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Prediction of Crack Growth in Steam Generator Tubes Using Monte Carlo
Simulation
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Abstract: The growth of stress corrosion cracks in
steam generator tubes is predicted using the Monte Carlo
simulation and statistical approaches. The statistical
parameters that represent the characteristics of crack
growth and crack initiation are derived from in-service
inspection (ISI) non-destructive evaluation (NDE) data.
Based on the statistical approaches, crack growth mod-
els are proposed and applied to predict crack distribu-
tion at the end of cycle (EOC). Because in-service in-
spection (ISI) crack data is different from physical crack
data, a simple method for predicting the physical num-
ber of cracks from periodic in-service inspection data
is proposed in this study. Actual number of cracks is
easily estimated using the method, and the statistical
crack growth is simulated using the Monte Carlo method.
Probabilistic distributions of the number of cracks and
maximum crack size at EOC are obtained from the simu-
lation. Comparing the predicted EOC crack data with the
known EOC data the usefulness of the proposed method
is examined and satisfactory results are obtained.

keyword: Statistical Assessment, POD (probability of
detection), Effective POD, Steam Generator Tube, Struc-
tural Integrity, Monte Carlo method.

1 Introduction

Cracking is one of the main degradation mechanisms of
steam generators in nuclear power plants. And analy-
sis of its potential damage is essential to assessment of
structural integrity. Usually crack analysis has been per-
formed using analytical methods or numerical methods
such as finite element method, boundary element method
and finite element alternating method [Nikishkov, Park,
and Atluri (2001)]. However their results were often re-
garded as conservative in industrial field. And sometimes
it was necessary to do the analysis considering the uncer-
tainty of variables (load, material properties, crack size,
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and circumstance etc.).

Therefore statistical approaches as well as theoretical
(deterministic) ones have been widely used for assess-
ment of structural integrity [EPRI NP-7493 (1991);
Chung, Kim and Kim (2000); Maeda, Nakagawa, Ya-
gawa, and Yoshimura (2002); Kurihara, Ueda, and Sturm
(1988); Becher and Pederson (1974); Leemans, Leger
and Byrne (1993); Wu and Syau (1995); Stroud, Krish-
namurthy and Smith (2002)].

Besuner (1987) stated that there are three basic ap-
proaches in statistical assessment of structural reliability.
One approach is extrapolation from the past data. It can
be a very accurate approach, if sufficient relevant data
and experiences exist. Another approach is probabilistic
fracture mechanics (PFM), where probabilistic contents
are introduced into deterministic fracture mechanics the-
ories. The other approach is calibrated probabilistic frac-
ture mechanics (CPFM). The approach intends to com-
bine the former two approaches, and provides reliability
prediction when neither the database nor the pure PFM
approaches can give appropriate results.

In the extrapolation method, statistical distributions are
usually used for interesting variables. The parameters
of distribution functions can be obtained from curve fit-
ting of field data for several interesting variables (crack
size, crack initiation time, crack growth rate, etc.). It is a
shortcoming of this method that we cannot derive the in-
fluence of the change in parameters from field data. For
example, we cannot know the influence of using more
advanced non-destructive inspection system from this ap-
proach.

The PFM method is useful for analyzing local and in-
stantaneous problems. But it has difficulties in treating
large structures, which have been operating for decades,
because of a lot of variables (load, material properties,
crack size, and position etc.) and changes of their cir-
cumstances and characteristics.

CPFM is a statistical approach combining the advantages
of above two methods. In this study we used CPFM
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approach for assessment of integrity of steam generator
tubes. Crack growth rate, crack initiation and crack dis-
tribution are expressed with statistical distribution func-
tions and a simple crack growth model is adopted.

It is necessary to know the number of physical cracks and
their size distribution in assessment of integrity. Here the
physical cracks are defined as the cracks that are expected
to exist actually in steam generator tubes. But in-service
inspection (ISI) crack data is different from the physical
crack data, because inspection systems have imperfec-
tion in detecting cracks and measuring their sizes. For
estimating the physical number of cracks from periodic
in-service inspection data a simple method is proposed.

The statistical crack growth is simulated using the Monte
Carlo method in order to estimate the number of cracks
and the maximum size distribution at interesting time.
The necessary statistical characteristics for crack growth
rate and crack initiation are calculated from real NDE
data.

2 Crack growth estimation

2.1 Models for Crack Growth Estimation

Figure 1 illustrates the procedure used in the proposed
statistical model for crack growth prediction. The model
predicts the number of cracks and their size distribution
at the end of ith operation cycle using the NDE data at
(i-1)th ISI. Calculation process of crack growth is subdi-
vided into three categories of crack initiation, undetected
crack growth and detected crack growth. For the cal-
culation, the information on the crack initiation and the
crack growth rate are necessary and the number of phys-
ical cracks also must be known. The statistical charac-
teristics of crack initiation and crack growth rate are rep-
resented with statistical distribution functions. The pa-
rameters of the distribution functions are obtained from
statistical analyses of ISI NDE data. And statistical vari-
ables of each distribution function are generated in the
Monte Carlo simulation. The inverse transform method
and the acceptance-rejection method are used as the gen-
eration algorithms. The details can be found in the refer-
ence [Rubinstein (1981)].

