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Analysis of Structure with Material Interface by Meshfree Method

S. Masuda 1 and H. Noguchi 1

Abstract: This paper presents a novel and accurate
technique for modeling discontinuous derivatives in
meshfree methods, which will be used in the analysis of
structures with material interfaces. The novelty lies in
the formulation of the Moving Least Squares Approxi-
mation (MLSA) scheme where an introduced discontin-
uous derivative basis function replaces the conventional
linear basis function. Furthermore, it is easy to imple-
ment this novelty into existing meshfree methods, such
as the Element Free Galerkin (EFG) method, which are
based on the MLSA scheme. The successful analyses
of one and two-dimensional structures with material in-
terfaces demonstrate the potential of the proposed tech-
nique.
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1 Introduction

Recent years have seen the rise of a multitude of mesh-
free methods. Recent methods include Smoothed Par-
ticle Hydrodynamics [Monagham (1982)], Diffuse Ele-
ment Method [Nayroles and Villon (1992)], H-P Clouds
[Duarte and Oden (1996)], Reproduced Kernel Particle
Methods [Liu and Zhang (1995)], Element Free Galerkin
(EFG) Method [Belytschko, Lu and Gu (1994)], Point
Interpolation Method [Gu and Liu (2001)] and the Mesh-
less Local Petrov Galerkin Method [Atluri and Zhu
(1998)] [Lin and Atluri (2000)]. In depth detail of those
methods are described in recent literature [Liu (2002)].

For some meshfree methods, the displacement at a point
of evaluation is frequently approximated from the dis-
placements of surrounding nodes by using the Moving
Least Squares Approximation (MLSA) scheme [Nay-
roles and Villon (1992)] [Belytschko, Lu and Gu (1994)]
[Atluri and Zhu (1998)] [Dilts (1999)] [Lin and Atluri
(2000)]. As a result, it yields continuous displacement
fields and continuous displacement derivatives or strains.
Therefore, for the analysis of homogeneous problems, it
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is widely accepted that meshfree methods are more accu-
rate than the finite element method (FEM).

However, practical problems are inhomogeneous prob-
lems. Examples include structures composing of dif-
ferent members fabricated from different materials, and
composite structures. In the analysis of such problems,
a discontinuity of displacement derivatives arises and
meshfree methods using MLSA require special treatment
to take this discontinuity into account [Cordes and Moran
(1996)] [Kawashima and Noguchi (2000)] [Noguchi and
Kawashima (2004)] [Krogauz and Belytschko (1998)].

Cordes et al. [Cordes and Moran (1996)] and Kawashima
et al. [Kawashima and Noguchi (2000)] [Noguchi and
Kawashima (2004)] proposed a patch method where
MLSA is utilized independently for both sides (patches)
of the material interface. The continuous condition is
only imposed on the displacement at the interface by
using the Lagrange multiplier method or the penalty
method. This approach though very simple, had deriva-
tive oscillations around the interface and gave results that
were less accurate than FEM. Krongauz et al. [Krogauz
and Belytschko (1998)] proposed the Enriched method,
which uses a jump shape function on the interface in or-
der to improve accuracy. The method demonstrated bet-
ter accuracy, however, it was also reported that the jump
function must be given in advance and its shape some-
times affects the results. Furthermore, additional degrees
of freedom may be necessary to determine the amplitude
of the jump function in the global system of equations.
Wang et al. [Wang, Chen and Sun (2003)] also proposed
the Enriched method using the jump function for the Re-
produced Kernel Particle Method. This method requires
no additional degrees of freedom, however, the shape of
given jump function still affects the results. Li et al.
combined the two different types of meshfree methods
(MLPG2 and MLPG5) to treat material discontinuity ac-
curately. However, each method utilizes a different theo-
retical basis and it lacks the consistency of the formula-
tion. [Li; Shen, Han and Atluri (2003)]

Keeping in mind the complexity of practical problems, a
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novel and accurate technique for modeling discontinuous
derivatives in meshfree methods is proposed for the anal-
ysis of structures with material interfaces. A novel dis-
continuous derivative basis function replaces the conven-
tional linear basis function in the MLSA scheme. There-
fore, it is easy to implement this technique into exist-
ing MLSA-based meshfree methods, such as the EFG
method.

