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On Three-dimensional Effects in Propagation of Surface-breaking Cracks

A. Dimitrov1, F.-G. Buchholz2 and E. Schnack3

Abstract: Crack propagation in 3D-structures cannot
be reduced (in general) to a series of plane problems
along the crack front edge, due to the existence of some
“corners” on the crack front, where the elastic fields are
of a real three-dimensional nature. The most important
example for such a corner ist the point, where the crack
front intersects a free surface of the body. According to
the concept of weak and strong singularities, it is possi-
ble to obtain the asymptotics for the stress intensity factor
(SIF) as well as the strain energy release rate (SERR) in
the neighborhood of such a corner depending on its sin-
gular exponents, so that the convenient single parameter
description on which fracture mechanics is based can be
extended also to problems with corners.
Within the present work the surface-breaking crack is
considered. First, the singular exponents and correspond-
ing singular modes are calculated for arbitrarily-inclined
crack geometries in order to obtain the asymptotics for
the SERR from a theoretical point of view. Further-
more, detailed three-dimensional numerical results for
the SERR distribution along the crack front of a single
edge notched (SEN) specimen under different kind of
loadings are presented in a number of case studies. And
finally, related fracture experiments are discussed under
special consideration of some 3D-effects near the point,
where the crack front intersects the free surface.

keyword: Surface-breaking crack, corner singularity,
weak and strong singularities, fracture parameter asymp-
totics, SEN specimen

1 Introduction

Within the framework of linear elastic fracture mechan-
ics (LEFM) a well known methodology for characteriz-
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ing the safety of structures of brittle materials contain-
ing cracks is established. In contrast to the concepts of
strength of materials some fracture parameter as Irwin’s
stress intensity factor (SIF) k or Griffith’s strain energy
release rate (SERR) G are related to the material fracture
toughness kIc or Gc. Because the stresses in the vicinity
of a crack tip were known to be singular for a long time
Westergaard (1939):

σi j =
1√
2πρ

[
kI f I

i j(ϕ)+kII f II
i j (ϕ)+kIII f III

i j (ϕ)
]
, (1)

not the stresses themselves, but the “amplitude” of the
singularity k, which depends on the loading, is defined to
be the parameter controlling crack instability. ρ,ϕ here
denotes a polar coordinate system with its origin in the
crack tip, fi j are the so called “angular functions”, which
represent the angular behavior of the stresses. It is postu-
lated that crack propagation takes place if

f (kI,kII ,kIII) > kIc or
III

∑
i=I

Gi > Gc. (2)

Historically this concept has been introduced for analyz-
ing 2D crack configurations in plane strain or plain stress,
which is comprehensible, since analytical solutions of
elastic problems in 3D are essentially non-trivial. For
instance, the SIF kI for mode I crack opening in a simple
tension far field σ0 is determined by

kI = σ0
√

πa Y, (3)

where a denotes the crack size. The non-dimensional
form-function Y has to take into account the shape of the
crack. By this simple concept the processing of a wide
range of plane problems is easy to handle only by evalu-
ating Y for the actual crack configuration. Examples can
be found in some stress intensity factor handbooks, see
for instance Murakami (1987).

Within this context it was very natural to expect some
extensions of the above technique to more realistic 3D
problems. First, it has been shown (see Kassir and Sih
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(1975) and the references therein for an overview) that
the form of stress singularity in a number of cases, in-
cluding the semi-infinite plane crack, the penny-shaped
crack and the elliptic crack, is covered by the plane the-
ory, but that the stress intensity factor varies along the
crack-front edge:

σi j =
1√
2πρ

[
kI(s) f I

i j(ϕ)+kII(s) f II
i j (ϕ)+kIII(s) f III

i j (ϕ)
]
,

(4)

where s denotes a coordinate characterizing the posi-
tion along the crack front. In fact, this approach corre-
sponds to a reduction of a 3D-problem to a series of 2D-
problems in planes normal to the crack front edge. There-
fore, a lot of important practical applications, which
were amenable to the two dimensional analysis, could
be solved analytically, so that the corresponding SIF dis-
tributions along the crack front were obtained in a close
form for very different crack geometries and load cases
Kassir and Sih (1975).

With the increasing computer power, however, the ana-
lytical approach took a back seat and was finally replaced
by some numerical methods like FEM, which were ap-
parently able to solve every imaginable problem, includ-
ing some classes of surface-breaking cracks, for which
analytical solutions were in general unknown. Today
such numerical investigations are very popular, which
leads to a constantly increasing number of publications
dealing with the SIF distributions for 3D-crack problems
based on the same idea as Eq. (4), see Panasyuk, An-
drejkiv, and Stadnik (1981) for an overview.

Unfortunately, according to the general theory of bound-
ary value problems in non-smooth domains Kondratiev
(1967); Dauge (1988); Mazja, Nasarow, and Plame-
newski (1991); Grisvard (1992); Kozlov, Maz’ya, and
Rossmann (1997), see also Leguillon and Sanchez-
Palencia (1987) for an excellent engineering overview,
crack propagation in real 3D-structures cannot in gen-
eral be reduced to a series of plane problems along the
crack front edge. This technique fails due to the exis-
tence of some special “corners” on the crack front, the
most important of which being the point where the crack
front terminates on a boundary surface. Near this point
the elastic fields are essentially of a three-dimensional
nature and the plane crack tip theory does not apply.
Moreover, the type of stress singularity may differ from
the well known 1/

√ρ behavior Bazant and Estenssoro

(1979); Ghahremani (1991); Leguillon (1995); Dimitrov,
Andrä, and Schnack (2001), which has the consequence
that the SIFs are no longer well defined (remember that k
was the amplitude of a special 1/

√ρ stress singularity).
The above named successful reduction of a 3D problem
to the plane theory was only possible due to the fact that
the crack front edge was considered as smooth and far
enough away from the boundary surfaces, so that corner
points were not present.