The number of physical cracks is estimated from the
number of NDE cracks using the detection uncertainty,
i.e. POD (probability of detection), of the used inspec-
tion method.

It is easy to obtain the physical sizes from the NDE

crack size data once the size uncertainty of the inspection
method is known. However, NDE size is used in the sim-
ulation because duplicate application of the uncertainty
makes the estimation results more confused. Thereby, the
number of physical cracks and NDE size data are used
respectively for crack growth calculation. From the sim-
ulation, the numbers of NDE cracks and physical cracks
are predicted at the end of ith operation cycle using the
NDE crack data at the beginning of ith operation cycle,
which is obtained at (i-1)th ISI after excluding cracks in
repaired or plugged tubes. The predicted number of NDE
cracks is compared with the inspection results at ith ISI.

2.2 Size and detection uncertainty

2.2.1 Probability of Detection (POD)

Non-destructive inspection systems have been operated
in their extreme capability for finding small cracks. In
fact, the cracks of the same size may give different in-
spection results and it is called the uncertainty or imper-
fection of NDE systems.

Berens (1989) subdivided the uncertainty of NDE into
the uncertainty of size and the uncertainty of detection.
The uncertainty of size is often characterized in the sim-
plest form of a statistical model of a linear or linearized
regression to the measured versus true size data. The
uncertainty of detection is characterized in terms of the
probability of detection (POD) as a function of crack
size. The uncertainty of size is not difficult to handle
but the POD is sophisticated and complicated.

It is easy to obtain the physical sizes from the NDE
crack size data once the size uncertainty of the inspec-
tion method is known. And in case of a single inspection,
it is also easy to estimate the number of physical cracks
using the POD curve. However, we may be faced with
some difficult problems in obtaining the physical number
of cracks from the periodic in-service non-destructive in-
spection data. Cracks can be detected after they reach
the minimum detectable crack size. Some cracks are de-
tected immediately after reaching the size. And some
cracks are detected after several inspections. In order to
calculate the number of physical cracks, the inspection
history of each crack must be known. But it is nearly im-
possible to know the individual inspection history, so an
estimation procedure is necessary. As a previous work,
Davis (2001) has estimated the physical crack distribu-
tion from the measured initial crack distribution using
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Figure 1 : Procedure of statistical analysis model for crack growth.

POD without consideration of repeated inspections.

2.2.2 Calculation of the Number of Physical Cracks

POD is defined as the following equation:

POD(a) =
The number of detected cracks
The number of physical cracks

(1)

And it depends on the crack size a. Here the physical
cracks are defined as the estimated cracks, which actually
exist in tubes including undetected cracks. Because the
capability of NDE system is not perfect, we can assume
that other cracks exist besides detected NDE cracks.

The number of physical cracks is easily derived from the
definition of POD as follows.

The number of physical cracks

=
The number of detected cracks

POD(a)
(2)

The number of physical cracks is easily calculated from
Eq. 2 theoretically. But Eq. 2 cannot be applied to
periodic ISI NDE data, because the equation does not
consider repeated NDE inspections at each end of cycle
(EOC). In case of periodic inspection, more sophisticated
method is necessary for calculating the number of physi-
cal cracks.

In order to calculate the number of physical cracks with
periodic NDE data, both probabilities of detecting and
missing cracks should be considered. The probability of
detecting a crack through n times of inspections is calcu-
lated using the probability of missing the crack.

The probability of x detections through n times of inspec-
tions is calculated using a binomial function as follows:(

n
x

)
pxqn−x =

n!
x!(n−x)!

pxqn−x (3)

Here p is the POD and q (=1- p) is the probability of
miss. And the possibility of detecting a crack at least
once through n times of inspections becomes:

P = 1− (1− p)n (4)

But we confront essential problems in applying Eq. 4 to
real periodic ISI data. In order to calculate the possibility
of detection through n times of inspections, we have to
know the exact crack growth history and the number of
inspections for each crack. But it is nearly impossible to
know them.

2.2.3 Effective Probability of Detection (PODE f f )

For periodic inspections, the possibility of detecting a
crack is different from POD because each crack can be
examined more than once. Let the total possibility of de-
tecting a crack be “effective POD”. Then the number of
physical cracks is expressed as the following:

The number of physical cracks

=
The number of detected cracks

Effective POD(a)
(5)

And in order to know the crack growth history and the
number of inspections for each crack, a statistical simu-
lation approach is used.
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Figure 2 : Schematic diagram of a statistical simulation
for estimating crack growth history.
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Figure 3 : Continuous and discrete POD curves.
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Figure 4 : PODE f f curves obtained from the simulation.