The outline of this paper is as follows. Section 2 briefly
reviews the MLSA scheme. Section 3 will introduce
the proposed technique for one-dimensional and two-
dimensional problems. Section 4 describes various ob-
servations noted regarding the proposed technique. Sec-
tion 5 will present several numerical examples of one-
dimensional and two-dimensional structures to validate
the proposed technique. Section 6 will present a conclu-
sion.

2 Moving Least Squares Approximation (MLSA)
review

For most current meshfree methods, MLSA is utilized
for approximating function values in the displacement
field [Nayroles and Villon (1992)] [Belytschko, Lu and
Gu (1994)] [Liu (2002)] [Dilts (1999)]. According to
Belytschko et al. [Belytschko, Lu and Gu (1994)], the
displacement vector uh(x) is approximated by a polyno-
mial as shown in Eq.1, where n represents the number
of terms in the polynomial. Eq.2 shows the linear basis
vector p and its coefficient vector a in a two-dimensional
domain (n=3).

uh(x) =
n

∑
j=1

p j(x)a j(x)≡ pT (x)a(x) (1)

pT (x) = (1, x, y), aT (x) = (a1,a2,a3) (2)

The coefficients in a(x) are determined by minimizing
the weighted functional in Eq.3,

J =
m

∑
I=1

w(rI)
(

uh(xI)−uI

)2
, rI = |x−xI | (3)

where uI is the unknown nodal value of displacement uh

at node xI, rI is the distance between two points x and xI

and m is the number of nodes in the domain of influence
whose radius is ρ. In this paper, the fourth-order polyno-
mial in Eq.4 is adopted as a weight function w(r), which

satisfies w(P) = 0, dw/dr(ρ) = 0 and d2w/dr2(ρ) = 0.

w(rI) =

{
1−6

(
rI
ρ

)2
+8

(
rI
ρ

)3
−3

(
rI
ρ

)4
(0 ≤ rI ≤ ρ)

0 (ρ < rI)
(4)

The approximated displacement vector uh(x) can then be
expressed as a function of the nodal value uI as shown in
Eqs.5-7,

uh (x) =
m

∑
I=1

pT (x)
(
A−1 (x)B(x)

)
I uI =

m

∑
I=1

φI (x)uI (5)

A(x) =
m

∑
I=1

w(rI)p(xI)pT (xI) (6)

B(x) = [w(r1)p(x1) , w(r2)p(x2) , · · ·w(rm)p(xm)]
(7)

Where φI(x) corresponds to the shape function used in
the finite element method.

3 MLSA with Discontinuous Derivative Basis Func-
tion

MLSA is known to yield a continuous displacement
field in space, which contains continuous derivatives.
However, this continuity of meshfree approximations is
sometimes a drawback in problems where derivatives of
the exact solution possess discontinuities, such as strain
jumps at material interfaces. This paper presents an accu-
rate technique for modeling discontinuous derivatives by
introducing a novel discontinuous derivative basis func-
tion into the existing MLSA scheme.

3.1 One-Dimensional Problems

Fig. 1 illustrates the concept of the discontinuous deriva-
tive basis function technique for one-dimensional prob-
lems. A material interface is located at x = xd and sam-
pling points are scattered on both sides of the interface. A
bi-linear basis function, represented by a solid line in Fig.
1, is the adopted discontinuous derivative basis function
and replaces the conventional linear basis function (rep-
resented by a dotted line) in the existing MLSA scheme.
The adopted basis function is continuous at the interface
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Figure 1 : Discontinuous derivative basis function for
1-D problems

but its slope is different on both sides. In this case, the
functions to be minimized are rewritten as Eqs.8, 9,⎧⎨
⎩

uh (x) = a+b (x−xd ) (x ≤ xd)

uh (x) = a+c (x−xd ) (x > xd)
(8)

J =
nd1

∑
I=1

w(rI) (a+b (xI −xd)−uI)
2

+
nd1+nd2

∑
I=nd1

w(rI) (a+c (xI −xd )−uI)
2 (9)

where nd1 represents the number of points on the left
side of the interface (x ≤ xd) and nd2 on the right (x > xd).
Therefore the total number of the sampling points in the
domain of influence is nd1 + nd2. By satisfying the sta-
tionary condition of Eq.9 approximates the displacement
function in Eq.10.

