: isotropic hardening, kinematic hardening and mixed
hardening.

For quasi-static monotonic loading, the isotropic harden-
ing model is appropriate for the representation of mate-
rial behaviour. In the case of reversals of loading, kine-
matic mixed hardening may be more appropriate. In this
study, only isotropic hardening is considered.

According to the theory of plasticity, for an isotropically
hardening material, the plastic deformations are associ-
ated with expansion of the flow surface. Therefore, pa-
rameter α employed here for the constitutive model can
be defined as a function of the plastic deformation his-
tory. The actual functional form of α should be deter-
mined on the basis of laboratory tests.

The parameter α can be typically expressed in terms of
internal variables such as the effective plastic strain, the
plastic work, the dissipated energy etc. It was found that
use of the effective plastic strain provides a more consis-
tent formulation than that of plastic work (Desai, 2001).
Also it is relatively easier to compute the effective plastic
strain from available test data.

Hence α is expressed as:

α = α
(

ξ, ξv, ξd
)

(40)

in which the effective plastic strain ξ is defined on the
basis of plastic strain increments dεp

i j as:

ξ =
∫ (

dεp
i jdεp

i j

) 1
2

(41)
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Obviously, the magnitude of the effective plastic strain ξ
never decreases. ξV and ξd are the volumetric and de-
viatoric components of ξ respectively. They can be ex-
pressed as:

ξd =
∫ (

dep
i j ·dep

i j

)1/2 (42)

ξv =
∫

1√
3

(
dεp

kk ·dεp
kk

)1/2 (43)

where dei j is incremental deviatoric plastic strain tensor
defined as:

dep
i j = dεp

i j −
1
3

dεp
kk ·δi j (44)

and dεp
kk is the incremental volumetric plastic strain. δi j

is the Kronecker deta.

Several forms of α have been developed for description
of the hardening response of various engineering mate-
rials, see Desai and Faruque (1984); Desai, Somasun-
daram and Frantziskois (1986). Based on laboratory ob-
servations for various stress paths, material hardening re-
sponse is influenced both by the coupled and uncoupled
actions from volumetric and deviatoric plastic deforma-
tions. For example, in a hydrostatic compression test,
since the stress path corresponding to this test remains
along the hydrostatic axis, only volumetric plastic defor-
mations are created. On the other hand, for purely shear
loading, there will be no volume change and the material
will experience only large shear deformations.

In order to take these observations into account, in the
framework of this study, parameter α of the modified De-
sai surface in Eq. (38) is expressed as a function of both
volumetric and deviatoric hardening components, αV and
αD:

α = ηh ·αV +(1−ηh) ·αD (45)

where:

αV = a1 · eb1·ξv (46)

αD = c1 ·
[

1− (M′)2

27γ
·
(

ξd

d1 +ξd

)2

·
(

3pc

pa

)(2−g)
]

(47)

ηh =
ξv

ξv +ξd
(48)

αV and αD are the volumetric and deviatoric hardening
components respectively. a1, b1, c1, and d1 are harden-
ing parameters. The ratio ηh in Eq. (48) denotes the
contribution of volumetric hardening to the overall mate-
rial hardening response. M′ is the peak stress ratio. pc is
the soil preconsolidation pressure.

When volumetric and deviatoric behaviour are coupled,
α can be determined directly by using Eq. (45).

Details of the development of mathematical expressions
for αV and αD including the determination of the cor-
responding hardening parameters are presented in Liu,
Cheng, Scarpas. and Blaauwendraad (2004a).

3.2.2 Material softening

Typical stress-strain behaviour for a soil under compres-
sive loading is shown in Figure 4. This figure indicates
that, for deformations beyond those corresponding to the
ultimate strength (denoted by d), the material undergoes
softening (degradation) in its strength and stiffness. Nev-
ertheless, it continues to carry load until it approaches its
residual strength at the critical state (denoted by c).

