
Copyright c© 2006 Tech Science Press CMES, vol.11, no.2, pp.81-90, 2006

Object Oriented Design of a Finite Element Code in Java

G.P. Nikishkov 1

Abstract: This paper presents the object oriented ap-
proach to programming the finite element method using
the Java language. The developed finite element code
consists of ten Java packages. Three main methods are
related to generation of finite element models, solution
of elastic and elastic-plastic boundary value problems,
and visualization of models and solution results. Object-
oriented model of the code is described. It is demon-
strated that Java 1.5 new features are useful in develop-
ment of the finite element code. Java 3D is used for visu-
alization of models and results.

keyword: Object oriented approach, Java, Java 3D, Fi-
nite element method, Elastic, Elastic-plastic, Visualiza-
tion.

1 Introduction

The finite element method is used for computational
modeling in its original form [Bathe (1996)] for several
decades. Recently the method has been developed further
in meshless form [Atluri and Shen (2002); Atluri(2004)].

Finite element codes were traditionally developed in For-
tran and C languages, which support procedural pro-
gramming. During last fifteen years, finite element de-
velopment is gradually shifting towards an object ori-
ented approach. Forte et al (1990) in one of the first
publications on the object oriented approach to the fi-
nite element development, presented essential finite el-
ement classes such as elements, nodes, displacement and
force boundary conditions, vectors and matrices. Sev-
eral authors described detailed finite element architec-
ture using the object oriented approach. Zimmermann
et al. (1992) and Commend et al. (2001) proposed basics
of object oriented class structures for elastic and elastic-
plastic structural problems. A flexible object oriented ap-
proach which isolates numerical modules from a struc-
tural model is presented by Archer et al. (1999). Macki
devoted numerous papers and a book [Mackie (2001)] to
various aspects of the finite element object oriented pro-

1 University of Aizu, Aizu-Wakamatsu 965-8580, Japan.

gramming including creation of interactive codes with
graphical user interface. Extensive bibliographical infor-
mation on the object oriented approach in FEM and BEM
is given by Mackerle (2004).

Mostly, object oriented finite element codes have been
implemented in C++ programming language. It was
shown that object oriented approach with C++ program-
ming language could be used without sacrificing com-
putational efficiency [Dubois-Pelerin and Zimmermann
(1993)] in comparison to Fortran. A paper of Akin et
al. (2002) advocates employing Fortran 90 for object
oriented development of finite element codes since the
authors consider Fortran execution faster than C++.

Java language introduced by Sun Microsystems pos-
sesses features, which make it attractive for using in com-
putational modeling. Java is a simple language (sim-
pler than C++). It has rich collection of libraries imple-
menting various APIs (Application Programming Inter-
faces). With Java it is easy to create Graphical User In-
terfaces and to communicate with other computers over
a network. Java has built-in garbage collector preventing
memory leaks. Another advantage of Java is its porta-
bility. Java Virtual Machines (JVM) are developed for
all major computer systems. JVM is embedded in most
popular Web browsers. Java applets can be downloaded
through the internet and executed within Web browser.
Useful for object oriented design Java features are pack-
ages for organizing classes and prohibition of class mul-
tiple inheritance. This allows cleaner object-oriented de-
sign in comparison to C++. Despite its attractive fea-
tures, Java is rarely used in finite element analysis. Just
few publications can be found on object oriented Java fi-
nite element codes [Eyheramendy and Guibert (2004)].
Previously, Java had a reputation of relatively slow lan-
guage because Java bytecode is interpreted by the JVM
during execution. Modern just-in-time compilers used in
the JVM make efficiency of Java code comparable to that
of C or C++ [Nikishkov et al (2003)].