uh(x) ≡
nd1+nd2

∑
I

φI(x)uI (10)

⎧⎨
⎩

φI(x) = P1 (x)T A−1BI (x ≤ xd)

φI(x) = P2 (x)T A−1BI (x > xd)
(11)

A =
nd1

∑
I=1

w(rI)p1 (xI)p1 (xI)
T

+
nd1+nd2

∑
I=nd1

w(rI)p2 (xI)p2 (xI)
T (12)
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Figure 2 : Shape function around interface (1-D)

B(x) = [w(r1)p(x1), · · · ,w(rnd1)p(xnd1),
w(rnd1+1)p(xnd1+1), · · · ,w(rnd1+nd2)p(xnd1+nd2)] (13)

uT =
{

u1 u2 . . . un
}

(14)

p1 (x) =

⎡
⎣ 1

x−xd

0

⎤
⎦ , p2 (x) =

⎡
⎣ 1

0
x−xd

⎤
⎦ (15)

The shape function obtained by this technique is illus-
trated in Fig. 2. It is coupled together with the shape
function obtained by Wang et al. for comparison [Wang,
Chen and Sun (2003)]. Both shape functions appear sim-
ilar and display a sharp peak, the discontinuous deriva-
tive, at the material interface.

3.2 Two-Dimensional Problems

Two-dimensional problems are similar to one-
dimensional problems in the sense that two sets of
complete linear polynomial functions are considered as
shown in Fig. 3. Both linear polynomial functions are
reproduced in Eqs.16-17 with Eq.17 representing the
shape of the material interface. Eq.17

is also a constraint equation that all points on the inter-
face have to satisfy.⎧⎨
⎩

uh
A = a+b (x−xd)+c (y−yd ) h(x,y) ≥ 0

uh
B = d +e (x−xd )+ f (y−yd ) h(x,y) < 0

(16)
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Figure 3 : Discontinuous derivative basis function for 2-D problems (Concept)

h(x,y) = 0 (17)

Subscripts A andB in Eq.16 indicate the separate zones
consisting of different materials in the domain of influ-
ence. The point xd = (xd,yd) is nearest to the evaluation
point on the interface.

If the shape of the interface is straight as shown in Fig. 4-
1 and assuming the interface is not parallel to the y-axis,
Eq.17 is simply rewritten as Eq.18.

y−yd = α (x−xd ) , α �= 0 (18)

The coefficients in Eq.16 are determined such that the
intersection of those two functions when projected onto
the x-y plane coincides with the interface. For xd and
xd = (xd + x′,yd + αx′) x′ �= 0 on the interface, the fol-
lowing equation holds.

uh
A(xd) = uh

B(xd), uh
A(xd) = uh

B(xd) (19)

Thus, the displacement basis function, considering the
straight interface in the domain of influence, is approxi-
mated in Eq.20.⎧⎪⎪⎨
⎪⎪⎩

uh
A = a+b (x−xd )+c (y−yd ) h(x,y) ≥ 0

uh
B = a+{b+(c− f )α (x−xd )}+ f (y−yd )

h(x,y) < 0

(20)

If the interface is parallel to the y-axis (α = 0), the second
equation of Eq.20is replaced by Eq.21.

uh
B = a+e (x−xd )+c(y−yd ) h(x,y) < 0 (21)

The shape function for two-dimensional problems can
then be obtained by following the same solution proce-
dure for one-dimensional problems as shown in Eqs.22-
24.⎧⎪⎨
⎪⎩

φI (x) = p1(x)T (A - 1B )I h(x,y) ≥ 0 zone A

φI (x) = p2(x)T (A - 1B )I h(x,y) < 0 zone B

(22)

p1 (x) =

⎡
⎢⎢⎣

1
x−xd

y−yd

0

⎤
⎥⎥⎦ (23)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p2 (x) =

⎡
⎢⎢⎣

1
x−xd

α (x−xd )
−α (x−xd )+y−yd

⎤
⎥⎥⎦ (α �= 0)

p2 (x) =

⎡
⎢⎢⎣

1
0
y−yd

x−xd

⎤
⎥⎥⎦ (α = 0)

(24)

A and B in Eq.22 can be evaluated from Eqs.12, 13 re-
spectively.
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Figure 4 : Discontinuous derivative basis function for 2-D problems (Modeling of interface)

Fig. 5 compares shape functions and partial derivatives,
in two-dimensional space on the straight interface, ob-
tained by using MLSA with the discontinuous derivative
basis function and those obtained by the conventional
MLSA. It can be seen that the shape function obtained
by the proposed technique captures the sharp peak at the
interface, thus realizing derivative discontinuityalong the
interface.

