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MLPG Method Based on Rankine Source Solution for Simulating Nonlinear
Water Waves

Q.W. Ma 1

Abstract: Recently, the MLPG (Meshless Local
Petrov-Galerkin Method) method has been successfully
extended to simulating nonlinear water waves [Ma,
(2005)]. In that paper, the author employed the Heaviside
step function as the test function to formulate the weak
form over local sub-domains, acquiring an expression in
terms of pressure gradient. In this paper, the solution
for Rankine sources is taken as the test function and the
local weak form is expressed in term of pressure rather
than pressure gradient. Apart from not including pres-
sure gradient, velocity gradient is also eliminated from
the weak form. In addition, a semi-analytical technique is
developed to estimate the domain integral involved in this
method, rendering it unnecessary to evaluate velocities at
a quite large number of points. These features potentially
make the numerical discretisation of the governing equa-
tions relatively easier and more efficient. The method is
validated by simulating various water waves generated
by a wavemaker and by motions of a tank. Good agree-
ment of results with those from publications is achieved.

keyword: Water waves; Meshless Local Petrov-
Galerkin method (MLPG); MLPG R; Free surface

1 Introduction

Nonlinear water waves are of great concern to offshore
and costal engineering but are difficult to deal with. Sim-
ulating them has received numerous studies, for which
mesh-based methods, such as finite element (FEM), fi-
nite volume and finite difference methods, are widely
used. These methods have provided many useful and
satisfactory results. However, their successes largely
rely on good quality meshes. The construction of such
meshes, particularly unstructured, is usually a difficult
and time-consuming task because it must be ensured that
aspect ratios of all elements are not very large and not
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very small and connectivity between nodes and elements
must be carefully and accurately found and recorded.
More problematically, elements can frequently become
over-distorted during simulation of water wave evolu-
tions. The over-distorted elements may be amended by
remeshing. However remeshing can be as expensive as
the generation of original meshes and may take a major
proportion of computational time considering that this
has to be done every time step if unstructured mesh is
necessarily used. In order to tackle the difficult, the re-
search group of the author of this paper devised a new
method called quasi arbitrary Lagrangian-Eulerian finite
element method (QALE-FEM) [Ma and Yan (2005)].
The main difference of the QALE-FEM from the con-
ventional FEMs is that the complex unstructured mesh
is generated only once at the beginning and is moved by
using a spring analogy method at all other time steps in
order to conform to the motion of the free surface. This
feature allows one to use an unstructured mesh with any
degree of complexity without the need of regenerating it
at every time step and so the difficulty with regenerat-
ing meshes is bypassed. However, the QALE-FEM is so
far suitable only for potential flow problems. Although
the over-distortion problems may not arise if using fixed
meshes, numerical diffusions due to advection terms may
become severe and the motion of a floating body is not
easy to cope with in such cases.

A new class of methods has recently been developed,
which do not pose the problems associated with over-
distortion. These methods do not need use of any
mesh to discretise computational domains and to con-
struct approximate solutions. Alternatively, they are only
based on randomly-ordered and -distributed nodes, im-
plying that the problems associated with the shape and
connectivity of elements and regeneration of mesh in
mesh-based methods vanish automatically in these mesh-
less (or particle) methods. Many Meshless (or parti-
cle) methods have been reported in the literature, such
as element free Galerkin method [Belytschko, Lu and
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Gu (1994)], diffusion element method [Nayroles, Nay-
roles, Touzot and Villon (1992)], reproducing kernel par-
ticle method [Liu, Chen, Jun, Chen, Belytschko, Pan,
Uras, and Chang (1996)], smoothed particle hydrody-
namics method [Monaghan (1994)], particle finite ele-
ment method [Onate, Idelsohn, Pin and Aubry (2004)]
and so on. Among them, the smoothed particle hydrody-
namics (SPH) method has been most widely used to sim-
ulate water wave problems, see, e.g., Monaghan (1994),
Dalrymplem and Knio (2001) and Lo and Shao (2002).

More recently, another meshless method, called Mesh-
less Local Petrove-Galerkin (MLPG) method, has been
developed in Atluri and Zhu (1998) and Atluri and Shen
(2002). This method is based on a local weak form over
local sub-domains (circles for two dimensional prob-
lems and spheres for three dimensional ones). It of-
fers great flexibility. Many other meshless methods
can be considered to be special cases of the MLPG
method. The success of the MLPG method has been
reported in solving fracture mechanics problems [Batra
and Ching (2002)], beam and plate bending problems
[Atluri and Zhu (2000)], three dimensional elasto-static
and -dynamic problems [Han and Atluri (2004a,b)] and
some fluid dynamic problems such as steady flow around
a cylinder [Atluri and Zhu (1998)], steady convection and
diffusion flow [Lin and Atluri (2000)] in one and two di-
mensions and lid-driven cavity flow in a two dimensional
box [Lin and Atluri (2001)].

In Ma (2005), the MLPG method was extended to simu-
lating nonlinear water waves and produced some encour-
aging results. In that paper, the simple Heaviside step
function was adopted as the test function to formulate
the weak form over local sub-domains, resulting in one
in terms of pressure gradient.

In this paper, the MLPG method is still used but the so-
lution for Rankine sources, which is very popular for
solving nonlinear water wave problems by using conven-
tional boundary element methods, will be taken as the
test function. Although this test function seems to be
more intricate than the Heaviside step function, the re-
sulting weak form does not contain gradients or deriva-
tives of unknown functions, which potentially make nu-
merical discretisation of the governing equations rela-
tively easier and more efficient. For the ease of descrip-
tion, the MLPG method based on the Rankine source so-
lution is named as MLPG R method in this paper. Simi-
lar approach has been suggested, e.g., in Zhu, Zhang and

Atluri (1998) and Sellountos and Polyzos (2003), for the
LBIE method and applied to some solid and fluid prob-
lems but not to nonlinear water wave problems. The dif-
ference of this work from other publications using the
LBIE method is that the approach is extended to dealing
with nonlinear water waves and a special local weak form
particularly suitable for this kind of problems is derived.