In this study, an isotropic measure of response flow sur-
face degradation has been introduced into the model to
simulate the softening process. This adaptation of the
model is achieved by means of specifying the variation of
parameterα, after response degradation initiation, as an
increasing function of the monotonically varying equiva-
lent post fracture plastic strainξp f :

α = αR +ηs · (αu −αR) (49)

in which:

ηs = e−κ1·ξp f (50)

Figure 4 : Stress-strain behaviour
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and αu and αR are the values of α corresponding to ma-
terial ultimate stress response and residual stress state re-
spectively, see Figure 5. The parameter κ1 is a material
parameter that determines the material degradation rate.

The definition of ξp f is similar to the effective plastic
strain ξ defined in Eq. (41). The difference is that only
incremental plastic strains after response degradation ini-
tiation are now taken into account.

The variation of α as a function of ξp f is shown in Figure
5. At material degradation initiation, due to rapid mate-
rial softening, α increases quickly. As the state of resid-
ual response is approached, the variation of α becomes
insignificant and softening gradually ceases.

Figure 5 : α variation with respect to ξp f

By relating α to a physically measurable quantity like the
plastic strains, its functional form can be determined on
the basis of laboratory tests. Also, with this simplified
approach, only one parameter κ1 needs to be determined
to characterize the material softening response. The de-
termination procedure of the softening parameter κ1 is
presented in Liu (2003).

3.3 Nonassociative model

The physical soil characteristics such as density, void ra-
tio, water content and mineralogy can greatly influence
soil behaviour. Successful prediction of soil response
depends on whether the material model used can cap-
ture the significant characteristics of response under en-
gineering conditions. The most significant characteristics
of soil response are the ultimate strength, the dilation or
contraction, the hardening or softening response and the
stress path dependence.

Both associated and nonassociated flow rules are com-
monly used with plasticity models for geotechnical ma-

terials. For some materials such as metals and undrained
cohesive soils, the use of the associated flow rule is most
common. On the other hand, for some frictional and
cohesionless soils, material models incorporating the as-
sociated flow rule usually exhibit plastic dilation that is
larger than the one that is observed in laboratory testing.
In this case, it is necessary to employ a nonassociative
flow rule for plasticity modelling.

In the hierarchical approach, see Desai, Somasundaram
and Frantziskonis (1986), a nonassociative model is
obtained by defining the potential function as a cor-
rection/modification to the yield function. This cor-
rection approach can be used to develop models of
various grades for characteristics such as associative
and isotropic hardening, nonassociative, isotropic and
anisotropic hardening and strain softening response.

By utilizing the notion of correction of the yield function,
the potential function Q is expressed as:

Q = F +h(I1,Ji,ξ) (51)

in which F is the yield function defined in Eq. (38),
h(I1,Ji,ξ) is a correction function consisting of stress in-
variants I1, Ji(i = 2,3) and ξ is the effective plastic strain
defined in Eq. (41).

In the proposed model, the size of Q is controlled by a
hardening/softening parameter αQ defined as:

αQ = α+αc (52)

in which αc is a correction function expressed as:

αc = κc (α0 −α) (1−χv) (53)

It is determined on the basis of experimental evidence.
The parameter α0 in Eq. (53) is the value of α at the ini-
tiation of nonassociativeness. The parameter χv controls
the contribution of volumetric plastic deformation to the
expansion of the potential surface and is defined by:

χv =
ξv

ξ
(54)

where ξv is the volumetric component of effective plastic
strain ξ. The parameter κc in Eq. (53) is the only extra
material parameter that needs to be determined to capture
material nonassociative behaviour.
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Table 1 : Material parameters and specimen geometry
data

E
(Mpa)

79 b1 -3044 g 1.795

ν 0.29 c1 1.17e-03 kw

(m/s)
1.0e-06

n 5.04 d1 5.53e-03 L (mm) 100
γ 0.155 κc 0.47 B (mm) 50
a1 1.17e-

03
κ1 3.5 W

(mm)
10

Thus, the plastic potential Q in Eq. (51) is written in
I1 − J2 space as:

Q =
J2

p2
a
−

[
−αQ ·

(
I1 +R

pa

)n

+ γ ·
(

I1 +R
pa

)g]
(55)

It can be observed that for isotropically hardening mate-
rial subject to hydrostatic compression loads, χv = 1 in
Eq. (54)and hence αQ = α in Eq. (52). This means that
nonassociativeness does not occur under a hydrostatic
compression condition. For the case of κc = 0, the po-
tential function Eq. (55) yields Q = F indicating that the
associative model is a special case of the nonassociative
one.

