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Analysis of Partially Concrete-Filled Steel Tubular Columns subjected to Cyclic
Loadings

T. Ishizawa 1 and M. Iura 1

Abstract: A one-dimensional model is proposed for
numerical analysis of partially concrete-filled steel tubu-
lar (PCFST) columns subjected to cyclic loadings. The
present formulation does not require experimental results
nor shell analysis to obtain the constitutive equation of
the model. The material properties and dimensions of
PCFST columns are required for numerical analysis of
the present model. The PCFST columns are assumed to
consist of elastic beam and base plastic-hinge region in
which steel local buckling is observed. Two parameters
are introduced in order to express hardening phenomena
of PCFST columns subjected to cyclic loading. Resist-
ing forces due to concrete filled in the elastic beam are
defined by using the present parameter. The other param-
eter is used to define an effective area of concrete filled
in the base plastic-hinge region. The hysteretic rules for
two parameters are proposed to model the hardening phe-
nomena. For overall analysis, steel plates at the base
plastic-hinge region are discretized along circumferential
direction by using fiber elements, while layer elements
are employed for concretes at the base plastic-hinge re-
gion. The validity of the present model has been con-
firmed through comparisons with existing experimental
results.

keyword: Tubular columns, Concrete-filled columns,
Inelastic response, Hysteretic model, Fiber model.

1 Introduction

The 1995 Kobe, Japan, earthquake caused widespread
damage to steel bridge piers. A variety of methods have
been proposed to strengthen the existing columns. Im-
portant issues for retrofitting the existing columns were
strength and ductility. When the ultimate strength of steel
tubular columns increases, massive substructures will be
required. Since reinforcement of the existing substruc-
tures is expensive and time consuming, the increase of
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ultimate strength is not desirable. On the other hand,
the increase of ductility in steel tubular columns is fa-
vorable for seismic design. Longitudinal stiffeners [Iura,
Kumagai and Komaki (1997), The Public Works Re-
search Institute, Metropolitan Expressway Public Corp.,
Hanshin Expressway Public Corp., Nagoya Expressway
Public Corp., Kozai Club and Japan Association of Steel
Bridge Construction (1997)], concrete infill [Iura, Orino
and Ishizawa (2002), The Public Works Research In-
stitute, Metropolitan Expressway Public Corp., Hanshin
Expressway Public Corp., Nagoya Expressway Public
Corp., Kozai Club and Japan Association of Steel Bridge
Construction (1997), Usami and Ge (1994), Ge and
Usami (1996)], carbon fiber sheets [Watanabe, Ishida,
Hayashi, Yamaguchi and Ikeda (2002)] and patch plates
[Chu and Sakurai (2004)] have been used to increase the
ductility of steel tubular columns. From an economic and
construction point of view, concrete infill would be one
of the best choices for increasing ductility.

Concrete-filled steel tubular (CFST) columns have been
used in many structural applications. When concrete is
fully filled in steel bridge piers, the strength and ductil-
ity of CFST columns increase. However, the increases
of ultimate strength and dead load require massive sub-
structures. Especially when the existing structures are
retrofitted, the increases of ultimate strength and dead
load are unfavorable for substructures. Therefore, par-
tially concrete-filled steel tubular (PCFST) columns have
received wide attention in steel bridge piers. Amano,
Kasai, Usami, Ge, Okamoto and Maeno (1998) have
proposed an optimum concrete volume for rectangular
PCFST columns. Ge and Usami (1996) have reported
experimental results for rectangular cross-sections and
shown that the attachment of a diaphragm on the top of
concrete increases the ultimate strength and ductility of
rectangular PCFST columns. Susantha, Ge and Usami
(2002) have proposed a numerical model of rectangular
CFST columns subjected to cyclic loading. According to
Usami and Ge (1994), the filled-in concrete prevented
steel plates from buckling inside columns. Therefore,
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Figure 1 : Experimental result.

the ultimate strength of rectangular PCFST columns in-
creases.