In this paper we present our variant of an object ori-
ented design of the finite element code. The design is

82 Copyright c© 2006 Tech Science Press CMES, vol.11, no.2, pp.81-90, 2006

fea

model util

elem
gener visual

materialgenutil geom

solver
Mesh
generation

Problem
solution

Visualization

Figure 1 : Packages of the finite element Java code.

fairly straightforward. We believe that the use of large
amount of small objects can make the code too compli-
cated for understanding and support. In addition it might
lead to considerable time and space overhead. So, our
approach is characterized by using larger objects and by
using primitive types in computationally intensive parts
of the code. The object oriented code consists of Java
packages and implements three stages of the finite ele-
ment analysis: mesh generation, problem solution and
visualization of models and results. Next section presents
general structure of the code. Then object models for fi-
nite element processor, mesh generator and visualizer are
described in further sections.

2 General structure

Finite element analysis is usually consists of three stages
or three tasks: preprocessing (finite element model gen-
eration), processing (problem solution) and postprocess-
ing (results visualization). In some programming lan-
guages like Fortran these three tasks are implemented in
three separate computer codes. Since tasks have many
common data and methods then three codes contain du-
plicated or similar code fragments. Code duplication
makes more difficult code support and modification.

In the Java language it is possible to have several main
methods. The code (classes) can be organized into pack-
ages. A package is a named collection of classes provid-
ing package level of data protection. This eliminates ne-
cessity of code duplication and provides means for easy
code reuse.

Our Jfea finite element system is organized into ten class
packages as shown in Fig. 1:

fea - main classes for mesh generation (Jmgen), prob-
lem solution (Jfem) and for visualization (Jvis);

model - finite element model and loading;

util - utility classes;

elem - finite elements;

gener - mesh generators;

genutil - utility classes for mesh generation;

material - constitutive relations for materials;

solver - assembly and solution of global finite element
equation systems;

visual - visualization of models and results;

geom - geometry classes for visualization.

Classes from four packages fea, model, util and elem
are employed for all three tasks of finite element anal-
ysis - mesh generation, problem solution and visualiza-
tion. Other packages contain specific classes for tasks.
Packages gener and genutil are used for mesh genera-
tion. Packages material and solver are specific for prob-
lem solution. Packages visual and geom are designed for
visualization stage of the finite element analysis.

In the next sections we present the finite element pro-
cessor, which obtains the solution of the boundary value
problem. Later the object structure of the mesh generator
and the visualizer are described.

3 Finite element processor

3.1 Class structure

The finite element processor obtains the solution of the
boundary value problem. It is the main part of the fi-
nite element analysis. The finite element processor uses
classes form the following packages: fea, model, util,
element, material and solver. Major classes of the finite
element processor are shown in Fig. 2

Main class Jfem contains main method of the finite ele-
ment processor. Typical finite element solution flow is
composed of data input, assembly of the global equa-
tion system, solution of the equation system, computing
stresses and results output. Constructor Jfem creates four
objects responsible for performing computational proce-
dure:

Finite Element Code in Java 83

FeData

FeModel

Node Element

Element
Quad2D

Element
Quad3D

Shape
Quad2D

Shape
Quad3D

Solver

Solver
LDU

Solver
PCG

Material

Elastic
Material

FeLoad FeStress

ElemLoad

Elem
FaceLoad

Jfem (main)

Gauss
Rule

ElasticPlastic
Material

Figure 2 : Class diagram of the finite element processor.

FeModel - finite element model, data input;

Solver - assembly of the global stiffness matrix from el-
ement contributions, solution of the global equation
system;

FeLoad - load case, assembly of the global load vector;

FeStress - stress increment, results output.

3.2 Finite element model

Main purposes of class FeModel are to read information
on the finite element model, to store this information and
to provide it to other classes. Class FeModel extends
class FeData (Fig. 2). Class FeData contains scalars, ar-
rays and objects used for description of the finite element
model:

Scalars: number of elements, number of nodes, number
of degrees of freedom per node etc.;

Arrays: node coordinates, displacement boundary con-
ditions;

Objects: elements, materials.

Object-oriented approach allows to create reusable, ex-
tensible, and reliable code components. However, the ex-
tensive use of the object-oriented paradigm everywhere
might not be always ideal for computational efficiency

of the code. Object creation and destruction are expen-
sive operations. The use of large amount of small objects
can lead to considerable time and space overhead. Thus,
we tried to find a compromise between using objects and
providing computational efficiency. A possible way to
increase computing performance is using primitive types
in place of objects. That is why information on the finite
element model is mostly stored as scalar and arrays.