Figure 2 shows the statistical simulation schematically.
Let a crack with 2.7mm length be detected at ith ISI for
the first time. What is the size of the crack at (i-1)th ISI?
If crack growth rate is represented as a probabilistic vari-

able, the size of the crack at (i-1)th ISI becomes also a
probabilistic variable with a certain probabilistic distri-
bution as shown in Figure 2.

The crack size distribution at (i-1)th ISI can be obtained
from the backward crack growth simulation using proba-
bilistic crack growth rate. For a crack with a certain size
at ith ISI, the backward crack growth simulation is made
until the crack becomes smaller than the minimum de-
tectable crack size. And the total crack growth history is
obtained for the crack. Since POD is a function of crack
size, the POD values also can be calculated at each ISI.
From the obtained POD values the total POD, i.e. the
effective POD can be calculated. By repeating the simu-
lation many times, the mean value of the effective POD
is obtained as a function of crack size.

Figure 3 shows the discrete and continuous POD curves
used in the simulation at each ISI. In the simulation, dis-
crete POD values are used, because it is more convenient
to count the number of flaws and calculate the number
of physical flaws. Since NDE system has been changed
after the 9th ISI, the POD curve is also changed after the
9th ISI.

Figure 4 shows the effective POD curves at each ISI ob-
tained from the simulation. The effective POD values in
Figure 4 are mean values of 1000 simulation results.

As repeating the inspection, effective POD values be-
come lager and show large disparity comparing with the
initial POD value. And we can find that effective POD
curve reflects the effect of the change of NDE system at
the 10th ISI. The number of physical cracks for the given
length or length interval can be easily obtained from Eq.
5 using the effective POD.

2.3 Crack initiation

The number of initiated cracks during ith operation cy-
cle is predicted from statistical analysis of NDE data ob-
tained until (i-1)th ISI. Using the Weibull distribution
function, the number of initiated cracks in ith ISI is pre-
dicted.

Figure 5 illustrates cumulative numbers of initiated
cracks at each ISI and their fitting curves with 2-
parameter and 3-parameter Weibull distribution func-
tions. The number of initiated cracks is calculated in
physical domain, i.e. the number of initiated physical
cracks is calculated. It is noted that the 3-parameter
Weibull curve is more coincident with data points than
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Figure 5 : The 2-parameter and 3-parameter Weibull
curves of new crack initiation.

the 2-parameter Weibull curve as shown in Figure 5.
Therefore the 3- parameter Weibull function is used for
estimating the number of initiated cracks in the simula-
tion.

2.4 Probabilistic Crack Growth Rate

Figure 6 shows crack growth rate data for axial cracks
in steam generator tubes in a Korean plant. The steam
generators have been operated for 12.38 EFPY (effec-
tive full power year) and 12 in-service inspections were
made. The crack growth rate at ith inspection is obtained
by dividing the crack length increment by the time in-
terval between ith and (i+1)th inspections. The units of
crack length and time are mm and EFPY respectively.
Many data points in Figure 6 show negative crack growth
rates, which are inconsistent values. The negative growth
rate is due to the uncertainty of NDE.

Figure 7 shows the crack length data measured at each
ISI. It can be noted that the crack length does not in-
crease always. In order to obtain nonnegative and more
consistent crack growth rate values, the regression anal-
ysis is done for the crack length data at each ISI using a
polynomial. Several results of the regression analysis are
given in Figure 7. When the number of data points is less
than 4, the linear regression is used.

However when the number of data points is equal to or
more than 4, the polynomial of the second degree is used
for the regression. The crack growth rate is the gradi-
ent of the regression curve at the time. Figure 8 repre-
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Figure 6 : NDE crack growth rate data.
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Figure 7 : Regression of crack length data with polyno-
mials.

sents the crack growth rate obtained from the regression
analysis. Nearly all the data points show positive crack
growth rate after the regression. Few data points that
show negative or zero crack growth rates are excluded.
If there is a relationship between the crack length and the
crack growth rate, crack growth rate may be expressed as
a function of crack size.

In order to find a relation between crack length and crack
growth rate in Figure 8, a regression analysis is made
with the 3rd and 4th order polynomials. From the re-
gression results, it is noted that the crack growth rate
decreases as the crack length increases. This result is
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Figure 8 : Crack growth rate data and regression with a
polynomial.

consistent with the work done by Chung, Kim and Kim
(2000). It is well known that stress corrosion crack
growth rate is highly affected by plastic deformation and
residual stresses. The crack growth rate decreases as
the crack length increases because crack front is moving
from the highly susceptible region to the less susceptible
region.