2 Governing Equation and Numerical Procedure

The flow of incompressible and nonviscous fluids is con-
sidered, which is governed by the following equations
and conditions:

∇ ·�u = 0 (1a)

D�u
Dt

= −1
ρ

∇p+�g (1b)

D�x
Dt

=�u and p = patm on the free surface (2a)

�u.�n = �U .�n and�n.∇p = ρ
(
�n ·�g−�n · �̇U

)
on solid boundaries (2b)

where, ρ is the density of fluids, �u the velocity of fluids,
�U the velocity of solid boundaries,�g the gravitational ac-
celeration, p the pressure and patm the atmospheric pres-
sure.

It is well known that the nonviscous flow can be formu-
lated by a velocity potential. Nevertheless, the potential
formulation is not adopted here, because our research ef-
forts will not be restricted to nonviscous flow in future.

The above equations will be solved using a time-step
marching procedure. This starts from a particular in-
stant when the velocity and the geometry of fluid flow
are known and then evolves to next time step, at which
all physical quantities are updated by solving the govern-
ing equations. During each time step, the problem is for-
mulated using a well known time-split procedure. This
formulation contains three sub-steps:

1. Evaluating intermediate velocities and positions.

At start of a new time step, intermediate velocities
and positions are first evaluated by

�u(∗) =�u(n) +�g∆t (3)

�r(∗) =�r(n) +�u(∗)∆t (4)
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where �r is the position vector of a point; ∆t is the
time step; and the superscripts (n) indicate the quan-
tities at timet = tn. On this basis, the velocities at
time t = tn+1 = tn+ ∆t can be expressed by

�u(n+1) =�u(∗) +�u(∗∗). (5)

2. Estimating the pressure

Integrating Eq. (1b) over the time interval (tn, tn+1)
results in

�u(n+1) =�u(n) +�g∆t −
tn+1∫
tn

(
1
ρ

∇p

)
dt. (6)

The integration with respect to time can be approxi-
mated by well-known methods, such as explicit, im-
plicit or semi-implicit methods, i.e.

tn+1∫
tn

(
1
ρ

∇p

)
dt = ∆t

[
θ
ρ

∇p(n+1) +
1−θ

ρ
∇p(n)

]
(7)

with θ=0 for explicit, θ=1 for implicit and θ=1/2 for
semi-implicit methods. Substituting Eq. (7) into Eq.
(6) results in:

�u(n+1) =�u(n) +�g∆t −∆t

[
θ
ρ

∇p(n+1) +
1−θ

ρ
∇p(n)

]

=�u(∗)−∆t

[
θ
ρ

∇p(n+1) +
1−θ

ρ
∇p(n)

]
. (8)

From Eq. (5) it follows that

�u(∗∗) = −∆t
ρ

[
θ∇p(n+1) +(1−θ)∇p(n)

]
. (9)

The velocity in Eq. (5) or (8) must also satisfy the
continuity equation (1a), yielding

∇2 p(n+1) =
ρ

θ∆t
∇ ·�u(∗)−

(
1
θ
−1

)
∇2 p(n). (10)

It is clear that this formulation is not suitable for
θ=0. In fact, the explicit method corresponding to
this value of θ is not stable and possesses low ac-
curacy. Thus, it is suggested that the value of θ is
always chosen in the range0 < θ ≤ 1. In this paper,

the fully implicit method (θ=1) is employed, leading
to

�u(n+1) =�u(∗)− ∆t
ρ

∇p(n+1) (11)

and

∇2 p(n+1) =
ρ
∆t

∇ ·�u(∗). (12)

Eq. (10) or Eq. (12) governs the pressure at the new
time level, from which the solution for the pressure
at the new time level can be found.

3. omputing the velocity and the position at timet =
tn+1.

After the solution for p(n+1) is found, the velocities
can be estimated using Eq. (11) and the positions of
fluids can be updated by numerically integrating the
velocities.

 

Integration 
domain at node I 

Support domain 
at node J 

J I
rJ 

Figure 1 : Illustration of nodes, integration domain and
support domain

The time split procedure was initially introduced by
Chorin (1968) for incompressible flow. It has been ex-
tended to deal with various problems using a finite ele-
ment method as described in the book of Zienkiewicz and
Taylor (2000). The procedure has also been employed by
a number of authors who use other meshless or particle
methods, e.g., Lo and Shao (2002), Koshizuka, Nobe,
Oka (1998) and Idelsohn, Storti, Onate (2001).

Although the above formulation is employed for the non-
viscous flow it may be extended to viscous flow by
adding viscous stress terms to Eq. (3). In that case,
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however, iterations may be necessary since the viscous
stresses are estimated using the velocities at previous
steps, which would require to be improved for dealing
with complicated phenomena in viscous flows.

3 MLPG R Formulations

The key task in the above formulation is to find the solu-
tion for the pressure by solving Eq. (12). Various meth-
ods, such as finite element and finite different methods
may be used but in this paper the MLPG R method will
be employed, as indicated above. This method is based
on a set of nodes, as illustrated in Fig. 1, which discre-
tise the fluid domain. Some of these nodes are located on
boundaries and others lie inside the fluid domain. For-
mulation around inner nodes is first discussed and for-
mulation around boundary nodes is described in Section
5. At each of the inner nodes, a sub-domain is specified,
which is a circle for two-dimensional (2D) and a sphere
for three-dimensional (3D) cases. Eq. (12), after multi-
plying by an arbitrary test function φ, is integrated over
the sub-domain, leading to∫
ΩI

[
∇2 p− ρ

∆t
∇ ·�u(∗)

]
ϕdΩ = 0 (13)

where ΩI is the area or volume of the sub-domain centred
at node I. There are many options for the test function
[Atluri and Shen (2002)]. In Ma (2005), the Heaviside
step function was used. In the MLPG R method, the so-
lution for Rankine sources is taken as the test function.
This test function ϕ is made to satisfy that∇2ϕ = 0, in ΩI

except for its centre andϕ = 0, on ∂ΩI , the boundary of
ΩI . The solution satisfying these equation and conditions
is well known and can be expressed as

ϕ =
1

4π

⎧⎨
⎩

2ln(r/RI) for a two dimensional case

(1−RI/r) for a three dimensional case

(14)

where r is the distance between a concerned point and
the centre of ΩI and RI the radius of ΩI .