New features of Java 1.5 include typesafe Enums and
new class Scanner useful for data input. Enums is a flex-
ible object-oriented enumerated type facility, which al-
lows one to create enumerated types with arbitrary meth-
ods and fields. The java.util.Scanner class can be used
to convert text into primitives or Strings. It also offers
a way to conduct regular expression based searches on
streams, file data and strings. A simple example below
shows unformatted unordered input of two scalar vari-
ables nel and nnod using Java 1.5:

enum vars {

nel, nnod

}

int nel, nnod;

Scanner sc = new Scanner(new File(s));

sc.useDelimiter("\\s*=\\s*|\\s+");

while (sc.hasNext()) {

String name = vars.valueOf(sc.next);

switch (name) {

case nel: nel = sc.nextInt();

break;

case nnod: nnod = sc.nextInt();

84 Copyright c© 2006 Tech Science Press CMES, vol.11, no.2, pp.81-90, 2006

}

}

Input file may contain expressions of the type

nnod = 200 nel = 100

in free format and in any order. Names and values of the
variables are separated by equal sign and any number of
blanks.

In the above code fragment, names of the variables
are declared in enum vars. Scanner object sc is cre-
ated for the file with the name String s. Method
sc.useDelimiter sets equal sign and blank as delim-
iters for the input text. Method sc.hasNext allows to
check if this scanner has another token in its input. Meth-
ods sc.next and sc.nextInt read string and integer
from the input.

3.3 Element

Class Element represents a base abstract class for all fi-
nite element types. Description of Element is given in
Table 1.

Each element object contains element name, material
number, array of nodal connectivities and arrays of ac-
cumulated stresses and stress increment. Constructor El-
ement creates element object using its name, number of
nodes and number of integration points where stresses
are stored. In the code, element objects are created using
constructor NewElement with element name. NewEle-
ment class contains all element types in enum structure.
The Java 1.5 enum declaration defines a full-fledged class
(dubbed an enum type). It allows one to add arbitrary
methods and fields to an enum type and to implement
arbitrary interfaces. Constructor NewElement creates el-
ement objects of different types employing just element
names.

Classes ElementQuad2D and ElementQuad3D inherit
some methods from class Element and implement actual
methods for the two-dimensional quadrilateral element
with 8 nodes and for the three-dimensional hexahedral
element with 20 nodes. Both elements have quadratic
interpolation of geometry and field variables. Classes
ShapeQuad2D and ShapeQuad3D contain methods for
quadratic shape functions. Methods of a particular el-
ement class compute stiffness matrix, thermal vector,
equivalent nodal load, strains at integration point and per-
form other necessary element operations (see Table 1).

Table 1 : Description of class Element.
Element

+ name: String
+ matNo: int
- connectivities: int[]
- sStress: double[][]
- dStress: double[][]
- stiffMat: static double[][]
- elemVec: static double[]
- elemCoords: static double[][]
- elemTemps: static double[]
+ Element(String name, int nCon, int nGauss)
+ stiffnessMatrix(): double[][]
+ thermalVector(): double[]
+ equivFaceLoad(ElemFaceLoad surLd): int
+ getElemFaces(): int[][]
+ getStrainsAtIntPoint(int intPoint): double[]
+ getTemperatureAtIntPoint(int intPoint): double
+ extrapolateToNodes(double[] vAtIntPoints): double[]
+ setElemConnectivities(int[] indel)
+ setElemMaterial(int mat)
+ setElemXy()
+ setElemXyT()
+ getElemMaterial(): int
+ getElemXy(): double[][]
+ setElemT(): double[]
+ assembleElemVector(double[] glVector)
+ disAssembleElemVector(double[] glVector)
+ getElemConnectivities(): int[]

3.4 Material

Class Material is a base abstract class for material consti-
tutive equations. Table 2 provides methods of Material
class.