The crack growth rate is assumed to satisfy the following
equation:

da
dt

= f (a)z (6)

where a is crack length, t is time and f (a)is a function of
the crack length a. And z is a statistical random variable
and used to represent random error. One simple form of
Eq. 6 is the following:

da
dt

= Caλz (7)

Where C and λ are constants. Taking logarithm to both
sides of Eq. 7 leads to:

log

(
da
dt

)
= logC +λloga+ logz (8)

The constants log C and λ can be obtained from the lin-
ear regression between the variables log a and log(da/dt).
Figure 9 represents this procedure. In Figure 9, the log-
arithmic scale is used for both horizontal and vertical
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Figure 9 : The regression analysis of crack growth rate.

axes. The linear regression line is plotted in the Figure.
For comparison, the regression curves of the 3rd and 4th
order polynomial are also plotted. It can be noted that
the differences between the linear regression line and the
lines of polynomials are small.

According to assumption of linear regression, log z is an
error, which consists of two parts [Mendenhall, Beaver
and Beaver (2003)]. One is pure experimental error and
the other is error due to lack of fit. If the model ade-
quately fit the data, then log z is calculated by pure ex-
perimental error. F-test results of errors in Figure 9 are
represented in Table 1. In Table 1, F-value is larger than
F0.001(1, 698). Therefore Eq. 8 is an appropriate model
in the 0.001 significance level.

Table 1 : Statistical analysis of regression errors in Fig-
ure 9 using F-distribution (F-test).

Source DF
Sum of

Squares
Mean

Squares
F-value F0.001(1, 698)

Model 1 66.333 66.333
Error 698 540.941 0.775 85.592 10.830
Total 699 607.274

And log z is obtained with the sum of squares for error
(SSE) or standard error of estimate (root mean of squares
for error, RMSE), which is calculated from:

RMSE =

√
∑

(
Yi −Ŷ

)2

n−2
=

√
SSE
n−2

(9)
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from the simulation.

Where Yi is crack growth rate data, Ŷ is the value calcu-
lated from regression equation and n is the number of
data points. Therefore log z is expressed by normal distri-
bution, N(0, RMSE2) and we can obtain statistical crack
growth rate using Eq. 7.

3 Simulation Results

The number of cracks and their sizes are predicted statis-
tically using the Monte-Carlo simulation represented in
Figure 1. Using NDE data at the 8th ISI, the number of
initiated cracks and the maximum crack size at the 9th
ISI are predicted. The simulation is repeated 1000 times
and the results are statistically analyzed, thereby the sim-
ulation results are obtained as probabilistic distributions.

Figure 10 illustrates the relative frequency distribution of
the number of newly detected cracks at 9th ISI. Compar-
ing with the NDE data, 68 cracks at the 9th ISI, simu-
lation results show somewhat smaller number of cracks.
The reason of this underestimation may be that the used
POD is larger than the true POD.

Even if there is discrepancy between the predicted num-
ber of cracks and the NDE data it is limited to the cracks
with short length. For the long cracks, the predicted num-
ber of detected cracks is always nearly the same as the
number of NDE cracks because the POD and the effec-
tive POD have the values close to 1.
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Figure 11 : The probability density of 50th, 90th and
99th percentiles for crack size from simulation results

Table 2 : The 50th, 90th, 95th and 99th percentiles for
crack size with 50%, 90% and 99% confidence level from
simulation results.

Confidence level 50th 90th 95th 99th

50% 3.2 4.9 5.4 6.6
90% 3.3 5 5.5 7
99% 3.3 5.1 5.6 7.6

9th ISI Max. 6.8 6.8 6.8 6.8

The xth percentile for crack size

Figure 11 illustrates probability density distributions of
crack size corresponding to the 50th, 90th and 95th per-
centiles at 9th ISI. The distributions are obtained from
1000 simulation results. The distribution for the maxi-
mum crack size also can be obtained, but unusually large
maximum crack sizes are often obtained. That is due to
the probabilistic crack growth rate and the large random
error, z in Eq. 7. Therefore we can get more consistent
estimated value for the maximum crack size if we use
the percentiles instead of the maximum crack size dis-
tribution. The percentiles for crack size corresponding to
three confidence levels are given in Table 2. Here the unit
of crack size is mm. The maximum crack size measured
at the 9th ISI is 6.8mm and the 99% percentile crack size
corresponding to 50% confidence level shows the similar
value.
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4 Conclusion

The growth of stress corrosion cracks in steam generator
tubes is estimated using the Monte Carlo method and sta-
tistical approaches. The statistical parameters that repre-
sent the characteristics of the crack growth and the crack
initiation are derived from the In-Service Inspection (ISI)
NDE data.

The proposed analysis method is applied to predict the
crack distribution at EOC. Comparing the predicted EOC
crack data with the known EOC data the usefulness of the
proposed method is examined.
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