In Eq. (13), the second order derivative of unknown pres-
sure and the gradient of the intermediate velocity are in-
cluded. Numerical calculation of the derivative and gra-
dient requires not only much computational time but also
degrades the accuracy. In order to obtain a better form,

Eq. (13) is changed, by adding a zero term p∇2ϕ and
applying the Gauss’s theorem, into

∫
∂ΩI+∂ε

[�n · (ϕ∇p)−�n · (p∇ϕ)]dS

=
∫

∂ΩI+∂ε

ρ
∆t

�n ·
(

ϕ�u(∗)
)

dΩ−
∫
ΩI

ρ
∆t

�u(∗) ·∇ϕdΩ (15)

where ∂ε is a small surface surrounding the centre of ΩI ,
which is a circle in 2D cases and a spherical surface in
3D cases with a radius of ε. The reason for adding ∂ε is
that the test function φ in Eq. (14) becomes infinite at r =
0 and so the Gauss’s theorem can not be used otherwise.
One can easily prove that taking ε → 0results in
∫

∂ΩI+∂ε

[�n · (ϕ∇p)]dS = 0,

∫
∂ε

[�n · (p∇ϕ)]dS = − p ,

and∫
∂ΩI+∂ε

n ·ϕ�u(∗)dS = 0.

As a result, Eq. (13) eventually becomes
∫

∂ΩI

�n · (p∇ϕ)dS− p =
∫
ΩI

ρ
∆t

�u(∗) ·∇ϕdΩ. (16)

Remarkable features of Eq. (16) are worthy to be dis-
cussed. This equation is similar to Eq. (9) in Ma (2005)
in that only boundary integral on the left hand side is in-
volved but is distinct from the latter in that the pressure,
rather than pressure gradient, is dealt with here. This is of
great benefit because estimating pressure is much easier
than estimating pressure gradient. In addition, although
the left hand side of Eq. (16) is in a similar form to that of
Eq. (9) in Zhu, Zhang and Atluri (1998), the right hand
side is different from the corresponding term in that pa-
per. It is this difference that allows the term related to the
intermediate velocity derivatives to be eliminated from
the weak form. The improvement in these two aspects
compared with previous publications makes the evalua-
tion of the integrals and therefore the whole procedure
more efficient in the MLPG R method.
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4 Weight and Shape Functions

The unknown function p needs to be approximated by a
set of discretised variables. Generally, the approximation
may be written as

p(�x) ≈
N

∑
j=1

Φ j (�x) p̂ j (17)

where N is the number of nodes that affect the pressure at
point�x; p̂ j are nodal variables but not necessarily equal to
the nodal values of p(�x); and Φ j (�x) interpolation func-
tions called shape functions as they play a similar role
to shape functions in finite element methods. However
in finite element methods, the shape functions are formu-
lated by assuming that the unknown function is described
by an explicit function depending on the size of elements
and connectivity between nodes and elements. In mesh-
less methods, there are no elements and no connectivity
between nodes stored. Therefore, the formulation of the
shape functions here is entirely different from that for fi-
nite element methods. In general, a local approximation
to the unknown function is assumed in meshless meth-
ods, which is expressed in terms of unknown variables
corresponding to some randomly located nodes nearby.
This local approximation may be formulated in a vari-
ety of ways. One of them is to use a moving least-square
(MLS) method (Atluri and Shen, 2002), which is adopted
in our work. With this method, the shape function is
given by

ΦJ (�x) =
M

∑
m=1

ψm(�x)
[
A−1

(
⇀x
)

B(�x)
]

mJ

= ψT (�x)A−1
(

⇀x
)

BJ (�x) (18)

with the base function being ψT (�x) = [ψ1,ψ2,ψ3] =
[1,x,y](M=3 ) for 2D

and ψT (�x) = [ψ1,ψ2,ψ3,ψ4] = [1,x,y, z](M=4) for 3D;

and with the matrixes B(�x) and A(�x) being defined as

B(�x) = ΨT W(�x)
= [w1 (�x−�x1)ψ(�x1) ,w2 (�x−�x2)ψ(�x2) , · · ·] (19)

and

A(�x) = ΨT W(�x)Ψ = B(�x)Ψ (20)

where W(�x) and Ψ are, respectively, expressed by

W(�x) =

⎡
⎢⎢⎣

w1 (�x−�xJ) 0 · · · 0
0
· · ·
0 wN (�x−�xJ)

⎤
⎥⎥⎦ (21a)

and

ΨT = [ψ(�x1) ,ψ(�x2) , · · · ,ψ(�xN)] (21b)

which shows each column of the matrix ΨT is the value
of the base function ψ at a particular point. The weight
function wJ (�x−�xJ) may be chosen to be a spline func-
tion given by

wJ (�x−�xJ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1−6
(

dJ
rJ

)2
+8
(

dJ
rJ

)3 −3
(

dJ
rJ

)4

0 ≤ dJ
rJ
≤ 1

0 dJ
rJ

> 1

(22)

where rJ is the size of support domain of the weight func-
tion (see Fig. 1) and dJ = |�x−�xJ | the distance between
the node J and the point�x. In order to ensure the shape
function is well defined, the number of nodes (N) affect-
ing the concerned point must be larger than M, i.e. N ≥3
in 2D and N ≥4 in 3D cases.