Table 2 : Description of class Material.
Material

+ stressState: String
- elastModulus: double
- poissonRatio: double
- thermExpansion: double
- properties: double[]
+ Material(String stressState)
+ getConstitutiveMatrix(): double[][]
+ strainToStress(double[] ep, double t, double[] sig)
+ setElastModulus(double e)
+ setPoissonRatio(double nu)
+ setThermExpansion(double alpha)
+ setProperties(double[]p)
+ getElastModulus(): double
+ getPoissonRatio(): double
+ getThermExpansion(): double
+ getProperties(): double[]

Finite Element Code in Java 85

Classes ElasticMaterial and ElasticPlasticMaterial ex-
tend class Material. Method getConstitutiveMatrix pro-
vides elasticity matrix or elastic-plastic constitutive ma-
trix. Method strainToStress computes stress increment
using given strain increment.

3.5 Equation solver

Base abstract class Solver includes methods for assem-
bly and solution of the global equation system. Its major
methods are:

assembleGlobStifMat() - assembly of the global stiff-
ness matrix;

assembleElemStifMat() - assembly of element contribu-
tion to the global stiffness matrix;

solve(double x[]) - solution of the global equation sys-
tem with the right-hand side x.

Class Solver does not contain any information about
storage schemes for the global stiffness matrix and
about solution methods. Particular storage and solution
methods are implemented in subclasses, which extend
Solver. Subclass SolverLDU implements LDU decom-
position method for the solution of the global equation
system stored in the symmetric profile format. Sub-
class SolverPCG uses preconditioned conjugate gradient
(PCG) method for the solution of equation system with a
storage in sparse row format.

Currently the Java compiler does not have enough means
for powerful code optimization. Because of this an at-
tention should be devoted to a code tuning. It is nec-
essary to identify code segments, which consume ma-
jor computing time and to tune them manually. Tuning
of the equation systems solution procedure is discussed
by Nikishkov et al (2003). During LDU decomposition
of the global stiffness matrix, triple loop in which one
matrix column is used to modify another column, takes
most computing time. Tuning can be done by unrolling
two outer loops. In the tuned LDU decomposition a
block of matrix columns modifies another block of ma-
trix columns thus economizing data loads from memory.
Tuning of the PCG solution is performed by unrolling
one inner loop in sparse matrix-vector product.

While tuning requires some additional efforts, its use
may considerably enhance performance of the Java code
making it comparable to performance of the analogous C
code.

FeData

FeModel

Node Element

Jmgen (main)

Paste

3D mesh
generators

2D mesh
generators

Mesh
transform

Hashtable

Figure 3 : Class diagram of the finite element preproces-
sor.

4 Mesh generation

4.1 Block-decomposition method and code structure

Mesh generation in the Jfea code is based on the block-
decomposition method [Schneiders (2000)]. In the
block-decomposition method, the user divides a solu-
tion domain into multiple blocks in such a way that each
block is suitable for the local meshing process. Mesh
generation within blocks is performed by various mesh
generators. Some blocks can be meshed using both two-
dimensional and three-dimensional approaches. First,
two-dimensional mesh is created. Then this mesh is
swept in space to produce three-dimensional mesh block.
A pair of generated mesh blocks can be pasted together
in order to create new mesh block.

Class diagram of the finite element preprocessor is shown
in Fig. 3. Class Jmgen contains main method and acti-
vates all other classes necessary for mesh creation. Each
class performs some action on one or more finite element
models. FeModel objects are stored in a hashtable blocks.
For example, any mesh generator can create a mesh block
as FeModel and can put it in blocks hashtable under the
name specified by the user.

Since all modules are independent then main class calls
them by name of its class as shown in the following code
fragment.

Scanner sc = new Scanner(new File(s));

while (sc.hasNext()) {

String c = sc.next().toLowerCase();

if(name.equals("#")) {

sc.nextLine();

continue;

}

86 Copyright c© 2006 Tech Science Press CMES, vol.11, no.2, pp.81-90, 2006

Class w = Class.forName("gener."+c);

w.newInstance();

}

Here the scanner sc reads data from an input file. If a
read token appears to be ”#” then this line is considered a
comment and the scanner reads token from the next line.
If string c is not a comment character it is supposed to
be a class name. New object c from package gener is
created using methods forName and newInstance.