In comparison with works concerning rectangular
PCFST columns, a small number of studies have been
reported on circular ones. According to Iura, Kumagai
and Komaki (1997), an elephant foot bulge was a typical
local buckling mode of circular columns. In this case,
steel plates deformed outside columns, so that the filled-
in concrete did not prevent steel plates from buckling.
Iura, Orino and Ishizawa (2002) have developed the for-
mulae for evaluating ultimate strength and optimum con-
crete volume for circular PCFST columns. Morishita,
Aoki and Suzuki (2000) and Iura, Orino and Ishizawa
(2002) have shown that attachment of a diaphragm on the
top of concrete increases ultimate strength and ductility
of circular PCFST columns.

In this paper, a one-dimensional model is proposed for
numerical analysis of circular PCFST columns. A finite
element analysis is a powerful tool for analysis of PCFST
columns. However, since finite element analysis is ex-
pensive for seismic design of steel bridge piers, a single
degree of freedom model (e.g. Iura, Suetake and Atluri
(2003)) is proposed to investigate the inelastic behavior
of PCFST column. The critical issue for modeling the
PCFST column subjected to cyclic loading is the harden-
ing phenomena. A typical experimental result of PCFST
column is shown in Fig. 1. A thick solid line denotes the
hardening phenomena mentioned above.

In this model, PCFST column consists of two parts, as
shown in Fig. 2. The lower part is called the base plastic-
hinge region, while the upper part is called the elastic
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Figure 2 : Model of pier.

beam. The skeleton curves of steel plates and concretes
at the elastic beam are assumed to be linear. We employ
a constitutive equation of steel plate at the base plastic-
hinge region, developed by Ishizawa and Iura (2005).
The strength deterioration due to steel local buckling was
taken into account in the constitutive equation. As con-
crete constitutive equation at the base plastic-hinge re-
gion, we employ a model developed by Susantha, Ge and
Usami (2001).

The present analysis consists of two steps. In the first
step, concretes in the elastic beam are neglected. Steel
plates in the base plastic-hinge region are discretized
along circumferential direction by using fiber elements,
while concretes of the base plastic-hinge region are mod-
eled by using layer elements, as shown in Fig. 3. We
reduce a concrete area in the plastic-hinge region by in-
troducing a parameter, since the constitutive equation
of concretes used has been developed for confined con-
cretes. The reduction of concrete area is motivated also
by the fact that a separation and a slipping were observed
between steel plates and concretes. The second step is
to obtain a resisting force due to concretes in the elastic
beam. For simplicity, we consider a concrete cantilever
beam. Another parameter is introduced to calculate the
resisting force. The introduction of two parameters is
the key point for expressing the hardening phenomena of
PCFST columns subjected to cyclic loadings.

Detailed comparisons between experimental and numeri-
cal results are made in this paper. The effects of concrete
height and diaphragm on the behavior of PCFST columns
are discussed.
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Figure 3 : Section model.

2 One-dimensional model

We consider a circular PCFST column, as shown in Fig.
2, which is fixed at one end and subjected to axial load Pv

and lateral load Ph at the other end. The axial load corre-
sponds to the dead load of bridge girders, while the lat-
eral load corresponds to the earthquake load. Notations
L, Lc and D are the height of steel column, the height
of filled-in concert and the outside diameter of steel col-
umn, respectively. As shown in Fig. 2(b), the PCFST col-
umn is assumed to consist of an elastic beam and a base
plastic-hinge region. The height of base plastic-hinge re-
gion, denoted by L2, was proposed by Ishizawa and Iura
(2005) and given by

L2 = 0.275

√
I0

A0

{
D
t

D
L

(
fy

Es

)0.5

n−0.5
j

}−0.596

(1)

with

n j = 1− Pv

A0 fy
(2)

where I0 and A0 are the moment of inertia and cross-
sectional area of steel column without filled-in concrete,
t is thickness of steel plate, fy and Es are yield stress and
Young’s modulus of steel plate.

The skeleton curve of steel plate at the base plastic-
hinge region, which has been proposed by Ishizawa and
Iura (2005), is shown in Fig. 4. In the tensile side
of skeleton curve, the maximum stress fm, the yield
stress fy and Young’s modulus Es are obtained from a
coupon test of steel materials. The slope of Es2 is de-
termined by the geometrical and material data of steel
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Figure 4 : Skeleton curve of stress-strain relation for
steel at base plastic-hinge region.

plates. The smooth curve from o to a is obtained by
using the modified Manegotto-Pinto model proposed by
Sakai and Kawashima (2003). The compressive side of
skeleton curve expresses the strength deterioration due
to steel local inelastic buckling. Point c and deteriora-
tion curve from c to d are obtained by using the modi-
fied Shanley’s model. The numerical model used is the
same as that shown in Fig. 2, except for concretes. The
smooth curve from o to c is obtained by using the mod-
ified Manegotto-Pinto model. The governing rules and
the details of the constitutive equation for steel plate were
given by Ishizawa and Iura (2005).