After the pressure is obtained, the gradient of the pressure
may be estimated by differentiating Eq. (17)

∇p(�x) ≈
N

∑
J=1

∇ΦJ (�x) p̂J (23)

The partial derivatives of the shape function with respect
to x are found by differentiating Eq. (18) [see, e.g., Atluri
and Zhu (1998)]. Thus,

ΦJ,x = ψT
,xA−1BJ +ψT A−1

,x BJ +ψT A−1BJ,x (24)

where A−1
,x is the partial derivative of A−1 with respect to

x and is evaluated by A−1
,x = −A−1A,xA−1 with A,x =

B,x Ψ; BJ is J-th column of Matrix B and its partial
derivative is estimated by

BJ,x =
∂wJ (�x−�xJ)

∂x
ψ(�xJ) . (25)
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One can also obtain the partial derivative with respect to
y (and z as well for 3D cases) in a similar way or by re-
placing x with y (or z) in Eqs. (24) and (25). It should
be noted that although the base function is a linear func-
tion of coordinate variables�x, the shape function and its
derivatives are nonlinear and continuous. The gradient of
the pressure given by Eq. (23) is also continuous.

5 Imposing Boundary Conditions

Generally, there are two kinds of boundary conditions
for the pressure in water wave problems, as shown in
Eqs. (2a) and (2b): the free surface condition specifying
the pressure (similar to essential boundary conditions in
solid dynamics) and the solid boundary condition spec-
ifying the normal derivative of the pressure. The con-
dition on the solid boundary was generally suggested to
be imposed by applying Eq. (13) to incomplete circu-
lar or spherical sub-domains of boundary nodes [Atluri
and Zhu (1998) and Atluri and Shen (2002)]. The im-
plementation of an essential boundary condition is not
very straightforward since the unknown nodal values in
MLS approach to the shape function are not physical val-
ues as pointed out above and has received a considerable
amount of research as summarized in Atluri (2004). The
methods suggested therein include the penalty method,
transformation method, collocation method and so on.
These approaches works well for fixed (or with little
movement) boundary problems as demonstrated by the
cases in the publications, e.g. Atluri and Zhu (1998),
Atluri and Shen (2002), Han and Atluri (2004a,b) and
Sellountos and Polyzos (2003). As indicated by Ma
(2005), the penalty method was tested for the nonlinear
water wave problems and found that big errors, particu-
larly near the free surface, can be quickly built up. The
reason may be due to the fact that the addition of the
penalty term inevitably produces some errors since it is
not an exact representation of the free surface boundary
condition. These errors may be negligible if the final so-
lution could be found in one or a few time steps and if the
boundary is not a part of solution but specified. However,
they may accumulate to significant ones in several thou-
sand time steps even though the whole scheme is stable
in simulating nonlinear water waves. Although the accu-
mulated errors may be reduced by shortening the length
of the time step, it inevitably increases the computational
costs. Therefore, Ma (2005) suggested, based on numeri-
cal tests, a better way to impose the free surface and solid

boundary conditions in water wave problems is to use the
following scheme:

N

∑
J=1

ΦJ (�x) p̂J = patm for nodes on the free surface (26a)

and

N

∑
J=1

�n ·∇ΦJ (�x) p̂J =�n ·
(
�g− �̇U

)
(26b)

for nodes on the solid boundary.

These work well for the formulation described by Ma
(2005). For the MLPG R method discussed here, numer-
ical tests show that Eq. (26a) may be replaced by

p = patm (26c)

with p̂ jin Eqs. (17), (23) and (26b) equal patm if j-th
node on the free surface.

6 Discretised Equations

Inserting Eq. (17) into Eq. (16) and combining the result
with Equation (26) yields

K · P̂ = F (27)

where

KIJ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
∂ΩI

ΦJ (�x)�n ·∇ϕds−ΦJ (�xI)

for inner nodes
�n ·∇ΦJ (�xI)

for nodes on solid boundaries

(28a)

and

FI =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
ΩI

ρ
∆t�u

(∗) ·∇ϕdΩ

for inner nodes

�n ·
(
�g− �̇U

)
for nodes on solid boundaries

(28b)

where Node I denotes nodes that do not lie on the free
surface; and Nodes J are those influencing Node I, de-
termined by the weight function. Using Eq. (14), the
boundary integral in Eq. (28a) can be simplified as:∫

∂ΩI

ΦJ (�x)�n ·∇ϕds =
1

2παRI

∫
∂ΩI

ΦJ (�x)ds (29)
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where α=1 for 2D and α=2 for 3D problems. The integral
over the domain in Eq. (28b) can also be simplified and
written as:

∫
ΩI

ρ
∆t

�u(∗) ·∇ϕdΩ =
ρ

2π∆t

2π∫
0

RI∫
0

u(∗)
r (r,θ)drdθ

for 2D cases; (30a)

∫
ΩI

ρ
∆t

(
�u(∗) ·∇ϕ

)
dΩ =

ρRI

4π∆t

RI∫
0

2π∫
0

π∫
0

u(∗)
r sinθdrdθdβ

for 3D cases, (30b)

where u(∗)
r is the radial component of�u(∗).