For curved interfaces, the tangent line at xd, the nearest
point on the interface from the evaluation point, is re-
garded as the pseudo straight interface as shown in Fig.
4-2. The same procedure described above can also be ap-
plied. The validity of this technique is demonstrated in
subsequent numerical examples.

4 Noted Observations of Proposed Technique

4.1 Number of sampling points and singularity of ma-
trix A

If the number of sampling points in the domain of influ-
ence is not sufficient, the matrix A in Eqs.11, 22 becomes
singular and cannot be inverted. For two-dimensional
problems, where the number of unknown coefficients in
Eqs.20, 21 is four, at least four sampling points are nec-
essary in the domain of influence to determine the coef-
ficient values. In addition, linear polynomial functions
must be reproduced in both zones A and B as shown in
Fig.4. At least three sampling points are required in each
zone. Therefore to be able to invert A and evaluate the
shape function, the minimum requirement demands for
at least one sampling point within each zone and two on
the interface shared by both zones. Should the domain of
influence include the material beyond the interface and

the number of sampling points in the other zone is not
sufficient, the MLSA scheme is utilized only in the zone
the evaluation point resides in.

4.2 Linear reproducing condition and convergence
property

Completeness and compatibility are sufficient conditions
for the convergence of a solution by Galerkin-type nu-
merical methods. As the convergence of meshfree meth-
ods using conventional MLSA was already proven and
discussed in literatures [8][15][16], only the linear re-
producing condition of the proposed technique is investi-
gated here. If the problem is homogeneous and the same
material exists on both sides of the material interface, the
function produced by the proposed MLSA using the dis-
continuous basis function must be identical to that pro-
duced by conventional MLSA. Although each function
on both sides of the material interface possesses different
slope values, as shown in Fig. 1, the same slope values
can be obtained in the constant strain state as the method
is based on the least squares approach. Therefore, the
convergence property in homogeneous problems is as-
sured and is also demonstrated in following numerical
examples.

4.3 Comparison with other methods

The major difference that the proposed technique possess
from conventional methods is that all sampling points in
the domain of influence on both sides of the material in-
terface are taken into account as shown in the Fig. 13.
These sampling points on either side of the material in-
terface improves the accuracy of the constants in Eqs.8,
20. However, for other methods, the domain of influence
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Figure 5 : Shape function and its partial derivative in space (2-D)

is truncated and the number of sampling points signifi-
cantly decreases near the interface. The patch methods
[Cordes and Moran (1996)] [Kawashima and Noguchi
(2000)] [Noguchi and Kawashima (2004)], are simple
and utilize Lagrange multipliers or the penalty method to
impose displacement field continuity at the interface, suf-
fer from stress and strain oscillations near the interface
which require the application of smoothing schemes. The
Enriched methods use a jump shape function [Krogauz
and Belytschko (1998)] [Wang, Chen and Sun (2003)]
that considers the discontinuity in derivatives of sam-
pling points on the interface in order to improve accu-
racy. Although better results were obtained, it was also
reported that the computed results depended on the pa-
rameter to determine the shape of the jump function. Fur-
thermore, in case of the method by Krongauz et al., addi-
tional degrees of freedom may be required to determine
the amplitude of the jump function in the global system
of equations, which complicates the formulation for two-
dimensional problems. The proposed technique has no
parameter dependency as no jump shape function is in-
troduced and therefore requires no additional degrees of
freedom. Furthermore, by comparing basis vector Eqs.2,
23-24, it can be seen that, for two-dimensional problems,
the proposed discontinuous basis function requires only
an additional coefficient to determine the local value of
the approximated displacement function as compared to
three coefficients when using the conventional linear ba-

sis function in MLSA. Therefore the proposed technique
is computationally efficient when compared to the con-
ventional linear basis function.