With regard to the above comments the question arises,
whether it is possible to define a convenient single
parameter description of the state near such a three-
dimensional corner point, in analogy to the SIF in the
plane case. Since the elastic fields can be expanded in
the neighborhood of the corner in an asymptotical series
very similar to that in the plane case, the answer is yes —
it would be possible to define a corner stress intensity fac-
tor and to use it as a parameter characterizing fracture at
the corner. However this would not be a very good idea,
since a lot of corner geometries exist and it is practically
impossible to perform experiments for each of them to
ascertain the corresponding fracture toughness. So, the
only useful strategy seems to be a further use of the well
known SIF as a parameter also in the neighborhood of
the corner, even if it is clear that it can be defined here
only in an asymptotical sense. This assumption is by no
means trivial and needs further experimental validation,
of course.

However, what happens with the SIF and the SERR in
the neighborhood of such a corner? From the asymptoti-
cal point of view it can be shown Dauge (2000); Leguil-
lon and Sanchez-Palencia (1999) that both fracture pa-
rameters will have a very “simple” behavior. Depend-
ing only on the local geometry (the angle between crack-
front and free surface for instance) they should tend ei-
ther to infinity or to zero. An exception in form of
a smooth distribution is possible only for a very spe-
cific local crack configuration. As will be shown later,
this result seems to explain very well some 3D-effects
detected by many numerical and experimental investi-
gations of surface-breaking cracks Pook (1994, 1995);
McKellar, Tait, and Douglas (1997); Buchholz, Wang,
Lin, and Richard (1998); He and Hutchinson (2000);
Dhondt, Chergui, and Buchholz (2001); Buchholz, Cher-
gui, and Richard (2001b), which has been the main mo-
tivation for realizing the present work. On the other hand
it explains also the difficulty to obtain coincident nu-
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merical results in the neighborhood of the free surface
— most numerical methods have unconquerable conver-
gence problems near points with high solution gradients,
so that arbitrary results can be expected in this region,
depending on the mesh size. Of course, this situation can
be detected by a convergence analysis (a series of calcu-
lations on different grids), however our experience shows
that such analyses are performed in very few cases. This
seems to be even more important, because many nu-
merical studies are used as a basis for empirical equa-
tions for the SIF or SERR distribution along a 3D crack
front. With this in mind, numerical investigation should
be treated with caution, especially in the neighborhood
of corner points, as has already been noted Pook (1994).

Although the existence of points with a three dimensional
stress state is well known Bazant and Estenssoro (1979);
Ghahremani (1991); Leguillon (1995); Dimitrov, Andrä,
and Schnack (2001), the above named consequences for
the SIF and SERR distributions (and therefore for mod-
eling crack growth in three dimensions) does not seem to
be widely accepted, especially in the fracture mechanics
community. In a typical work dealing with SIF or SERR
calculation in 3D it is usually argued that effects of corner
singularities may be neglected, since the effective zone
of corner dominance is relatively small or because a high
numerical accuracy at the corner is not worth pursuing (at
later propagating stages the corner will exhibit the same
singularity as in the plane case) or simply no attention is
payed to the corner and all related effects are ignored.
However, if the numerical analysis is performed on a
“wrong” geometry, i.e. not exactly on one that would
have a propagating crack (numerical analysis preferably
deals with cracks which have a termination angle of 90◦

both for semi-elliptical and tunnel cracks Pook (1995)),
the corner influence will still be present and will affect
the accuracy of the numerical results. In a related ex-
periment the parameter controlling fracture may tend to
infinity and crack growth will take place first at the cor-
ner, even if its zone of influence is small. Neglecting such
effects will cause a non-conservative approach.

On the other hand, many works dealing with the asymp-
totical investigation of singular problems in elasticity are
limited to the calculation of singular exponents for differ-
ent material and geometrical properties, without showing
the important practical consequences. Very few refer-
ences can be found in the literature with respect to the
validation of the above concepts, one of them is the fun-

damental early work of Bazant and Estenssoro Bazant
and Estenssoro (1979), however a lot of new theoretical
results have been obtained in the last two decades, which
will be taken into account in a current study.

In this spirit we are trying to give a more holistic pic-
ture of the 3D crack propagation under special consider-
ation of free surface effects. We start in Section 2 with
an overview of some important recent results in asymp-
totical expansion theory. These results are the basis for
the concept of weak and strong singularities Leguillon
and Sanchez-Palencia (1992), which relatively easily de-
scribes the interaction between corner and edge for a
surface-breaking crack in terms of their characteristic
singular exponents and allows the development of an
asymptotics for SIF and SERR in the neighborhood of
the boundary surface. In Section 3 a software for the cal-
culation of the generally unknown corner singularity is
presented. With the help of this technique the local prob-
lem of a surface-breaking crack is analyzed for different
crack geometries and the corresponding corner singular-
ity is calculated. In Section 4 a short overview of the
modified virtual crack closure integral (MVCCI) method
is given, by which the numerical calculation of the SERR
distribution along the crack front edge can easily be per-
formed in combination with the finite element method
(FEM).