7 Numerical Technique for domain integration

As shown in Eq. (30), the domain integration must be
numerically evaluated, usually by using the Gaussian
quadrature. To do so, more than 16 Gaussian points for
2D case and 64 Gaussian points for 3D cases may be
required to obtain satisfactory results, at which the inter-
mediate velocities are estimated by employing the MLS
method. Evaluation of the velocities at so many points
is time-consuming. In order to make the method more
efficient, the following semi-analytical technique is sug-
gested:

1. Dividing an integration domain into several sub-
domains;

2. Assuming intermediate velocities to linearly vary
over each subdomain;

3. Performing the integration over each subdomain an-
alytically.

The technique can be demonstrated by 2D cases. Let
us consider a circular integration domain with a radius
of R,centred at (x0,y0), as shown in Fig. 2 and divide
it into four subdomains, 0-1-2, 0-2-3, 0-3-4 and 0-4-1.
Over each subdomain, e.g., 0-1-2, the intermediate ve-
locity components are assumed to be linear with respect
to coordinates and given by

u(∗) = u(∗)
0 +cux (x−x0)/R+cuy (y−y0)/R (31a)

1 

2 

3 

4 

0 

Figure 2 : Illustration of division of an integration do-
main.

v(∗) = v(∗)
0 +cvx (x−x0)/R+cvy (y−y0)/R (31b)

where
(
u(∗),v(∗)) are the intermediate velocity compo-

nents at any point (x,y) in the subdomain 0-1-2; and(
u(∗)

0 ,v(∗)
0

)
are those at its centre. cux, cuy, cvxand cvy

are constants, which are determined in such a way that
the velocity components equal to those at Point 1 and 2.
Taking the x−component as an example, one should have

cux (x1 −x0)+cuy (y1 −y0) = (u(∗)
1 −u(∗)

0 )R

cux (x2 −x0)+cuy (y2 −y0) = (u(∗)
2 −u(∗)

0 )R

which gives

cux =

(
u(∗)

1 −u(∗)
0

)
(y2 −y0)−

(
u(∗)

2 −u(∗)
0

)
(y1 −y0)

(x1 −x0) (y2 −y0)− (x2 −x0)(y1 −y0)
R

(32a)

cuy =
(x1 −x0)

(
u(∗)

2 −u(∗)
0

)
− (x2 −x0)

(
u(∗)

1 −u(∗)
0

)
(x1 −x0)(y2 −y0)− (x2 −x0)(y1 −y0)

R

(32b)

cvxand cvycan be found similarly or obtained by replac-

ing
(

u(∗)
1 ,u(∗)

2

)
with

(
v(∗)

1 ,v(∗)
2

)
in Eq.(32); and thus the

velocities in this subdomain are determined by Eq. (31).
The velocities in other subdomains can also be estimated
in this way. The only difference is that they may be re-
lated to the velocities at Points 3 and 4, depending on
which subdomain is concerned. Consequently, the veloc-
ities at any points in the circle are determined by those at
only five points (0, 1, 2, 3 and 4). Based on this, let us
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consider the integration in Eq. (30a) over the circle. It
can be rewritten as:

2π∫
0

RI∫
0

u(∗)
r (r,θ)drdθ =

Ni

∑
i=1

ϑi+1∫
ϑi

RI∫
0

u(∗)
r (r,θ)drdθ

(Ni=4 for four divisions andϑ5 = ϑ1).

The integration over each subdomain can be evaluated
analytically using Eq. (31). For this purpose, Eq. (31) is
rewritten as

u(∗) = u(∗)
0 +cux rcosθ+cuy r sinθ,

v(∗) = v(∗)
0 +cvx rcosθ+cvx r sinθ,

and so

u
(∗)
r = u(∗)

0 cosθ+v(∗)
0 sinθ+cuxr cos2 θ

+cuyr cosθ sinθ+cvxr cosθ sinθ+cvyr sin2 θ. (33)

where the transformation of(x−x0)/R = rcosθ and
(y−y0)/R = r sinθ have been employed. It is easy to

show that the integration of u(∗)
0 cosθ+v(∗)

0 sinθ over the
whole circle becomes zero and so can be omitted. The
integration of other terms in Eq. (33) over Subdomain
0-1-2 is given by

ϑ2∫
ϑ1

RI∫
0

u(∗)
r (r,θ)drdθ =

1
4

RI

⎡
⎣ (cux +cvy) (ϑ2 −ϑ1)

+(cux −cvy) (sinϑ2 cosϑ2− sinϑ1 cosϑ1)
+(cuy +cvx)

(
sin2 ϑ2− sin2 ϑ1

)
⎤
⎦ .

Similar results can be obtained for other subdomains and
the sum of these gives the results for the whole circular
domain. Although the results depend on the number of
subdomains, numerical tests show that four subdomains
are good enough for 2D cases. It is envisaged that eight
subdomains may be required for 3D cases.

It should be noted that with this semi-analytical tech-
nique, the velocities at only five points for a 2D circle
with four divisions, instead of at more than 16 points if
the Gaussian quadrature would be used, need to be eval-
uated. In 3D cases, the spherical domain may be divided
in to 8 subdomains as indicated above and the velocities
at only 7 points need to be evaluated, instead of at least

64 points when using the Gaussian quadrature. As a re-
sult, the reduction in CPU time spent on the evaluation
of the domain integration is considerable.

The similar domain division technique was used in
Atluri, Kim and Cho (1999) and Sellountos and Poly-
zos (2003). However, in their techniques, the Gaussian
quadrature is still used for the integration over each sub-
domain but we do not use the Gaussian quadrature at all
as demonstrated above.

8 Treatment of Pressure Gradient and/or Velocity

It is well known that backward or forward finite differ-
ence schemes approximating a derivative have lower or-
der accuracy than a central scheme. Similarly, it can be
understood that the pressure gradient estimated for nodes
on or near boundaries using Eq. (23) and so the veloc-
ity using Eq. (11) may not be as accurate as for inner
nodes because the related nodes to the boundary nodes
distribute on one side only. In order to enhance the ac-
curacy of results near the boundaries, particularly near
the free surface, which is important for simulating water
waves, Ma (2005) suggested that the pressure gradients
after estimated by Eq. (23) be treated using the following
equation

∇p(�x) ≈
N

∑
J=1

Φ̃J (�x) (∇p)J (34)

where the function Φ̃J (�x) is formulated by a similar
method as for the shape function ΦJ (�x) discussed above
but using a different weight function. The weight func-
tion used for this purpose is the Gaussian weight function
defined by

w̃J (�x−�xJ) =

⎧⎪⎪⎨
⎪⎪⎩

e−(αJ r)2−e−α2
J

1−e−α2
J

r = dJ
rJ
≤ 1

0 r = dJ
rJ

> 1

(35)

where rJ and dJhave same meanings as before and αJ

is an arbitrary coefficient controlling the shape of the
weight function. The value of αJ may be chosen in a
range of (2∼3)rJ. Although the same weight function as
in Eq. (22) may be adopted for this purpose, numerical
tests show that it does not give as good results as Eq. (35)
for the treatment of the pressure gradient.