5 Numerical Examples

For the following examples, the EFG method [Gu and
Liu (2001)] is used where MLSA is utilized for spa-
tial discretization. Essential boundary conditions are im-
posed by the penalty method. For domain integration,
background cells and 6 x 6 Gauss quadratures are used.

Several numerical analyses are conducted to demon-
strate the effectiveness of the proposed method. Results
for both one-dimensional and two-dimensional prob-
lems with bi-material properties are presented. One-
dimensional problems include a rod subjected to tensile
loads and a rotating disk subjected to radial loads. Two-
dimensional problems include a cantilever beam problem
subjected to shear loading and a circular inclusion with
uniform eigen strain in an infinite plate. These are typical
problems, which have already been solved in past stud-
ies [Cordes and Moran (1996)] [Kawashima and Noguchi
(2000)] [Krogauz and Belytschko (1998)] [Wang, Chen
and Sun (2003)]. The results obtained by the proposed
technique are all compared with their known exact solu-
tions. The abbreviations “DBF” and “No DBF” in Figs.
7-15 represent the proposed technique, MLSA with the
discontinuous basis function, and conventional MLSA
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methods respectively.

5.1 One-dimensional problems

5.1.1 Bi-material rod
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Figure 6 : 1-D bi-material rod

Fig. 6 shows a one-dimensional rod consisting of two
materials with elastic moduli E1=1 and E2=0.5. One end
is fixed and the other is subjected to tensile load. The
length of the bar L=10; the cross-sectional area A is con-
stant and equal to 1. The material interface is at x = 5.
The analysis is carried out using 21 uniformly spaced
nodes with integrated cells demarcated by the nodes. The
size of the domain of influence is 2.1c, where c denotes
the minimum distance between distributed nodes.

Two separate cases are conducted. For the first case, a
unit tensile force P= 1 is applied. The analytic solution
is evaluated by establishing axial force equilibrium and
is shown in Eq.25.

ε(x) =

⎧⎨
⎩

P/AE1, x ≤ 5

P/AE2, x ≥ 5
(25)

Fig. 7 compares the axial strains, at Gaussian points,
evaluated by the proposed DBF technique and conven-
tional linear basis function. It can be seen that the solu-
tion of DBF are match with the exact solution whereas
the conventional method gives an oscillating solution
near the material interface. In fact, the proposed tech-
nique gives exact solution for this problem, because DBF
is able to represent bi-linear functions. It is noted that
when a bi-linear function is utilized as the basis func-
tion for MLSA, two different-valued and discontinuous
derivatives can be evaluated simultaneously on the inter-
face.

For the second case, a prescribed displacement of u =
1 and a body force b(x) = x are applied. This problem
was solved by Krongauz et al. [Krogauz and Belytschko
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(1998)]. The analytic solution for this case is shown in
Eq.26.

ε(x) =

⎧⎪⎨
⎪⎩

1
E1

(
CE2− x2

2

)
,x ≤ 5

C− x2

2E2
,x ≥ 5

,

C =
6E1E2 +875E1 +125E2

30E2 (E1 +E2)
(26)

Fig. 8 shows a magnified view of the strains around the
discontinuity for the second case, which are plotted at
the Gaussian points. By using DBF, a highly accurate
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solution is obtained with the strain jump at the material
interface being captured.

5.1.2 Bi-material rotating disk
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Figure 9 : Comparison between radial stresses of 1-D
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This analysis solves the same problem that in
[Kawashima and Noguchi (2000)], where the exact solu-
tion was given. Due to axis symmetry, boundary condi-
tions are not required and the effects from imposing them
are not included. The rotating disk consists of two mate-
rials with elastic moduli E1=1000 and E2=2000. The ra-
dius of the cavity is 40 and that of the disk is 140. Fig. 9
shows the material interface at x = 90. A unit centrifugal
force PΩ2 is applied. Computations were made using 11
uniformly spaced nodes with the integrated cells demar-
cated by the nodes. The size of the domain of influence
is 4.1c.

For this problem, radial stresses and hoop strains are con-
tinuous while hoop stresses and radial strains are discon-
tinuous. Fig. 9 shows the exact solution and the com-
puted radial stresses which are plotted at the Gaussian
points. It can be seen from Fig. 9 that the proposed tech-
nique has better accuracy than the conventional method,
whose results oscillate around the material interface.