In Section 5, the main part of the present work, a num-
ber of case studies for different surface-breaking crack
configurations is analyzed by three different techniques.
First, the SERR distribution, calculated numerically by
the MVCCI method on the basis of a FE-model of the
problem is presented. This distribution is then compared
with the asymptotical expansion of the solution, based on
the results in Section 3, in order to show what should be
the asymptotics of the SERR near the free surface from
the theoretical point of view. And finally, corresponding
fracture experiments are presented and discussed. Thus,
by looking at a number of problems from three differ-
ent angles it is shown that the asymptotical theory can be
used to explain all discussed 3D-effects in crack propaga-
tion successfully. Moreover, it is emphasized, that some
of the widely used arguments for neglecting the effect of
corner singularities should be revised. A corresponding
conclusion is given in Section 6.
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2 Asymptotical analysis. Weak and strong singular-
ities

2.1 Asymptotics of the stress intensity factor

Consider a crack with stress-free surfaces and a smooth
crack front in a homogeneous material, Figure 1. The
crack terminates in point O on the free surface. We are
interested in the linear elastic solution of this problem
near the crack front in the neighborhood of O.

crack front

z

r
ρ

P

O

O*

ϕθ

Figure 1 : Geometrical relations near the point, where a
crack terminates at a stress-free boundary surface.

It is well known, see for instance Dauge (2000); Costa-
bel, Dauge, and Duduchava (2001) and the references
therein, that the displacements in a point P near the crack
front can be expressed in cylindrical coordinates ρ,ϕ, z
as an asymptotical series

u(ρ,ϕ, z) = k(z) ρ1/2 û(ϕ)+urem, (5)

where the remainder urem is of order O(ρξ), ξ > 1/2 and
denotes some terms, which are less singular than ρ1/2

with respect to ρ for a fixed z. Please note that in this
case the asymptotics (5) is simpler than the general the-
ory would predict and neither oscillatory nor logarithmi-
cal terms appear, see Costabel, Dauge, and Duduchava
(2001). This expansion corresponds in fact to the usual
plane crack-tip theory in a plane normal to the crack front
at point O∗ and ρ1/2 is the well known square-root dis-
placement behavior in radial direction. The angular be-
havior of u is represented by the so called angular func-
tions û(ϕ). However, the SIF k(z) is now a function of z

and depends on the position O∗ on the crack front. One
should be careful with k(z) and urem, because nothing is
said about their behavior with respect to z and they can
in particular tend to infinity for z → 0, i.e. in the neigh-
borhood of point O.

Similar to (5) there is another way to express the dis-
placements in P as an asymptotical series, now with re-
spect to a spherical coordinate system r,θ,ϕ with its ori-
gin in O, see Kondratiev (1967); Dauge (1988)4:

u(r,θ,ϕ) = K rλ Û(θ,ϕ)+Urem. (6)

Within the framework of traditionally used notions the
termination point O acts as a “corner” and the crack front
as an “edge”. The whole domain in the neighborhood of
O is viewed as a cone with one additional edge (the crack
front) and a special cross-section. Within this context
K denotes the corner stress intensity factor (CSIF) and
λ the corner singularity, which is a generally unknown
complex number. The exponent λ as well as the angu-
lar function Û depend only on the local geometry (crack
front termination angle for instance) and not on the ap-
plied loads and can be determined with the software pre-
sented in the next section. With Urem again some terms
O(rµ),µ > λ are denoted, which are less singular than rλ

with respect to r, however one should be careful with Û
and Urem, since nothing is said about their behavior with
respect to θ and they can in particular tend to infinity for
θ → 0, i.e. in the neighborhood of the crack front.

Because the expansions (5) and (6) refer to the same
physical quantity it is possible to identify k(z) from them.
The obvious geometrical relation

r =
z

cos(θ)
, ρ = z tan(θ)

leads to

k(z) z1/2 tan1/2(θ) û(ϕ)+urem

= K zλ cos−λ(θ) Û(θ,ϕ)+Urem (7)

from which the leading order of k(z) is found to be:

k(z)∼ K zλ−1/2. (8)

As can be seen from the above equation, λ = 1/2 marks
a break even point with respect to the limit of k(z) for

4 We assume that in the expansion logarithmical terms do not ap-
pear.



Propagation of Surface-breaking Cracks 5

z → 0, i.e. in the neighborhood of O. If the real part
of the corner singularity ℜ(λ) is smaller than 1/2, then
the SIF k(z) will tend to infinity for z → 0. This case is
usually denoted as “strong-singular”, see Leguillon and
Sanchez-Palencia (1992). If ℜ(λ) is greater than 1/2,
the SIF k(z) will tend to zero for z → 0 and this case is
denoted as “weak-singular”, see Leguillon and Sanchez-
Palencia (1992). It is remarkable that this behavior de-
pends only on the edge and corner singularity 1/2 and λ
and therefore only on the local geometry and not on the
loading5.

A more rigorous proof of (8) can be found in Dauge
(1988, 2000), where (8) is generalized for arbitrary edge
singularity, because 1/2 is only a special case for a crack
in a homogeneous body. It should also be noted that
(5) and (6) are not really satisfactory from the viewpoint
of asymptotical theory, since neither the edge remainder
urem nor the corner remainder Urem are really smooth,
as has been mentioned, and both can blow up, either for
z → 0 or θ → 0. This fact was the motivation and start-
ing point for improved (and much more complex) expan-
sion equations with smooth remainders, see v. Petersdorff
(1989); Dauge (2000), however the simple relations pre-
sented here illustrate very well the interaction between
edge and corner and are therefore satisfactory for our pur-
poses.

2.2 Asymptotics of the strain energy release rate

Similarly to the asymptotics for the SIF in the neighbor-
hood of the corner O derived in the previous section, it is
also possible to derive an asymptotics of Griffith’s strain
energy release rate considering a propagating crack as
small perturbation of an originally cracked structure and
using some tools like the matched asymptotics technique
from the perturbation theory, see Leguillon and Sanchez-
Palencia (1987, 1992); Leguillon (1993); Leguillon and
Sanchez-Palencia (1999).