3 Concrete model

A variety of constitutive equations for concrete have been
proposed. Recently Ferretti (2004) have developed a cell
method for analysis of concrete cracking. We employ,
herein, the constitutive equation of concrete proposed by
Susantha, Ge and Usami (2001) and Susantha, Ge and
Usami (2002). For completeness, at first, we briefly ex-
plain the constitutive equation for concrete.

3.1 Constitutive equation of filled-in concrete

In the concrete-filled steel tubular columns, the filled-in
concrete is stronger than plain concrete due to confine-
ment by steel column, and the slope of descending branch
after peak stress is slow. Susantha, Ge and Usami (2001)
have developed the stress and strain relationship of con-
fined concrete, as shown in Fig. 5. The confined concrete
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Figure 5 : Skeleton curves of stress-strain relations for
confined and unconfined concrete.

strength fcc is given by

fcc = 0.85 fc +4 frp (3)

with

frp = β
2t

D−2t
fy (4)

where fc is the unconfined concrete strength and frp is
the maximum average lateral pressure on concrete. Pa-
rameter β is defined by

β = υe −υs (5)

where υe and υs are the Poisson rations of a steel plate
with and without filled-in concrete, respectively. Here υs

is taken as equal to 0.50, and υe is given by the following
expressions;

υe = 0.2312+0.3582υ′
e−0.1524

(
fc

fy

)

+4.843υ′
e

(
fc

fy

)
−9.169

(
fc

fy

)2

(6)

υ′
e = 0.881×10−6

(
D
t

)3

−2.58×10−4
(

D
t

)2

+1.953×10−2
(

D
t

)
+0.4011 (7)

Stress-strain relation up to the peak point is expressed as

σc = fcc
(ε

/
εcc )r

r−1+(ε
/

εcc )r
(8)
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Figure 6 : Governing rules for confined concrete.

where

r =
Ec

Ec − fcc
/

εcc
(9)

εcc = εc

{
1+5

(
fcc

fc
−1

)}
(10)

Notations σc and ε denote the longitudinal compressive
stress and strain, respectively. Notation εc, which is the
strain at maximum stress in unconfined concrete, is pro-
posed by Tang, Hino, Kuroda and Ohta (1996) and given
by

εc =
20 fc

1.27×105 +4150 fc
(11)

The descending branch slope Z, appeared after a peak
point as shown in Fig. 5, is given by

Z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(12)
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Figure 7 : Stress-strain relation of steel and concrete for the ultimate moment Mu(s+c).

where

Rt =
√

3(1−υ2)
fy

Es

D
2t

(13)

where υ is the Poisson ratio of steel plate. Finally, the
ultimate strain εcu is taken as 0.025.

The governing rules of confined concrete, proposed by
Susantha, Ge and Usami (2002), are shown in Fig. 6.
When unloading occur before peak point a, the unloading
line have a slope of Ec. While, after peak point a, the
unloading line make toward point b. Point b is decided
by the intersection of vertical axis and the line originating
from the peak point a, having a slop Ec. The tensile stress
is ignored. Reloading is assumed to follow the same path
as unloading in all the situations.

3.2 Effective concrete area

In the PCFST columns, concretes are not filled in the up-
per part of steel column. Therefore, the constitutive equa-
tion of PCFST column might be different from that of
CFST column explained above. When we use the skele-
ton curve, as shown in Fig. 5, for numerical analysis of
PCFST column, the strength will be overestimated.

It is assumed, in this model, that a separation between
steel plate and concrete does not occur. However, ex-
perimental results showed that a separation occurred be-
tween steel plate and concrete especially when steel local
buckling or elephant foot bulge occurred. And also there
might be a slipping between steel plate and concrete. As
a result, the strain in the cross-section is not continuous
from steel plate to concrete. The strain of concrete at the
surface should be lower than that of steel plates.