4.2 Mesh generators

Various mesh generators can be included in the code
without any difficulty. A mesh generator creates
FeModel object. Generated nodes and elements are
placed in the FeModel object using its appropriate meth-
ods. Then the model object is stored in hashtable blocks.

Usually one mesh block has simple shape and topology.
Because of this relatively simple mesh generators based
on mapping from local to global coordinates can be used.
Two such mesh generators are implemented in the post-
processor code. Class genquad2d contains a mesh gen-
erator for a two-dimensional quadratic quadrilateral area.
The area is specified by eight nodal points. Regular mesh
is generated in local coordinates. Then nodal coordi-
nates are transformed into the global cartesian system us-
ing quadratic shape functions. Similar three-dimensional
class genquad3d generates a mesh inside a curves hex-
ahedral area, which in general is determined by twenty
nodal points.

Another useful method for three-dimensional mesh gen-
eration is sweeping a two-dimensional mesh in space.
Mesh generator sweep extracts a two-dimensional mesh
with a given name from hashtable and moves it
along specified three-dimensional trajectory. The two-
dimensional mesh is copied at predetermined positions.
These two-dimensional sections serve as a skeleton for
creation of a three-dimensional mesh. Application of
transformations to two-dimensional sections allows to
produce complicated three-dimensional meshes.

4.3 Connecting blocks and other operations

Mesh blocks are connected together by pasting surfaces
with coincident nodes. Class paste provides a method
for producing new mesh from given two mesh fragments.
Surface nodes of two mesh fragments are compared to
each other. If a distance between a pair of nodes is less

than a specified tolerance then two nodes are merged.
This means the node is deleted from the second mesh
and its number is registered in a list for subsequent mod-
ification of the connectivity information.

Other operations on mesh blocks include:

transform - translate, scale and rotate node locations of
a mesh block;

copy - create a copy of a mesh block under new name;
delete - remove a mesh block from the hashtable;
readmesh - read a mesh block from a file;
writemesh- write a mesh block to a file.

5 Visualization

5.1 Using Java 3D API

In general, the development of visualization software is a
complicated task. One possibility to make this task sim-
pler is to employ well-established visualization tools like
the Visualization Toolkit VTK [Schroeder et al (1998)].
Such tools have a lot of opportunities for visualization.
Nevertheless, particular features necessary for finite ele-
ment visualization, especially in the case of higher-order
elements, may be missing.

Fortunately, Java provides an object-oriented graphics li-
brary for three-dimensional visualization, which is called
the Java 3D [Sowizral et al (2000)]. The developer spec-
ifies geometry of visual objects, their appearance and be-
havior and light sources as Java 3D objects. Java 3D ob-
jects are placed into a scene graph data structure. The
scene graph is a tree structure that specifies the content
of a virtual universe, and how it is to be rendered. Af-
ter compiling, the scene is rendered automatically with
”quasi”-photographic quality. The latter means that the
effects of light source shading are shown, however, ob-
ject shades and reflections are ignored.

The Java 3D employs linear triangular and quadrilateral
filled polygons for surface representation. Visualization
of finite element models consisting of simplest elements
is almost straightforward. However, for higher order el-
ements the transformation of element surfaces into trian-
gular polygons should be done carefully taking into ac-
count both geometry features and result field gradients.

5.2 Visualization algorithm

The input data for the visualization is a finite element
model produced by the preprocessor Jmgen (no results)

Finite Element Code in Java 87

or by the processor Jfem (contains solution results). Pri-
mary results (displacements) are obtained at nodes of the
finite element model. Secondary finite element results
(like stresses), which are expressed through derivatives
of the primary results, usually have the best precision
at some points inside elements. For models composed
of 20-node finite elements stresses have the most precise
values at 2×2×2 reduced Gaussian integration points.
If two-dimensional 8-node elements are used, the best
values of stresses are at 2×2 Gauss integration points.

The visualization algorithm consists of the following
main steps [Nikishkov (2003)].