Let us again consider a crack with stress-free surfaces
and smooth crack front which terminates in point O on
the free surface, Figure 1. We are referring to this config-
uration as the unperturbed one. After the crack is prop-
agating at O on a small distance ε (where ε denotes the
dimensionless size of propagation) we obtain a configu-
ration, which will be referred to as the perturbed one.

5 An implicit dependence is still present: Using a special symmet-
rical loading it is possible to excite selective different modes with
different singular behavior. This point will be discussed later.

Following Leguillon and Sanchez-Palencia (1999) two
expansions6 of the perturbed state are appropriate for ob-
taining the asymptotics of G: The first one (so called
“outer expansion”) is valid everywhere in the structure,
except the vicinity of the crack extension:

uε(x) = U0(x)+ f1(ε)U1(x)+ . . . ; lim
ε→0

f1(ε) = 0. (9)

The second one (“inner expansion”) is defined on a do-
main, obtained from a small neighborhood of O after
changing the variables y = x/ε and taking the limit for
ε → 0, i.e. after scaling with 1/ε. It is an unbounded
domain with a crack extension equal to one.

uε(y) = F0(ε)V0(y)+F1(ε)V1(y)+ . . . ; lim
ε→0

F1(ε)
F0(ε)

= 0.

(10)

Such an expansion is meaningful in the vicinity of the
perturbation.

Except the term U0(x), which is the classical solution of
an unperturbed crack problem

U0(x) = K rλÛ(θ,ϕ)+ . . ., (11)

all other terms whether in the outer or inner expansion
need some matching conditions to be well defined: Both
expansions should coincide in an intermediate region.
After identifying all terms in the outer and inner ex-
pansion Griffith’s SERR for quasi-statical crack propa-
gation can be derived as the difference in the potential
energy of the unperturbed and perturbed structure per
unit crack surface created, see Leguillon and Sanchez-
Palencia (1999):

G = lim
ε→0

δW
ε2 ∼ lim

ε→0
K2 K̃ ε2λ−1, (12)

where K denotes the CSIF, K̃ are some coefficients,
which depend only on the perturbation, λ denotes the
corner singularity and ε is the size of perturbation (crack
extension) in the neighborhood of the crack termination
point O.

As can be seen, again λ = 1/2 is a break even point
for weak (ℜ(λ) > 1/2, G → 0) and strong (ℜ(λ) <
1/2, G → ∞) singularity with respect to a propagat-
ing crack at the boundary surface, see Leguillon and
Sanchez-Palencia (1992).

6 They should not be confused with the asymptotical expansions
used in the previous section.
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2.3 Weak and strong singularities

It is obvious that the asymptotics for both the SIF and
the SERR derived in the previous sections plays a central
role for determining quasi-static crack propagation inde-
pendent whatever approach (Irwin or Griffith) is used.
1/2 marks in both asymptotics a break even point for
weak (ℜ(λ) > 1/2, G → 0,k → 0) and strong (ℜ(λ) <
1/2, G → ∞,k → ∞) singularities, see Leguillon and
Sanchez-Palencia (1992).

Let us discuss what should be the behavior of a crack
with either weak or strong corner singularity at its termi-
nation point O.

If the crack configuration near O is such that ℜ(λ)< 1/2,
then the SERR (or the SIF) will tend to infinity7 for
z → 0. Near O both the SERR and the SIF will have
significant larger values than at the rest of the crack front
inside the structure. Therefore a very small load will be
sufficient to cause local crack growth near O, Figure 2a.
As a consequence the crack at the boundary will prop-
agate ahead of the crack inside and the local geometry
near O (the crack front termination angle for instance)
will change. In the next section we will show that this
change will result in an increasing ℜ(λ) till a configura-
tion is reached at which ℜ(λ) = 1/2. From this moment
the crack growth will be self-similar, so that all points on
the crack front will propagate simultaneously.

crack frontO
crack frontO

a.) b.)

Figure 2 : Crack growth near the free surface for a.)
strong and b.) weak singularity.

7 If the parameter controlling fracture tends to infinity, then crack
growth will takes place for arbitrary small loading, which is not
observed. A possible solution of this problem can be found in
the finite fracture mechanics, assuming that the crack increment is
not arbitrarily small, but finite, see Leguillon and Sanchez-Palencia
(1992). In this case the crack growth is not smooth, but takes place
in small jumps and the corresponding fracture parameters are very
large or very small, but finite , see Leguillon and Sanchez-Palencia
(1992).

If the crack configuration near O is such that ℜ(λ)> 1/2,
then the SERR (or the SIF) will tend to zero for z → 0.
Near O both the SERR and the SIF will have significantly
smaller values than the rest of the crack front inside the
structure. During an increasing loading nothing will hap-
pen, till a critical state is reached, at which G > Gc (or
k > kIc) and the crack inside the structure will start to
grow. This process will change the local geometry near
O, so that the crack front at the boundary will stay behind
the rest of the crack front, Figure 2b. In the next section
we will show that this will result in a decreasing ℜ(λ)
till a configuration is reached, at which the correspond-
ing corner singularity ℜ(λ) = 1/2. From this moment
the crack will again propagate self-similarly.