In this paper, to avoid the problems mentioned above,
the cross-section of concrete is reduced by introducing a
parameter. The effective concrete area is calculated by
multiplication of the area of concrete and the parameter
k1. The parameter k1 (0≤ k1 ≤1) is determined from the
following empirical equation;

k1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−169.6x2 +579.9x−365.2)
(Lc

L

)1.3
(
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)0.2 |θ|
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(−247.1x2 +804.5x−538.9)
(Lc

L

)1.3
(

fy

fc

)0.2 |θ|
(without diaphragm)

(14)

with

εcc = εc

{
1+5

(
fcc

fc
−1

)}
(15)

where θ is the slope angle of a base plastic-hinge region,
Mz(s) and Mz(s+c) are the full plastic moment of a base
plastic-hinge region without and with filled-in concrete,
Mu(s+c) is the ultimate moment of a base plastic-hinge
region with filled-in concrete, respectively. The validity
of parameter will be found in the numerical examples.
In the calculations of full plastic moment Mz(s+c) and
Mu(s+c), it is assumed that the tensile stress of concrete
is ignored and the concrete is not subjected to the axial
load. The ultimate moment Mu(s+c) proposed by Iura,
Orino and Ishizawa (2002) is employed. The stress and
strain relationships of steel and concrete for Mu(s+c) are
shown in Fig. 7.
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A skeleton curve between parameter k1 and slope angle
θ is linear. A hysteretic rule of parameter k1is defined on
the basis of the fact that a starting point of the hardening
delays after each cycle. A typical hysteretic curve of pa-
rameter k1 is shown in Fig. 8. The thick solid line shows
a hysteretic path o-a-o-b-o-a-c. At first it follows from o
to a on the straight-line. When unloading occurs at point
a(θa, k1a), it follows on the quadratic-curve ao given by

k1 =
k1a

θ2
a

θ2 (16)

When the slope angle θ reaches zero and becomes neg-
ative, it follows on the straight-line ob. When unloading
occurs at point b, it follows the quadratic-curves bo and
oa. After it reaches point a, it follows on the straight-line
ac.

3.3 Model at second step

As mentioned earlier, a resisting force due to concretes
in the elastic beam is obtained at second step. Let us
consider a concrete cantilever beam with bending rigidity
EcIc. The relation between tip load and tip displacement
is well known. With the use of this equation, we define
the resisting force Pr, expressed as

Pr =
3EcIc

L3 δh ×k2 (17)

with

k2 =

⎧⎨
⎩

0.045 Lc
L −0.005 (with diaphragm)

0.045 Lc
L (without diaphragm)

(18)

where Ic is the moment of inertia of filled-in concrete,
and the tip horizontal displacement δh is obtained in the

 c Pr 

b 

δh 
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Figure 9 : Hysteretic rule of Pr.

first step. The parameter k2 (0≤ k2 ≤0.045) is introduced
to express the hardening phenomena of PCFST columns.

A skeleton curve between the resisting force Pr and dis-
placement δh is linear. A typical hysteretic curve is
shown in Fig. 9. The thick solid line shows a hysteretic
path o-a-o-b-o-a-c. At first it follows from o to a on the
straight-line. When unloading occurs at point a(δha, Pra),
it follows on the quadratic-curve ao, defined as

Pr =
Pra

δ2
ha

δ2
h (19)

When the horizontal displacement δh reaches zero and
becomes negative, it follows on the straight-line ob.
When unloading occurs at point b, it follows on the
quadratic-curves bo and oa. After it reaches point a, it
follows on the straight-line ac.

4 Numerical results

At first step, the lateral load Ph1 and the tip displacement
δh are obtained with the use of the model, as shown in
Fig. 2(b). Then the resisting force Pr is calculated by Eq.
(17). Finally, the total resisting lateral force is obtained
by addition of the lateral load Ph1 and the resisting force
Pr.