Obtain continuous field of finite element results by ex-
trapolation from reduced integration points inside
elements to element nodes with subsequent averag-
ing.

Create the surface of the finite element model or create
model section where results will be displayed.

Subdivide curved element faces into flat triangles on the
basis of surface curvature and gradient of results.

Create contour pictures by specifying coordinates of
one-dimensional color pattern at triangle vertices.

In order to obtain continuous stress fields, stresses at re-
duced integration points are extrapolated to finite element
nodes and are averaged with the use of contributions
from adjacent finite elements. After this, nodal stresses
can be interpolated inside elements using element shape
functions.

Creation of the model surface is based on the fact that
outer element faces are present in the model only once
while inner faces belong to two finite elements. The sur-
face of the finite element model is created from element
faces, which are mentioned in element connectivities one
time.

Subdivision of quadratic element faces depends on two
factors: curvature of the surface and range of result func-
tion over the surface. The subdivision into triangular ele-
ments is performed using the Delaunay triangulation pro-
cedure. Numbers of subdivisions on face edges are de-
termined by its curvature and by results ranges between
nodes.

Java 3D provides three-dimensional rendering of poly-
gons with a possibility of texture interpolation. Tex-
ture interpolation technique is employed to create color
contours inside triangles produced after subdivision of

VisModelShape

VisModel
Geometry

Jvis (main)

FeData

FeModel

Node Element

Mouse

Light

Contour
Texture

ElementFace

Delaunay
Triang

Figure 4 : Class diagram of the finite element postpro-
cessor.

curved element surfaces. A one-dimensional texture con-
taining desired number of color bands is generated. Val-
ues of functions at triangular vertices are transformed
to texture coordinates using specified scale.These texture
coordinates are supplied to the Java 3D rendering engine,
which generates a three-dimensional image.

5.3 Visualization code structure

Class structure of the visualization code is shown in
Fig. 4. The code serves as a model visualizer and as a
postprocessor of the finite element results.

Main class Jvis creates object VisModelShape. This ob-
ject contains all necessary information for Java 3D scene
graph including visual model shape, mouse behavior
(class Mouse) and lights (class Light). Class VisModel-
Geometry creates geometric arrays for the visual model
using data of the finite element model FeModel. Class
DelaunayTriang helps to triangulate element faces Eme-
nentFace using Delaunay triangulation algorithm. Class
ContourTexture creates textures necessary for visualiza-
tion of finite element results as color contours.

6 Example

Let us demonstrate the use of the finite element Java sys-
tem Jfea on a simple example shown in Fig. 5.a: tension
of a thick rectangular plate with a central hole.

6.1 Mesh generation

Mesh is generated for one eights of the specimen (see
Fig. 5.a). A schematic of mesh generation is depicted
in Fig. 5.b. A two-dimensional area is decomposed into
blocks b1, b2 and b3 of simple shapes. Two-dimensional

88 Copyright c© 2006 Tech Science Press CMES, vol.11, no.2, pp.81-90, 2006

P=1

8

4
2

b1

b2

b3

sweep

x

y

z

R=1

ba
Figure 5 : Example problem: a) tensile plate with a
hole; b) mesh generation using block decomposition and
sweeping.

meshes inside blocks are created by local mesh genera-
tors. Block are pasted together in one mesh. Subsequent
sweeping produces a three-dimensional mesh. Two-
dimensional meshes are composed of 8-node quadrilat-
eral elements. The 20-node hexahedral element is used in
the three-dimensional mesh. Input data for preprocessor
Jmgen is given in Table 3. The first line in the Table is a
comment. A rule for comments is as follows: after token
#, the rest of the line is ignored. Uppercase and lower-
case characters can be mixed freely since all characters
are transformed to lowercase during data interpretation.

Mesh blocks b1 and b2 are produced by GenQuad8 gen-
erator. Key points shown in Fig. 5.b by dark circles are
specified in array xyp to define curved quadrilaterals.
Relative sizes of smallest elements on edges are deter-
mined by values in array res. Free format data input
provides a possibility to use default values of parameters.
For example, it is not necessary to specify array res if all
elements should have equal size along edges of a quadri-
lateral block. In the absence of array res default zero
values are adopted that means equal element size along
edges.