Let us finally discuss what will happen, if for a given
crack configuration near O two modes are present,
a strong-singular one with ℜ(λ) < 1/2 and a weak-
singular one with ℜ(λ) > 1/2. In this case the terms in
the asymptotics of the fracture parameter associated with
the strong-singular mode will tend to infinity for z → 0
and those associated with the weak one will tend to zero:
Crack propagation will take place for very small loads
at O till a critical configuration is reached, as described
above. If at this configuration the weak mode remains
weak (which is the case for the surface-breaking crack,
see next section, but is not necessary true in general), so
that its terms in the asymptotics of the fracture param-
eter remain zero at the free surface, then further crack
propagation in the neighborhood of O will be controlled
only by the strong-singular mode. If the weak mode now
becomes a strong one, then the dominant of both modes
will control fracture in asymptotical sense, however in a
finite body the other mode will play also a certain role
(higher order terms, stability etc).

A consequence of this behavior is that self-similar crack
propagation can take place only for special local crack
geometries (termination angles), namely those at which
the corner singularity is exactly 1/2. This assumption,
even if based on physical soundness, has been formulated
for the first time in a fundamental paper Bazant and Es-
tenssoro (1979) where it has been shown that the exper-
imentally detected crack termination angle for a mode I
crack has a good correlation to the theoretically expected
value. In Section 5 we intend to show analogous results
for inclined crack geometries and mixed mode loading.
Moreover, we will show that the crack-opening modes at
the free surface differ from the well known plane-strain
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modes I, II and III, which explain in very natural way the
so called “mode coupling effect” at the free surface.

And finally, let us briefly discuss some implications
of above results to the mixed-mode growth of fatigue
cracks. In the case when ℜ(λ) > 1/2 the SERR (or the
SIF) will tend to zero at z → 0 for any load, as already
mentioned. That means, the SERR- or SIF-range will
have a significantly smaller value at the free surface than
at the rest of the crack front inside the structure. During
an increasing load range the crack inside the structure
will start to grow if ∆k > ∆kth. This again will change
the local geometry near O, so that a configuration will
be reached, at which ℜ(λ) = 1/2 and the further fatigue
crack growth will be self-similar.

In the case when ℜ(λ) < 1/2 the SERR (or the SIF)
will tend to infinity (or will be finite, but very large) at
z → 0 again for any load. Near O both the SERR and
the SIF will have significant larger values than kIc or Gc

even if the load level is small, which will be sufficient to
cause local quasi-static crack growth near O before the
SIF-range inside the structure reaches ∆kth. As a conse-
quence the crack at the boundary will propagate ahead
of the crack inside, as already mentioned, till a config-
uration is reached at which ℜ(λ) = 1/2. Fatigue crack
growth will now take place if ∆k > ∆kth.

3 Corner singularities in 3D elasticity

From a theoretical point of view it is well known that
the linear elastic solution may contain gradient singular-
ities, if the domain of consideration includes re-entrant
corners like cracks or sudden changes in the material
properties as in the case of composites, see for example
Kondratiev (1967); Dauge (1988); Mazja, Nasarow, and
Plamenewski (1991); Grisvard (1992); Kozlov, Maz’ya,
and Rossmann (1997); Leguillon and Sanchez-Palencia
(1987) and the references therein for an overview. For the
treatment of such situations it can be helpful to expand
the solution in the neighborhood of the singular point in
an asymptotical series

u = ∑
i

Ki rλi Ûi(θ,ϕ), (13)

where r,θ,ϕ are the spherical coordinates, λi are the sin-
gularity exponents, Ki the corner SIFs (CSIF) and Ûi are
the so called “angular functions”.

The asymptotical series (13) can be explicitly con-
structed, particularly if one considers special geometries

and material properties, see Williams (1957); Kassir and
Sih (1975). In this case the exponents λi are obtained
as solutions of some transcendent equations. However,
for general three-dimensional problems such approaches
do not work and some numerical methods are needed to
obtain λi and Ûi. We will now briefly describe a tech-
nique introduced in a previous work Dimitrov, Andrä,
and Schnack (2001); Dimitrov and Schnack (2002) for
isotropic problems and extended in Dimitrov, Andrä, and
Schnack (2002) to anisotropic material properties. It is
based on a weak formulation and a finite element approx-
imation technique and results in a quadratic eigenvalue
problem, which is solved iteratively. A detailed descrip-
tion as well as an overview of some other techniques can
be found in Dimitrov, Andrä, and Schnack (2001); Dim-
itrov and Schnack (2002).

3.1 Numerical method

In order to keep our considerations sufficiently general,
we introduce an abstract mixed boundary value problem
of linear elasticity in a bounded domain Ω ⊂ R

3 which
coincides with a cone K in the ε-vicinity Uε

O of the origin
O, so that Ωε

O := K ∩Uε
O = Ω∩Uε

O, see Figure 3. We
denote with S the cross-section of the cone on the unit
sphere. By this general model every geometry containing
a conical singular point can be described (note that the
shape of S is not specified), including the problem of a
surface breaking crack.

X

Y

Z

r

� P (r, , )�

u

t

b.)a.)

O

�

�
O

�0 �1
�T

O

Figure 3 : a.) Boundary value problem with a singular
point O. b.) Spherical and Cartesian coordinate systems
in O.

Our aim is to find all solutions, often called the eigen-
states, which satisfy the differential equation of elasticity
and the boundary conditions in a sufficiently small neigh-
borhood Ωε

O of O, i.e. on Γ0 ∪Γ1, but not the boundary
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conditions remote from O, i.e. on ΓT . By Γ0,Γ1,ΓT

the Dirichlet, Neumann and transmissional part of the
boundary ∂Ωε

O respectively are denoted. We obtain the
eigenstates by solving the Lamé system on Ωε

O with only
the local boundary conditions,

Lu := DT CD u = 0 on Ωε
O,

u = 0 on Γ0,

T u := t(u) = 0 on Γ1, (14)

where D(∂x,∂y,∂z) is the symmetrical gradient operator
in matrix notation, C denotes the matrix of elastic mod-
uli and t are the boundary tractions. In other words we
consider a local problem with zero body forces and ho-
mogeneous boundary conditions.