In the following sections, application of the nonlinear
model for simulation of strain localization in saturated
sands will be presented.

4 Numerical examples

4.1 3D specimen subjected to triaxial load

4.1.1 Specimen geometry and material characteristics

A fully saturated cubic 3D specimen with impermeable
boundaries was selected for the numerical simulations.
The finite element mesh consisted of 20-nodded brick el-
ements, Figure 6. The geometry parameters of the spec-
imen are given in Table 1. Because of symmetry, only
half of the specimen thickness was simulated.

A confining pressure of 150 kPa was applied to all
boundaries of the specimen and kept constant through-
out the analysis. Incremental displacements are applied
on a rigid platen at the top of the specimen. The left, right
and front planes of the specimen could move freely in the
normal direction of each plane. The bottom plane of the
specimen was constrained in the y-direction. In order to

Figure 6 : 3D specimen geometry and loading conditions

simulate the real test conditions, interface elements were
introduced at the top and the bottom of the sand specimen
between the rigid platens and the specimen. By adjusting
the bond stiffness of the interfaces, the influence of the
roughness of the platen on strain localization within the
specimen could be simulated.

In this study, dense sand was chosen for the numerical
investigation. The nonassociative constitutive model de-
scribed in section 3 was chosen to simulate the material
nonlinear response. The material parameters have been
derived on the basis of triaxial tests on ‘Eastern Scheldt’
dense sand, see Cheng, den Haan and Barends (2001),
and are shown in Table 1.

4.1.2 Correlation between suction and strain localiza-
tion

According to laboratory observations, in a drained test,
depending on the stress level, granular materials exhibit a
dilatant or contractive response. In an undrained test, due
to the incompressibility of the fluid, the tendency to dilate
or to contract will induce pore water pressure variations.
The dilatancy of the material can build up positive excess
pore water suction in the specimen and hence increase
the shear strength. In this section, emphasis lies on the
relation between positive excess pore water (suction) and
the occurrence of strain localization.
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Figure 7 : Plots at vertical displacement = 0.485mm
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Figure 8 : Plots at vertical displacement = 1.5025mm
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Figure 9 : Plots at vertical displacement = 1.6297mm

The specimen in Figure 6 consisting of 800 elements,
with height L=100mm, width B=50 mm and thickness
W=10 mm was investigated.

Figure 7 through Figure 9 present the plots of excess wa-
ter pressure, water flow direction, as well as the corre-
sponding effective plastic strains in the specimen. It can
be observed that initially, the distribution of the water
suction field in the specimen was nearly homogenous and
only minor concentrations of plastic strain occured at the
corners of the top and bottom surfaces of the specimen,
Figure 7. In such conditions, the undrained specimen is
constrained to isochoric deformation (i.e. deformation
without volume change).

At a vertical displacement of 1.5025 mm, four regions
of high effective plastic strain developed symmetrically
around the central part of the specimen, Figure 8(c).
These caused uneven gradients of excess pore water pres-
sure, Figure 8(a), and hence flow towards the regions of
higher plastic strains, Figure 8(b).

At a vertical displacement of 1.6297 mm, two pairs
of dominant shear bands formed and propagated to the
boundaries of the specimen, Figure 9(c). During shear

band development, large material dilatancy occured in-
side the shear bands. As a consequence, high excess
pore pressure gradients develop within the dilated re-
gions, Figure 9(a), hence water flowed mostly towards
them, Figure 9(b).