Mesh blocks b1 and b2 are connected together by Paste
module. The resulting mesh is stored under the name
b12. Parameter eps determines coordinate tolerance for
joining nodes from two mesh blocks.

Table 3 : Data file for mesh generation.

Data file for Jmgen

Genquad8 b1

nh = 4 nv = 4

xyp = 1 0 0 0 2 0 0 0

2 2 0 0 .7071 .7071 .9239 .3827

res = .15 .15 0.85 0

end

GenQuad8 b2

nh = 4 nv = 3

xyp = .7071 .7071 0 0 2 2 0 0

0 2 0 0 0 1 .3827 .9239

res = .15 0 0.85 0

end

Paste b1 b2 b12

eps = 0.01

end

Rectangle b3

nx = 3 ny = 3

xs = 0 0.6667 1.3333 2

ys = 2 2.6667 3.3333 4

end

Paste b12 b3 b123

eps = 0.1

end

Sweep b123 m3d

nlayers = 4

zlay = 0 .25 .5 .75 1

end

WriteMesh m3d example.mesh

Upper block b3 is meshed by module Rectangle, which
creates a mesh inside a rectangular block using speci-
fied locations of corner nodes at block edges. Another
pasting of mesh blocks b12 and b3 produces a final two-
dimensional mesh b123.

A three-dimensional mesh m3d is created by sweeping
the two-dimensional mesh b123 along the negative di-
rection of z axis.

Resulting three-dimensional mesh is written to file exam-
ple.mesh using module WriteMesh. The mesh is used by
the processor code Jfem during problem solution. The
mesh can be visualized by the visualization code Jvis.

6.2 Problem solution

Input data for the finite element processor is presented
in Table 4. Small amount of data is necessary since the
mesh prepared by the preprocessor is included using in-
struction includeFile. A principle of adopting default
values of many parameters is also contribute to the re-

Finite Element Code in Java 89

Table 4 : Data file for finite element solution.

Data file for Jfem

stressState = threeD

includeFile example.mesh

solver = LDU

Material properties

materNo = 1

elastModulus = 1000

poissonRatio = 0.3

Displacement boundary conditions

boxConstrDispl = x 0.0

-0.01 0.99 -1.01 0.01 4.01 0.01

boxConstrDispl = y 0.0

0.99 -0.01 -1.01 2.01 0.01 0.01

boxConstrDispl = z 0.0

-0.01 -0.01 -1.01 2.01 4.01 -0.99

Load

loadStep = 1

boxSurForce = n 1.0

-0.01 3.99 -1.01 2.01 4.01 0.01

duction of input data. For example, the instruction

solver = LDU

specifies that LDU method is employed for the solution
of the finite element equation system. This instruction
can be omitted since LDU solver is the default one.

Next, material properties are specified. For material
number materNo we determine just mechanical con-
stants that are necessary for the selected type of analysis.

Different options exist for the specification of boundary
conditions. In the example, both displacement bound-
ary conditions and force boundary conditions are gener-
ated on surfaces, which are identified by a bounding box
with given diagonal ends. Instruction boxConstrDispl
implies that the following data is given: constraint direc-
tion, constraint value, three coordinates of the first diago-
nal end and three coordinates of the second diagonal end.
Specification of a normal distributed force on a surface is
performed in an analogous way.

Computing time for the example problem (148 20-node
elements and 907 nodes) is 1 s on a PC computer with
Intel Pentium 4 2.8MHz processor.

6.3 Visualization of results

The created finite element model and results of problem
solution are visualized using postprocessor Jvis as shown
in Fig. 6. Using mouse the user can rotate, zoom and
pan the finite element model. The user interface is inten-

sionally created simple. Parameters related to what and
how to be visualized are given on the command line or in
data file. Possible ways of visualization include: model,
deformed model, contour plots of various quantities for
deformed and undeformed models.