Because (14) is not a full boundary value problem (there
are no conditions on a part of the boundary ΓT , i.e. we
consider the solution itself as boundary condition on ΓT ),
the requirements of the uniqueness-theorem are not ful-
filled and the solution is therefore non-unique. We obtain
a set of solutions from which we should exclude these
with unbounded elastic energy: We only look for solu-
tions in the Sobolev space [H1(Ωε

O)]3 in order to have a
square-integrable first derivative8. The unique solution
of the problem in the vicinity of O can be obtained after-
wards as a linear combination of all eigenstates, so that
all boundary conditions including the transmissional one
on ΓT are fulfilled.

Since we are interested in a numerical solution, the
boundary value problem (14) should be formulated in
a weak form. Let us denote the space of admissible
(with respect to the boundary conditions) displacement
fields by [H1

0 (Ωε
O)]3. Then, introducing some test func-

tion v ∈ [H1
0 (Ωε

O)]3, we formulate

Problem 1 Find u ∈ [H1(Ωε
O)]3, so that

B(u,v) = 0, ∀v ∈ [H1
0 (Ωε

O)]3, (15)

where the bilinear form B(u,v) is defined in the linear
elasticity by

B(u,v) :=
Z

Ωε
O

σσσT (u) εεε(v) dΩ. (16)

The r.h.s. in (15) vanishes because of the homoge-
neous boundary conditions. The stress and strain vec-
tors, which contain all independent components of the

8 We denote by [Hm(Ω)]3 the usual Sobolev space of order m in
three dimensions over a domain Ω.

stress and strain tensors respectively, are defined by

εεεT := [εx,εy,εz,2εxy,2εxz,2εyz],
σσσT := [σx,σy,σz,τxy,τxz,τyz]. (17)

We now consider a finite-element approximation of the
weak problem (15). Introducing two different finite-
dimensional subspaces Uh �= Vh as trial and test spaces
we obtain

Problem 2 Find an approximate solution uh ∈ Uh ⊂
[H1(Ωε

O)]3, so that

B(uh,vh) = 0, ∀vh ∈Vh ⊂ [H1
0 (Ωε

O)]3. (18)

Such a scheme is called Galerkin-Petrov method.

Concretely, the spaces Uh,Vh are obtained by the trian-
gulation of S into triangles ∆i. According to (13) the
trial and test functions in a typical space sector (r,θ,ϕ)∈
[0,ε]×∆i can be expressed by

uh
i (r,θ,ϕ) = rλ N(θ,ϕ)di, (19)

vh
i (r,θ,ϕ) = Φ(r)N(θ,ϕ)bi, (20)

where the matrix N collects the shape functions of the ap-
proximation and di denotes the nodal displacement vec-
tor, see Dimitrov and Schnack (2002).

Equation (19) is the main idea of this method: By a semi-
continuous approach, in which the discretization is per-
formed only in θ,ϕ, a separation of variables can be en-
forced, so that the final problem is independent of r.

Introducing (19) in the expression for the discrete bi-
linear form (18) and assuming the constitutive relation
σσσ(uh

i ) = C εεε(uh
i ) we obtain after some additional trans-

formations and the substitution λ = λ−1/2 a quadratic
eigenvalue problem
[
P+λQ +λ

2
R

]
d = 0. (21)

The definition of the material matrix C for different
material models can be found in Dimitrov, Andrä, and
Schnack (2002), the matrices P,Q and R are defined
in Dimitrov, Andrä, and Schnack (2001); Dimitrov and
Schnack (2002). From this eigenvalue problem the sin-
gular exponents λi can be calculated as eigenvalues and
the angular functions Ûi as eigenvectors. The corre-
sponding linear eigenvalue problem is not symmetric,
see Dimitrov, Andrä, and Schnack (2001), thus complex
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Figure 4 : Initial and final mesh used to obtain the results in Table 1 after adaptive mesh refinement.

roots are possible. Since there is no a-priori informa-
tion about real or complex roots the numerical scheme
always searches for complex values. In the most general
case the eigenvalues may also be defective, i.e. the al-
gebraical and the geometrical multiplicities may not co-
incide and some logarithmical terms can appear in the
solution, which will be slightly more singular than the
numerical approximation.

A suitable solution technique for (21), based on a lin-
earization procedure and an iterative Arnoldi solver, has
been proposed in a previous work Dimitrov, Andrä, and
Schnack (2001); Dimitrov and Schnack (2002). It is most
appropriate for large structured matrices because it re-
quires only 2n ·O(k)+ O(k2) storage (k 
 n, n denotes
the dimension of P,Q,R) and no explicit knowledge
of the corresponding standard eigenvalue problem. So
the present method requires only one direct factorization
of the matrix P for relatively small systems or an in-
complete factorization of P for large systems, as well as
few matrix-vector products with Q,R in both cases to
find all eigenvalues ℜ(λ) ∈ (−0.5,1.0) as well as the
corresponding eigenvectors simultaneously. The inter-
val of interest (−0.5,1.0) is obvious, due to the restric-
tion, that we are only interested in solutions with finite
energy (ℜ(λ) > −0.5) which have gradient singularity
(ℜ(λ) < 1.0).