The variations of excess pore water pressure inside and
outside the shear bands are compared in Figure 10. It is
observed that, due to the contraction of sand at the be-
ginning of loading, negative excess pore water pressure
(compression) built up initially. As soon as the vertical
displacement of the loading platen increased to a certain
value, the sand started to dilate and hence positive ex-
cess water pressure (suction) appeared. At the onset of
localization, an abrupt jump of the positive excess water
pressure inside the shear band was observed. This jump
of positive water pressure may relate to the fluid cavita-
tion phenomena as indicated by Schrefler, Sanavia, and
Majorana (1996), Gawin, Sanavia and Schrefler (1998)
and Mokni and Desrues (1998).

At cavitation, the fluid phase changes to vapour, a phe-
nomenon that occurs when the water pressure decreases
below the vapour saturation pressure. In such condi-
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Figure 11 : Comparison of load-deformation and ex-
cess water pressure inside shear band for three undrained
specimens

Figure 12 : The variation of excess water pressure inside
shear band

tions, the undrained specimen cannot be constrained to
isochoric deformation.

Figure 11 presents the variations of excess water pressure
at the intersection point of the shear bands and the cor-
responding load-deformation curves for three dense sand
specimens (indicated by cases 1 to 3). It can be seen
that, in all three cases, the abrupt jump of the positive ex-
cess pressure (suction) tends toward the same final value,
which means that all tests start to cavitate at the same
pore pressure and also that, the abrupt degradation of the
material strength takes place the moment cavitation oc-
curs.

These observations cannot be attributed to accidental
phenomena, because in such a case there would be no
reason for the pore pressure value at localization to be
the same in the three cases. The results obtained al-
low us to conclude that for dense sands under undrained
conditions it is cavitation of the pore water that leads to
abrupt degradation of the strength of the material, and
not vice versa. These numerical observations coincide
with the experimental observations carried out on biaxial
undrained tests for Hostun RF dense sand by Mokni, and
Desrues (1998). They stated that in these tests localiza-
tion starts only after cavitation took place.

The magnitude of confining pressure can influence water
suction in the specimen. For instance, the variations of
excess water pressure inside the shear band for a speci-
men with two confining pressures, 150kPa and 400kPa,
are shown in Figure 12. It can be observed that in spec-
imens with higher confining pressure, higher suction de-
veloped in the shear band.

4.2 3D specimen subjected to triaxial load and in or
out flow conditions

4.2.1 Specimen geometry and material characteristics

It was already observed in the previous section, that the
onset and the development of strain localization are both
strongly influenced by the level of water suction in the
specimen.

It is of interest to investigate what happens at the on-
set and development of strain localization in a specimen
when the pore water suction field is disturbed. To achieve
this, the same specimen that was utilized in the previous
section was chosen,

however this time water outflow or inflow was specified
in the center four elements of the specimen during the
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Table 2 : Material parameters
E (MPa) 79 a1 1.17e-03 κ1 3.5
ν 0.29 b1 -3044 kw(m/s) 1.0e-09
n 4.36 c1 1.17e-03
γ 0.155 d1 5.53e-03 inflow rate (mm3 / (s*mm2)) -0.1
g 1.795 κc 0.47 outflow rate (mm3 / (s*mm2)) 0.1

triaxial load test, see Figure 13. The material parameters
are shown in Table 2.

4.2.2 Comparison of the evolution of strain localization

Figure 14 through Figure 15 present diagrams of the
nodal pore pressure and the effective plastic strain in
the specimen when inflow is applied in the central part.
Three stages of the analysis are shown: before, at and
after the onset of localization.

Figure 14 (a) shows a contour plot of the nodal pore pres-
sures in the specimen before initiation of strain localiza-
tion. As a result of the application of inflow in the spec-
imen, a field of negative pore pressures can be observed
in the centre of the specimen. Due to the material di-
latancy, in the remaining part of the specimen, positive
excess pore water pressure (suction) was generated. The
applied inflow led to a decrease of the shear strength in
the center and hence larger effective plastic strains devel-
oped at this localization, Figure 14 (b).