In fact, the similar treatment can be applied to the veloc-
ity, rather than the pressure gradient. In this work, the
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following formula is tested for computing velocity:

�u(n+1)
m (�x) = (1− γ)�u(n+1) (�x)+ γ

N

∑
J=1

Φ̃J (�x)�u(n+1) (�xJ)

(36)

where �u(n+1)
m (�x) is the velocity at �x used for updating

while �u(n+1) (�x) and �u(n+1) (�xJ) are, respectively, the ve-
locities at �x and �xJ calculated by Eq.(11). γ is an arti-

ficial coefficient. When γ = 0, �u(n+1)
m (�x) = �u(n+1) (�x),

i.e. no treatment is applied. When γ = 1, �u
(n+1)
m (�x) =

N
∑

J=1
Φ̃J (�x)�u(n+1) (�xJ), i.e. the velocity is fully smoothed.

Based on preliminary numerical tests so far, it is sug-
gested that the value of γ may be chosen in the range of
0.1 < γ < 0.3. For the results presents in next section, it
is taken as 0.2. It should be noted that with the modifi-
cation in Eq. (36), the velocity,�u(n+1)

m (�x), may not satisfy
the continuity equation as long asγ �= 0, implying that the
fluid volume may not be conserved. Nevertheless, the re-
sults in Section 10 do not exhibit significant violence to
the conservation. The reason behind this needs further
investigations.

h1I 
I 

h4I 

Figure 3 : Illustration of h1Iand h4I

9 Sizes of integration and support domains

When implementing the MLPG R method, one must de-
termine the sizes of integration and support domains for
all nodes. Theoretically, these sizes can be chosen ar-
bitrarily. In practice, some factors have to be consid-
ered. The size of an integration domain is determined
by RI=εh1I, where h1I is the distance between Node I

and its nearest node and ε is a coefficient. In order to
ensure the integration domain is large enough but al-
ways located entirely inside the computational domain,
the value of ε must be in the range of 0 < ε < 1. The
size of a support domain is given by rI = κ h4I, where
h4I is the distance between Node I and the fourth node
when counting all neighbour nodes of Node I from the
nearest to the farthest one, as shown in Fig. 3. In 2D
cases with uniformly-distributed nodes,h1I = h4I. κ is
the coefficient controlling the size of a support domain
and its value should be specified with care. If κ is too
small, the support domain is too small and too few nodes
are involved in it, which may not be enough to result in a
well-defined shape function. On the other hand if it is too
large, the support domain is too big and too many nodes
are contained in it. Too many nodes in one support do-
main require too much computational time to deal with.
In addition, too large support domain may lower the ac-
curacy. The reason for this is that the linear base function
used to determine the shape function can give a good ap-
proximation to the pressure field only in a small local
area. When the area is too large, the approximation is in-
evitably degraded. Based on numerical tests, it is found
that the value for ε may be chosen in the range of 0.3 to
0.9; and the value for κ in the range of 1.5 to 3. The best
values for a specific case need to be further explored. In
this paper, all results presented in Section 10 are obtained
using ε=0.6 and κ=1.5 to κ=2.0.

10 Numerical Validation

In this section, the numerical method described above is
validated by applying it to water waves in a two dimen-
sional tank generated by a wavemaker and by the motion
of the tank. In the following discussion, all variables and
parameters are non-dimensionalised using d and g, i.e.

(x,y,L,a) → (x,y,L,a)d t → τ

√
d
g

ω → ω
√

g
d

10.1 Comparison with analytical solution for waves
generated by a wavemaker with a motion of small
amplitudes

The sketch of the wavemaker problem and coordinate
system is illustrated in Fig. 4. The generated wave
may be mono-chromatic or bi-chromatic depending on
the motion of the wave maker S(t). In order to reduce
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L 

Ldm 

damping zone 
y 

d

Wave maker 

Figure 4 : Sketch of the problem and coordinate system

the reflection, a damping zone is added at the far end op-
posite to the wavemaker, in which the velocity (�udm) is
modified by adding an artificial damping term and com-
puted by using

�u(n+1)
dm = �u(n+1)

m −ν (x) �u(n+1)
m , (37a)

where ν(x) is an artificial damping coefficient defined as

ν (x) =
1
2

ν0

[
1−cos

(
π(x−xd )

Ldm

)]
x ≥ xd (37b)

where Ldm is the length of the damping zone taken as
Ldm= 3d; xd is thex-coordinate of the left end of the
damping zone; and ν0 is the magnitude of the damping
coefficient. A similar form of the damping coefficient
was used in Ma, Wu and Eatock Taylor (2001a,b) for a
numerical wave tank based on potential theory using a
finite element method, but combined with a Sommerfeld
condition. Extensive numerical tests were carried out in
those papers to choose optimum values for ν0. Those val-
ues are not necessarily optimum here as the formulation
is different. Nevertheless, similar numerical investiga-
tions are not carried out in this paper since the main aim
here is to validate the numerical method, instead of inves-
tigating the effectiveness of the damping zone. Instead,
only one value is chosen based on some numerical tests,
which is ν0 = 0.1. With this value, the reflection wave
may not be eliminated completely, unless a long tank is
used or simulations stop before reflection waves come
into the area of interest.