Let us finally note that in the cases in which the cone
cross-section contains corners a suitable mesh refinement
strategy based on error control should be applied in or-
der to obtain sufficiently accurate results. A correspond-
ing a-posteriori error estimator and an adaptive scheme
for mesh refinement has been proposed in Dimitrov and
Schnack (2002).

3.2 Singular exponents for the surface-crack problem

With the help of the numerical method presented in the
previous Section the problem of a surface breaking crack
with an arbitrarily inclined crack-plane (characterized by
the angle β between crack plane and free surface) and
arbitrarily inclined crack front within the crack-plane
(characterized by the angle α) has been analyzed, as
shown in Figure 5.

The corresponding part of the unit sphere, which has to
be discretized in the θ,ϕ space, is (θ,ϕ) ∈ {(0,π/2)×
(0,π)} \ {(0,α)×β}. The crack surfaces are considered
to be free at (θ,ϕ) ∈ (0,α)× β. The calculations have
been performed with quadratic sub-parametric triangular
elements and adaptive mesh refinement, so that the error
in the energy norm is smaller than 1%. The results for
the exponents λ after mesh refinement in the case α =
π/2,β = π/2,ν = 0.3 are given in Table 1.

Table 1 : Smallest singularity exponent λ and corre-
sponding relative error for the surface-breaking crack
with α = β = π/2 after adaptive mesh refinement. Pois-
son’s ratio ν = 0.3

DOF λ ‖u−uh ‖/‖u‖
1125 0.4028 1.08e-01
2178 0.3956 5.57e-02
3711 0.3936 2.86e-02
5568 0.3930 1.42e-02
9294 0.3929 6.63e-03

It seems that the 1 % error leads to three exact significant
digits for λ, which is enough for our proposes. The cor-



10 Copyright c© 2006 Tech Science Press CMES, vol.12, no.1, pp.1-25, 2006

responding coarsest and finest meshes are given in Fig-
ure 4. As can be expected, within few refinement steps
a strong mesh concentration near the crack front edge is
obtained.

The exponents for the whole range (α,β) ∈
(π/40,38π/40) × (π/40,20π/40) for ν = 0.3 are
obtained in similar calculations with a sampling step
π/40 = 4.5◦. Selected results are shown in Figure 5.
As can be seen, up to four different modes occur,

β=π/40
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π/4
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0,0
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β=π/2

π/4
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π/4
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λ

I Im(   ) Iλ

z
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Re(   )λ

Figure 5 : Singularity exponents λ for the inclined
surface-breaking crack problem. Selected results for
40β/π = 1,5,10,15,20 and α ∈ (π/40,38π/40). Pois-
son ratio ν = 0.3.

which are denoted as mode I∗ − IV ∗, so that mode
I∗ corresponds to the smallest eigenvalue ℜ(λ) etc.
The exponents for mode I∗, II∗ are real in the whole
region for α,β, except for large α, where two complex
conjugate exponents with the same real part exist. The
corresponding imaginary part is shown in the lower right
corner of Figure 5 top. Modes III∗, IV ∗ are present only
for α > α0(β). For small β the singular exponents are
two complex conjugate values with the same real part,
the imaginary part is shown in the lower right corner in
Figure 5 bottom. The corresponding real-part curve of
these two complex exponents splits at a certain angle
α1(β), so that for α > α1 two different real exponents
appear. For large β the corresponding split takes place
for λ > 1.0, which is outside the interval of interest and
therefore only one real part is shown in Figure 5.

As has been noted in the previous section, the termination
angle α of the crack front at the free surface for which
λ = 0.5 has a special importance as the break even point
between the weak and strong singularities. This critical
angle depends on the material parameter ν and the in-
clination of the crack plane β. For ν = 0.3 the critical
angle has been calculated for all inclined crack planes
by linear interpolation from the original data, see the re-
sults in Figure 6. As can be seen from Figure 5 there

β

Mode I*

Mode II*

Mode III*

0 22,5 45 67,5 90
60

80

100

120

140

160

180

α

Figure 6 : Critical crack front termination angles α, for
which λ = 0.5, depending on the crack plane inclination
β. Poisson’s ratio ν = 0.3. The reference solution (small
squares) is Bazant and Estenssoro (1979).
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Figure 7 : Comparison between the first two space
modes of a surface-breaking crack problem (α = β =
π/2,ν = 0.3) with the modes I,II,III well known from
the plane strain theory. The displacements Ux,Uy,Uz rep-
resent the trace of the space mode on the x-y plane (here
the free surface). All displacements are normalized by
the corresponding maximal value. The ratio kIII/kII of
the used normalization factors is 0.5.

is no pronounced curvature of the graphs in the region
ℜ(λ) ≈ 0.5 and the results are expected to be accurate
enough. A comparison with the only other data published
in the literature in Bazant and Estenssoro (1979) shows a
good agreement, see the small rectangles in Figure 6. It
is notable that the curves do not intersect, which means
that crack propagation at the corner is always controlled
by the most singular mode excited by a given loading,
which is in general mode I∗.
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Figure 8 : Comparison between the first two modes of a
surface-breaking crack problem (α = β = π/2) with the
modes I,II,III well known from the plane strain theory for
Poisson’s ration ν = 0.0. The displacements Ux,Uy,Uz

represent the trace of the space mode on the x-y plane
(here the free surface). All displacements are normalized
by the corresponding maximal value.