5.2 Two-dimensional problems

5.2.1 Cantilever beam problem

Two two-dimensional cantilever beam examples will be
presented in this section. An inhomogeneous cantilever
beam example will be presented first, followed by a ho-
mogeneous cantilever beam example. Both of which are
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tilever beam with shear end load

subjected to shear loading. For the former, a cantilever
beam consisting of two materials with elastic moduli
E1=1.0x107 and E2=2.0x107 is analyzed by the proposed
technique. The length of the beam L1 +L2=8; the height
D and the thickness are constant and equal to 1. The ma-
terial interface is located at x = 4. The beam is fixed on
one end and shear force is applied on the other end as
shown in Fig. 10. The analysis is conducted with 51 uni-
formly spaced nodes, with integrated cells demarcated by
the nodes. The size of the domain of influence is 2.1c.

Fig. 11 compares strain values that are plotted at Gaus-
sian points nearest to the top surface of the beam, in the
direction of the x-axis, obtained by the proposed tech-
nique and of the known exact solution. The exact dis-
tribution of strain in the x direction is given in Eq.27
[Kawashima and Noguchi (2000]].⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εxx = − 12p
D3E1

(L1 +L2 −x)(y− 1
2D)

(0 ≤ x ≤ L1)

εxx = − 12p
D3E1

(L1 +L2 −x)(y− 1
2D)

(L1 < x ≤ L1 +L2)

(27)
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The proposed technique gives a highly accurate solution
and captures the strain discontinuity at the interface.

The second example considers a two-dimensional homo-
geneous cantilever beam. The analysis conditions are
the same as the previous case, except that the value of
Young’s modulus is the same for each material. The ob-
jective of this example is to investigate the linear

reproducing property of the proposed technique and the
convergence of L2 displacement norm. The norm is cal-
culated according to Eq.28 and the exact solution is avail-
able in [Belytschko, Lu and Gu (1994)] and [Kawashima
and Noguchi (2000)].

L2 displacement norm

= {
Z

Ω
(uNUM −uEXACT )T (uNUM −uEXACT )dΩ}2 (28)

The convergence plot is illustrated in , where results by
EFG and FEM are shown. The discontinuous basis func-
tion has been introduced in this example around the inter-
face, which is not necessary for homogenous problems,
to check the linear reproducing property of the proposed
technique. Fig. 12 shows that the convergence rate of the
proposed technique coincides with that of EFG, which
uses the linear basis function in MLSA. It also shows
that both convergent rates are superior to that of FEM.
Therefore there is no disadvantage even if the proposed
technique is adopted to solve homogeneous problems.

5.2.2 Inclusion in an infinite plate

The proposed technique is applied here to solve a prob-
lem that involves a circular inclusion in an infinite plate.

The inclusion is subjected to a constant dilational eigen-
strain εq, such as a transformation or thermal strain. Fig.
13 shows the model that is used for analysis. This prob-
lem has been solved by several past studies [Cordes and
Moran (1996)] [Kawashima and Noguchi (2000)] [Kro-
ngauz and Belytschko

(1998)] and the analytical solution with no body force
was given by Eqs.29-30.

ur (r) =

⎧⎨
⎩

C1r, r ≤ R

C1R2/r, r ≥ R
(29)

uθ = 0 (30)

The exact strains are given by Eqs.31-34.

εrr (r) =

⎧⎨
⎩

C1, x < R

−C1R2/r2, x > R
(31)

εθθ (r) =

⎧⎨
⎩

C1, x ≤ R

C1R2/r2, x ≥ R
(32)

εrθ (r) = 0 (33)

C1 =
(µ1 +λ1)ε∗1
µ1 +λ1 +µ2

(34)

µ and λ are Lame constants of the materials and the rela-
tionships between Young’s modulus and Poisson’s ratio
are written as Eqs.35-36.

λ =
νE

(1+ν) (1−2ν)
(35)

µ = G =
E

2(1+ν)
(36)

For this analysis, subscript 1 denotes the inclusion and
2 denotes the surrounding material. The material prop-
erties used for this analysis are E1=1000, ν1=0.28 and
E2=900, ν2=0.33. Due to symmetric properties, only a
quarter of the model was analyzed. The nodal arrange-
ment around the inclusion is also shown in Fig. 13. The
total number of nodes is 897, out of which 88 nodes are
in the inclusion and 13 on the interface. The size of the
domain of influence is 2.8c and the constant dilational
eigenstrain is defined as εq

x=1.