7 Conclusion

In this paper, the architecture of a finite element system
written in Java has been presented. The system is de-
signed according to object oriented principles. Is is orga-
nized into ten Java packages. Four packages are shared
between all three codes, other six packages are specific
for applications. The system has three main methods cor-
responding to three applications: preprocessor for mesh
generation, processor for stress analysis and postproces-
sor for visualization.

We find that new features of Java 1.5 like data scanner
and enumerated type are very helpful in development of
finite element applications. Java 3D API provides means
for easy visualization of finite element models and re-
sults. Acceptable computational efficiency of the Java
code can be achieved with solver code tuning.

The general conclusion is that object oriented approach
with programming in Java allows to develop well-
organized finite element applications with acceptable
computational efficiency. While here the object oriented
design has been applied to the traditional finite element
algorithm, it can be also used for codes based on mesh-
less methods.

References

Akin, J.E.; Singh, M. (2002): Object-oriented Fortran
90 P-adaptive finite element method. Advances in Engi-
neering Software, 33, 461-468.

Archer, G.C.; Fenves, G.; Thewalt, C. (1999): A new
object-oriented finite element analysis program architec-
ture. Computers and Structures, 70, 63-75.

Atluri, S.N.; Shen, S. (2002): The Meshless Local
Petrov-Galerkin (MLPG) Method: A Simple and less-
costly alternative to the finite element and boundary ele-
ment methods. CMES, 3, 11-52.

Atluri, S.N. (2004): The Meshless Method (MLPG) for
Domain and Bie Discretizations. Tech Science Press,
Los Angeles.

Bathe, K.-J. (1996): Finite Element Procedures.

90 Copyright c© 2006 Tech Science Press CMES, vol.11, no.2, pp.81-90, 2006

Figure 6 : Visualization of the generated finite element mesh and graphical presentation of results (equivalent stress)
as contours.

Prentice-Hall, Englewood Cliffs, NJ.

Commend, S.; Zimmermann, T. (2001): Object-
oriented nonlinear finite element programming: a primer.
Advances in Engineering Software, 32, 611-628.

Dubois-Pelerin, Y.; Zimmermann, T. (1993): Object-
oriented finite element programming. III. An efficient
implementation in C++. Computer Meth. Appl. Mech.
Eng. 108, 165-183.

Eyheramendy, D.; Guibert D. (2004): A Java approach
for F.E. computational mechanics. ECCOMAS 2004
(P.Neittaanmaki et al eds.), 13 p.

Forde, B.W.R.; Foschi, R.O.; Steimer, S.F. (1990):
Object-oriented finite element analysis. Computers and
Structures, 34, 355-374.

Mackie, R.I. (2001): Object oriented methods and fi-
nite element analysis. Saxe-Coburg Publications, Stir-
ling, Scotland.

Mackerle, J. (2004): Object-oriented programming in
FEM and BEM: a bibliography (1990-2003). Advances
in Engineering Software, 35, 325336.

Nikishkov, G.P. (2003): Generating contours on
FEM/BEM higher-order surfaces using Java 3D textures.
Advances in Engineering Software, 34, 469-476.

Nikishkov, G.P.; Nikishkov, Yu.G.; Savchenko, V.V.
(2003): Comparison of C and Java performance in finite
element computations. Computers and Structures, 81,
2401-2408.

Schneiders, R. (2000): Quadrilateral and hexahedral
element meshes. In: Handbook of Grid Generations
(J.F.Thompson et al Eds, CRC Press, 21.1-26.

Schroeder, W.; Martin, K.; Lorensen, B. (1998): The
Visualization Toolkit: An Object-Oriented Approach to

3D Graphics. Prentice-Hall, Englewood Cliffs, NJ,
USA.

Sowizral, H.; Rushforth, K.; Deering, M. (2000): The
Java 3D API Specification. Addison-Wesley, Reading,
MA.

Zimmermann, T.; Dubois-Pelerin, Y.; Bomme, P.
(1992): Object-oriented finite element programming. I.
Governing principles. Computer Meth. Appl. Mech.
Eng. 98, 291303.