Waves considered in this section are generated by a pis-
ton wavemaker in a tank with the length L=24, undergo-
ing the following motion

S(t) = S0 (1−cos (ωt)) (38)

with the amplitude S0 = 0.01 and the frequency ω =1.45.
The resulting wave steepness defined by the ratio of wave

heights from trough to crest to wave lengths is about
0.012. For such a small steepness, a linearised analyti-
cal solution may be found [Eatock Taylor, Wang and Wu
(1994)] and can be used for validation. To do so, the
characteristics of the relative error of numerical results
are investigated. The relative error is defined as:

Er =
‖ηc −ηa‖

‖ηa‖

where ‖η‖ =
∫
Ae

η2dA with Ae being area over which the

error is estimated; ηc is the numerically computed eleva-
tion of wave profiles measured from the mean free sur-
face and ηa is an analytical solution. The method used
for estimating the relative error is very similar to that
used in Atluri and Shen (2002) but the square root of the
integral is not taken because the term

∫
Ae

η2dA, a measure-

ment of wave energy, possesses clearer physical meaning

than
√∫

Ae

η2dA in water wave problems.

-3

-2

-1

0

0 5 10 15 20 25 30
time

lo
g(

E
r)

dx=dy=0.12
dx=dy=0.10
dx=dy=0.08
dx=dy=0.07
dx=dy=0.06

Figure 5 : Relative error at different time for different
initial distance between nodes

The wave problem described above is simulated by us-
ing different number of nodes, uniformly distributed ini-
tially. Four cases are considered, in which the total
number of nodes are Nt=201×9=1809 (dx ≈ dy ≈ 0.12,
where dx and dy are the increment of distance between
nodes in x and y direction, respectively), 241×11=2651,
151×13=3913 (dx ≈ dy ≈ 0.08), 343×15=5145 (dx ≈
dy ≈ 0.07) and 401×17=6817 (dx ≈ dy ≈ 0.06). The
time step for these cases is chosen as ∆t=0.02 based on
similar investigations in Ma (2005). When estimating the
relative error, Ae is chosen to be the area from the wave-
maker to x=15; and the wave profiles from t=0 to t=30,
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Figure 6 : Comparison of relative error of different meth-
ods

recorded at intervals of δt=1, are considered. Use of the
smaller area rather than the whole area of the tank and
shorter period (t≤30) is to avoid the effects of the reflec-
tion on the error estimation. The relative errors evaluated
in this way are presented in Fig. 5. This figure shows that
the relative error varies with time and thus good numeri-
cal results at all time are more difficult to achieve for wa-
ter waves than for other problems without free surfaces.
Nevertheless, the error in numerical results obtained by
the MLPG R method is indeed reduced broadly with the
decrease of distance between nodes, though the rate is
different at different time. This fact implies that the nu-
merical results with satisfactory accuracy at all time are
achievable as long as a sufficiently large number of nodes
are used.

We also made investigations into the feature of conver-
gence of three methods for waves associated with Fig.5:
1) MLPG method with the Heaviside step function be-
ing the test function [Ma (2005)]; FEM method based on
a potential formulation [Ma, Wu and Eatock Taylor R.
(2001a,b)]; and MLPG R given in this paper. The rate of
convergence of the three methods for the case with dx ≈
dy ≈ 0.06 or 6817 nodes is presented in Fig. 6. One can
see from this figure that the relative error of MLPG R
is smaller than that of MLPG and also smaller than that
of FEM except for the early period. One may then de-
duce that the number of nodes required in the MLPG R
method would be smaller than that in other two meth-
ods to gain the same accuracy of numerical results under
the conditions specified here. However, it must be noted
that the characteristics of convergence of numerical re-
sults for water wave problems depend on many factors,
such as the wave frequency, the wave amplitude, the dis-

tribution of nodes and so on. Further investigations may
be required before coming to conclude that the fact ob-
served here generally holds in all situations.

To show the accuracy of numerical results from
MLPG R, wave profiles at three instants, which are ob-
tained by using 6817 nodes (the fifth case in Fig. 5),
are depicted and compared with the analytical solution
in Fig.7. The agreement between the numerical and an-
alytical results is very good, as can be seen. It implies
that the method based on the MLPG R described in this
paper can produce accurate simulation of surface waves.
It also implies that the volume of fluid is well conserved
and the violence to continuity equation due to the modi-
fication in Eq. (36) does not pose a big problem, though
reasons for this are not clear yet.

Comparison of the CPU time spent on each time step by
the MLPG R and MLPG method based on the Heaviside
step function is preliminarily made in this work. It is
found that the CPU time spent on the former is less than
50% of that on the latter.

10.2 Comparison with FEM results for waves gener-
ated by a wavemaker with a motion of larger am-
plitudes

In the section, the results from the MLPG R method
are compared with those from the finite element method
(FEM) in Ma, Wu and Eatock Taylor (2001a,b), which is
based on the potential theory, different from the govern-
ing equations (Eqs. 1 and 2). The waves are still gener-
ated by the wavemaker moving as specified by Eq. (38)
with the same frequency but with larger amplitudes. Two
amplitudes are considered: one is S0=0.05 and the other
is S0 =0.064; and so the waves have stronger nonlinearity,
for which the linearised solution may not be valid. The
total number of nodes used for these cases is 6817, which
are again uniformly distributed initially. The number of
nodes used for the finite element analysis is roughly simi-
lar. The comparison of results obtained by the two meth-
ods is given in Fig. 8 for S0=0.05 and Fig. 9 for S0

=0.064, respectively. In these figures, the dots represent
the positions of nodes at the time shown on the upper-
right corner obtained by the MLPG R method. The free
surface resulting from the finite element method is de-
noted by solid lines. As can be seen, the results from the
two methods are very close, though the difference is vis-
ible. One of possible reasons for the difference may be
due to the fact that the mathematical formulations in the
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Figure 7 : Wave profiles at different times for S0=0.01
and ω=1.45 and comparison with analytical solution

two methods are different as point above.