The validity of the present model has been confirmed
through comparisons between experimental and numer-
ical results. The dimensions and materials for test spec-
imens are shown in Tab. 1, and the data for numerical
analysis are shown in Tab. 2. The notation γ denotes the
ratio of concrete and steel column height, defined as

γ =
Lc

L
×100(%) (20)
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Table 1 : The dimensions and materials for test specimens.
D
mm

L
mm

t
mm

Pv

kN
fy

MPa
fm

MPa
Es

GPa
υ Lc

mm
fck

MPa
Ec

GPa
No.1 502 1750 5.76 386 287 402 188 0.28 298 23.4 24.7
No.2 502 1750 5.76 386 287 402 188 0.28 490 24.4 25.2
No.3 502 1750 5.76 386 287 402 188 0.28 840 25.4 25.7
No.4 502 1750 5.94 375 270 402 195 0.29 998 36.3 29.9
No.5 400 1750 5.77 419 312 410 191 0.29 600 22.6 24.3
No.6 500 1750 5.76 335 313 437 195 0.28 998 37.1 30.1
No.7 400 1750 5.73 375 280 410 195 0.29 600 25.4 25.7

Table 2 : The various values for numerical analysis.
γ
%

Mz(s)
kN·m

Mz(s+c)
kN·m

Mu(s+c)
kN·m

No.1 17 396 492 585
No.2 28 396 500 594
No.3 48 396 509 603
No.4 57 384 578 697
No.5 34 272 240 355
No.6 57 428 625 732
No.7 34 243 236 345

Specimens No.1 to No.4 have no diaphragm, while spec-
imens No.5 to No.7 have a diaphragm attached on the top
of concrete.

4.1 Columns without diaphragm

The experimental results of Iura, Orino and Ishizawa
(2002) are used for comparison. The test specimens have
no diaphragm. The difference between these specimens
is the ratio γ. Comparisons between experimental and
numerical results are shown in Fig. 10. The dotted lines
show the experimental results, while the solid lines the
numerical results. The ratio γ is also shown in Fig. 10.
In the experimental results, as the ratio γ become higher,
the ultimate strength become higher. As shown in Fig.
10, the present numerical model was able to simulate the
above phenomena with good accuracy. And good agree-
ment between experimental and numerical results is ob-
tained even after the ultimate strength.

4.2 Columns with diaphragm

Iura, Orino and Ishizawa (2002) have conducted an ex-
perimental work for PCFST column with a diaphragm.
Comparisons between experimental and numerical re-

sults are shown in Fig. 11. These specimens have a di-
aphragm on the top of concrete. The ratio γ is also shown
in Fig. 11. In the specimen No.7, the same displacement
was repeated three times in each cycle. The agreement
between experimental and numerical results is good. The
hardening phenomena were captured by this model.

5 Discussions

We investigate the effects of two parameters introduced
in this paper on the hysteretic curves. At first we put
k1 = k2 = 0. The numerical result is shown in Fig. 12(a).
This model corresponds to the steel columns without
concrete. Therefore, numerical result underestimates the
experimental results. The next model is made by putting
k1 = 1, k2 = 0. It is assumed, in this model, that con-
cretes in the base plastic-hinge region act without sepa-
ration and slipping between steel plates and concretes. A
comparison between experimental and numerical results
is made in Fig. 12(b). As expected, the numerical result
overestimates the experimental result. Finally we employ
the parameter k1 defined by Eqs.(14) and (16), and put k2

= 0. This model neglects the effect of concretes in the
elastic beam on mechanical behavior of PCFST column.
A comparison between experimental and numerical re-
sult is shown in Fig. 12(c). Good agreement was ob-
tained in this case. However, a comparison between Fig.
10(b) and 12(c) indicates that the inclusion of parameter
k2 yields to much better accuracy for numerical analysis.

6 Conclusions

A one-dimensional model has been proposed for the
analysis of circular PCFST columns. The main issue
of analysis of PCFST columns subjected to cyclic load-
ings is to simulate the hardening phenomena after a few
cycles. The idea of the present method is to introduce
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Figure 10 : Hysteretic curves: These specimens have no diaphragm.

the parameters k1 and k2 in order to obtain the harden-
ing phenomena. The advantage of the present model is
that experiments or shell analysis are not required to es-
tablish a constitutive equation of steel plate and filled-in
concrete. The constitutive equation of steel plate, which
is obtained by Ishizawa and Iura (2005), was employed
in present model. Moreover, the effective concrete area
and the resisting force are introduced in order to express
the hardening phenomena of PCFST columns subjected
to cyclic loading. Comparisons of experimental and nu-
merical results showed good agreement.
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Figure 11 : Hysteretic curves: These specimens have a
diaphragm.
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Figure 12 : Hysteretic curves for No.2.
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