Figs. 14 and 15(a-b) compare the results obtained by
the proposed technique and the exact solution along the
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Figure 13 : Inclusion in infinite plate with constant eigenstrain
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Figure 14 : Comparison between radial displacements of
inclusion in infinite plate

plate’s radius. As can be seen from those figures, radial
displacement and hoop strain are continuous but the ra-
dial strain is discontinuous at the material interface. Fig.
14 shows that for the radial displacement, the obtained
results completely agree with the exact solution. It can
be seen that the sharp edge along the interface is pro-
duced by the proposed technique. Fig. 15(a) shows re-
sults of radial strain obtained by the proposed technique,
which matches the exact solution. It also shows oscil-
lations around the interface when the conventional lin-
ear basis function is used. Fig. 15(b) shows that both
the proposed technique and the conventional method per-
form well when computing hoop strains.

5.2.3 Homogenization analysis for CFRP

Modeling material interface properly is essential for
analysis of composites. The proposed technique is
applied here to homogenization method [Guedes and
Kikuchi (1990)] for quasi 3-dimensional analysis of
composites to compute homogenized elastic moduli. The
analysis model considered is Carbon Fiber Reinforced
Plastic (CFRP) and its properties are illustrated in Fig.
16. The radius of fiber and the volume fraction are varied
as Table 1. The homogenized elastic constants which are
calculated as components of effective constitutive matrix
D (Eq.37) are compared with the properties Halpin-Tsai
theory [Halpin and Kardos (1976)].

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

E11 E12 E13

E21 E22 E23

E31 E32 E33

G23

G31

G12

⎤
⎥⎥⎥⎥⎥⎥⎦

(37)

The properties are calculated in the theory as follows. For
E33, Eq.38 is adopted.

E33 = E fVf +EmVm (38)

where V is volume ratio, f represents fiber and m rep-
resents matrix. The other properties are calculated using
Eqs.39, 40.

M = Mm
1+ξηVf

1−ηVf
(39)
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Figure 15 : Comparison between radial & hoop strains of inclusion in infinite plate
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Figure 16 : Analysis model of composite (Carbon fiber reinforced plastic)

ξ =

⎧⎨
⎩

2 (M = E11, E22)

1 (M = G)
, η =

M f
/

Mm −1

M f
/

Mm +ξ
(40)

Fig. 17 shows results of homogenized elastic constants
obtained by the proposed technique, which agree with the
solution of Halpin-Tsai theory well.

6 Discussion and conclusions

This paper proposed a novel, simple and accurate tech-
nique for modeling discontinuous derivatives in meshfree
methods for the analysis of structures with material in-
terfaces. The novel discontinuous basis function (DBF)
was introduced into the existing MLSA scheme replac-
ing the conventional linear basis function. Comparing
with recent methods, the proposed technique stands out

because its domain of influence is not truncated at the
interface and it utilizes all nodal information in the do-
main of influence. Furthermore, no strain jump function
or additional global degrees of freedom are required nor
included in the formulation. Therefore, this new tech-
nique can be easily incorporated into existing meshfree
methods based on the MLSA scheme, such as the EFG
method. Several successful numerical examples of 1-D
and 2-D structures with material interfaces were also pre-
sented.

However, the proposed technique assumes the pseudo
straight material interface when dealing with curved in-
terfaces. But sufficient and accurate results were ob-
tained when dealing with such cases as shown in the
numerical examples. Future endeavors will include the
application of the proposed technique to more compli-
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Table 1 : Radius of fiber and volume fraction

R (radius of fiber) 4 5 6 7 8 9
Vf (Volume Fraction) 0.125 0.196 0.282 0.384 0.502 0.636
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Figure 17 : Comparison between homogenized elastic constants and the properties of Halpin-Tsai theory

cated problems, such as arbitrary curved material inter-
faces and interfaces with junctions made of multiple ma-
terials. The extension of this technique to 3-D structural
analysis is also a future issue yet to be developed.
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