10.3 Comparison with analytical and experimental
results for sloshing waves in a moving tank

Sloshing waves in a moving tank are associated with var-
ious engineering problems, such as liquid oscillations in
large storage tanks caused by earthquakes, motions of

liquid fuel in aircrafts and spacecrafts, liquid motions in
containers and the water flow on decks of ships. The
loads produced by wave motions of this kind can cause
structural damage and the loss of the motion stability
of objects such as ships. There has been a consider-
able amount of experimental, numerical and analytical
work on wave sloshing. Nevertheless, the detail review
on sloshing waves will not be given here, which may be
found in Wu, Ma and Eatock Taylor (1998) and other pa-
pers cited therein. That is because the main purpose of
this section is to further validate the MLPG R method us-
ing some of experimental and analytical data in literature
about sloshing waves.

Although one may here employ the same governing
equations as in Eqs. (1) and (2) established for a fixed co-
ordinate system, it is advantageous to use alternative ones
established for a coordinate system moving together with
the tank; and thus one can study the fluid flow relative to
the tank, which is of primary interest. The sketch of the
sloshing wave problem described in the moving coordi-
nate system is still similar to that in Fig. 4 but without
the wavemaker and damping zone. For such a system,
the governing equations and boundary conditions for the
problem are given as:

∇ ·�v = 0 (39a)

D�v
Dt

= −1
ρ

∇p+�g− D�U
Dt

(39b)

D�r
Dt

=�v and p = patm on the free surface (39c)

�n ·�v = 0 and
∂p
∂n

= ρ

(
n ·�g−n · D�U

Dt

)
(39d)

on the walls and the bed of the tank.

where �vis the relative velocity of fluid and �U the veloc-
ity of the tank. These governing equations and boundary
conditions are very similar to Eqs. (1) and (2). The only
difference is that an extra term associated with the ac-
celeration of the tank is contained in Eq. (39b), which
reflects the effects of the motion of the tank on the rel-
ative velocity of fluid. Although these equations can be
used for general motions of the tank, we only consider a
motion in x-direction and defined by

X (t) = X0 sin(ωt)
U (t) = Ẋ (t) = X0ωcos(ωt)

(40)
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Figure 8 : Comparison of wave profiles obtained by MLPG R and FEM for S0=0.05 and ω=1.45. (Dots: node
configuration obtained by MLPG R; solid line: the free surface obtained by FEM)

where X0 and ω are the amplitude and frequency ω,
respectively. For such a motion, a linearised analyti-
cal solution [Faltinsen (1978)] can be found when wave
amplitudes are small. Based on this solution, the di-
mensionless natural frequency of the tank is given by

ωn j =
√

(2 j+1)π
L tanh (2 j+1)π

L for j=0,1,2. . . .

When the frequency of motions equals one of these nat-
ural frequencies, the amplitude of the wave in the tank

can grow infinitely in theory. Even when the frequency
of the tank motion is not equal but near to the natural
frequencies, the wave amplitudes can also grow to large
ones. The numerical results from the MLPG R method
will be compared with this solution to further validate the
method. For this purpose, the dimensionless length of the
tank is taken as L=2, which gives

ωn0 =
√

π
2

tanh
π
2
.
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Figure 9 : Comparison of wave profiles obtained by MLPG R and FEM for S0=0.064 and ω=1.45.(Dots: node
configuration obtained by MLPG R; solid line: the free surface obtained by FEM)

Four cases are considered with the same amplitude of
0.002 but different frequencies of the tank motion, i.e.
ω = 0.9 ωn0, 0.98 ωn0, 1.02 ωn0 and 1.1 ωn0. Convergent
tests have been carried out and found that dx=dy=0.08
and 100 time steps (∆t = T/100, T=2π/ω) in each pe-
riod of the tank motion yield satisfactory solutions. The
numerical time histories at x=0 (upper left corner of the
tank) are depicted in Fig. 10 together with the analyti-
cal solution of Faltinsen (1978). The agreement between

them is quite good as can be seen from this figure, imply-
ing that the MLPG R can also produce accurate results
for sloshing waves.

The present numerical method is now used to analyze a
case with an amplitude of X0=0.0186, which is about nine
times larger than that in the previous case. The frequency
of the motion is taken as ω/ωn0 ≈ 0.999, very near to the
first resonant frequency. The case with these parameters
has been experimentally investigated by Okamoto and
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Figure 10 : Time histories of sloshing waves at x=0 for different frequencies (the analytical solution from Faltinsen
(1978))
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a)  t=2.5T (T=2π/ω)            b)  t=3T (T=2π/ω) 

Figure 11 : Configurations of nodes at two instants for X0=0.0186 and ω/ωn0 ≈ 0.999 (*: experimental data from
Okamoto and Kawahara (1990))

Kawahara (1990). To simulate this case, nodes are uni-
formly distributed initially with dx=dy=0.06 and the time
step is also taken as ∆t = T/100. Fig. 11 plots nodal con-

figurations at two time instants, t=2.5T and 3T , respec-
tively. The experimental data of Okamoto and Kawahara
(1990) are also shown in this figure. Again, the free sur-
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faces obtained by numerical simulation agree well with
their experimental data.

11 Conclusions

In this paper, the MLPG R method has been developed
for simulating nonlinear water waves. This method is
different from one described in Ma (2005) in that the
solution for Rankine sources rather than the Heaviside
step function is taken as the test function. Based on this
test function, a weak form of governing equations has
been derived, which does not contain the gradients of un-
known functions and therefore makes numerical discreti-
sation of the governing equations relatively easier and
more efficient.

A semi-analytical technique is developed to evaluate the
domain integral involved in this method. It can dramati-
cally reduce the CPU time spent on the numerical calcu-
lation of this part.

The present method has been applied to two-dimensional
waves generated by a wavemaker and by the surging mo-
tion of a tank. The numerical results from this method
have been compared with analytical solutions, finite ele-
ment results and experimental data in some cases. These
comparisons demonstrate that the MLPG R method can
produce accurate results. The conclusion encourages us
to apply the method to more complicated and practical
problems in future work.
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