As the vertical displacement is increased, the negative
pore pressure was restricted only to a small zone from the

outflow

inflow

L
=

10
0 

m
m

B=50 mm

Figure 13 : Schematic of 3D Specimen subjected to
in/out flow

centre of the specimen, Figure 15 (a). Most part of the
specimen was subjected to positive pore pressure. The
appearance of the shear bands in the centre of the speci-
men can be observed in Figure 15 (b).

After the formation of the shear bands was completed,
the suction field gradually diminished and negative pore
pressure appeared in the entire specimen, Figure 16 (a).
The effective plastic strains evolved along the same lines
as in the previous stage, Figure 16 (b). The magnitudes
of the effective plastic strains in the central part of the
specimen are now almost twice as large as in Figure 15
(b). The induced inflow direction can be clearly seen in
Figure 17

Figure 18 through Figure 20 present the diagrams of
nodal pore pressure and effective plastic strain in the
specimen when outflow was applied in the central part
of the specimen. Similar to the previous cases, the three
stages of the analysis: before, at and after onset of local-
ization are shown.

Figure 18 (a) shows the nodal pore pressure diagram be-
fore the shear bands occured in the specimen. It can be
observed that, due to the induced outflow, higher values
of suction concentrated in the centre of the specimen and
hence less effective plastic strains were generated in this
part of the specimen, Figure 18 (b).

As the vertical displacement was increased, higher suc-
tion pressures are generated in the centre of the specimen,
Figure 19.

As a result, the shear strength of the specimen in this
region increased and, in contrast to the previous case,
the shear bands shifted more towards the loading platens.
The magnitude of the effective plastic strain in the shear
bands was more than twice value of the previous stage,
Figure 19 (b).

Continuous vertical displacement of the specimen led to
a gradually decreasing suction field and negative pore
pressure around the central part of the specimen, Figure
20 (a). As a consequence, higher effective plastic strains
in the shear bands near the loading platens were gener-
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Figure 14 : Plots before initiation of strain localiza-
tion (inflow at the center)
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Figure 15 : Plots at initiation of strain localization
(inflow at the center)
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Figure 16 : Plots after initiation of strain localiza-
tion (inflow at the center)
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Figure 17 : Plots direction of flow inside the speci-
men (inflow at center)

ated, Figure 20 (b).

Figure 21 presents the direction of outflow in the speci-
men. It can be clearly seen that the direction of outflow
was influenced by the development of the shear bands in
the specimen.

Figure 22 shows the load-deformation curves for the
three cases. It can be observed that for the specimen
subject to inflow, localization in the specimen occurs at
a lower vertical displacement. The variation of shear
strength of the material depends on the magnitude of the
applied inflow/outflow rate.
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Figure 18 : Plots before initiation of strain localiza-
tion (outflow at the center)
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Figure 19 : Plots at initiation of strain localization
(outflow at the center)
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Figure 20 : Plots after initiation of strain localiza-
tion (outflow at the center)
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Figure 21 : Plots direction of flow inside the speci-
men (outflow at center)

5 Conclusions

Strain localization phenomena have been observed in
many geotechnical engineering problems. Gaining a bet-
ter understanding of the mechanics and physics of strain
localization is important for design purposes.

Based on the numerical studies, the following conclu-
sions can be drawn:

The governing equations and the constitutive model are
capable of simulating the elastoplastic characteristics of
a porous medium.

In undrained conditions, due to the incompressibility of
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Figure 22 : Load-deformation curves

the fluid, the tendency to dilate will build up water suc-
tion in the specimen. The induced water suction leads
to soil shear strength increases. However, water suction
can only delay but not preclude the development of strain
localization in the specimen.

The water suction field in sand under undrained condi-
tions can influence significantly the onset and develop-
ment of strain localization.

The strain localization in specimens under undrained
conditions always coincides with fluid cavitation. There
is a physical connection between these two phenomena.
It is cavitation of the pore water that leads to abrupt
degradation of the strength of the material, and not vice
versa

Additional outflow and inflow applied to a specimen can
greatly modify the pattern of the pore water pressure
and effective plastic strains development. In the case of
outflow induced test, the shear bands move towards the
platens and in the case of inflow induced test, the shear
bands develop in the centre of the specimen.
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