Since the modes I∗ − IV ∗ represent a three-dimensional
state, they differ from the well known plane modes I,II,III
and should not be confused with them. Even if this seems
to be obvious, in the literature sometimes the state at
the free surface is denoted as plane stress. However,
the plane stress state is not a limiting case of a three-
dimensional solution with or without a crack (in contrast
to the plane strain state), since it violates the 3D compat-
ibility condition, as has been noted in Sih (1971). More-
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Figure 9 : Mode III∗ with λIII∗ = 0.731 for a surface-breaking crack problem (α = π/2,β = π/2). Poisson’s ratio
ν = 0.0. The crack-opening space mode III∗ is shown from different viewpoints.

over, in problems with surface cracks this state leads to
unbounded displacements in the direction normal to the
free surface, see Sih (1971), which is meaningless.

The state at the free surface cannot also be plain strain
or a combination of the plane strain modes I,II,III, since
for general angles α,β there is no corresponding symme-
try with respect to which one could compare the space
modes I∗ − IV ∗ with the plane strain modes I,II,III (re-
member that mode I,II,III are defined as symmetrical or
anti-symmetrical with respect to the crack plane and a
plane normal to the crack front).

Analogous symmetry only exists for the case α =
π/2,β = π/2, however Figure 7 shows that even in this
case the symmetrical mode II∗ does not coincide with the
symmetrical mode I: The jump in Uy over the crack faces
suggests a mode-I-like behavior, however due to the Pois-
son ratio there is an out-of-plane displacement Uz which
is not present in mode I. Both modes only coincide at the
free surface for ν = 0.0,α = π/2,β = π/2, see Figure 8.

Another widely used opinion refers to mode I∗ as a com-
bination of modes II,III — the so called “mode cou-
pling effect” at the free surface. However, this could be
true again only in the case α = π/2,β = π/2, since for
other angles no corresponding symmetry exists to com-
pare mode I∗ with the two anti-symmetrical (with respect
to the crack plane) modes II,III. Figure 7 however shows
that even for α = π/2,β = π/2 this is not the case — for
mode I∗ there is a Uy displacement, which is not zero at
the crack faces, in contrast to mode II, even if the jump in
Uz and Ux suggest a combination of mode II and III. This
effect is again related to the Poisson’s ratio and vanishes
for ν = 0.0, see Figure 8. It is only in this case that mode
I∗ and mode II coincide. The situation for mode III∗ is
a little bit different — it is interesting to note that it does
not correspond to the plane strain mode III, even for the
case ν = 0.0, see Figure 9.

Mode II*Mode I*
λ=0.388 λ=0.676

Figure 10 : The first two space modes for an inclined
surface crack problem with α = π/2,β = π/4,ν = 0.3.
The crack-opening modes are shown from different view-
points.

And finally, as has been mentioned, for α �= π/2,β �= π/2
there is no symmetry, with respect to which one could
compare the corresponding modes with the plane strain
modes I,II,III. For instance, in Figure 10 the two modes
for α = π/2,β = π/4 are shown: due to the simultaneous
jump in Ux,Uy,Uz over the crack faces at the free surface
a “combination” of all three modes I,II,III is suggested.

In view of the comments just made, it seems to be incor-
rect to refer to the state at the free surface as plane stress
or plane strain or a combination of modes I,II,III and to
ask (as is often done) for a limiting ratio KI : KII : KIII

at the surface. The modes I∗ − IV ∗ are independent and
represent the angular part of the three dimensional state
in the neighborhood of the termination point.
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4 The virtual crack closure integral (VCCI) method

4.1 VCCI or 2C-Method

For the fracture analysis of a mode I crack problem, Ir-
win’s well known analytical crack closure integral rela-
tion (see Irwin (1957)) can be written in the following
FE-representation, see Buchholz (1984); Krishnamurthy,
Rammamurthy, Vijayakumar, and Dattaguru (1985):

G2C
I

(
a+

∆a
2

)
=

1
t∆a

W y,

W y =
1
2

Fy,i(a) ∆uy, j−1(a+∆a), (22)

which is holding for an FE-discretization as given in Fig-
ure 11.

By Eq. (22), in which t denotes the thickness of the
specimen, the strain energy release rate GI is calculated
on the basis of the work to be done by the nodal point
force Fy,i(a) against the relative nodal point displacement
∆uy, j−1(a + ∆a) in order to close the crack by ∆a again
(Figure 11a). By Eq. (22) the numerical VCCI-method
is defined for a 2D crack problem under mode I. It will
be shown that by this method, which can be classified as
a local energy approach, good results are obtained even
for non-singular, low order standard elements and rather
coarse FE-meshes, if the layout of the mesh around the
crack tip is homogeneous.

The VCCI-method is also named and marked as the 2C-
method (2 calculations), because two FE-analyses of the
model have to be performed for the crack lengths a and
a + ∆a in order to compute one SERR result G2C(a +
∆a/2) as the mean value in the interval of the finite crack
extension ∆a. But with respect to this effort it should
be emphasized that by Eq. (22) the SERR is computed
numerically exactly for the actual FE discretization under
consideration, even for finite crack extensions ∆a >> 0.
On that account no term lim∆a → 0 is expressed in Eq.
(22) and the notation G2C(a+∆a/2) stresses its meaning
as the mean value of the SERR in the interval ∆a of the
finite crack extension, which has to be correlated to a +
∆a/2, the corresponding mean value of the crack length
in the interval under consideration.

4.2 MVCCI or 1C-Method

Rybicki and Kanninen Rybicki and Kanninen (1977)
have introduced the modified virtual crack closure inte-
gral (MVCCI) method in order to avoid the additional

effort of a second FE-analysis for an extended crack of
length a+∆a, respectively. This can be achieved if, with
reference to Eq. (22) and to Figure 11a, the required rel-
ative nodal point displacement ∆uy, j−1(a + ∆a) from the
extended crack is replaced by the corresponding relative
nodal point displacement ∆uy,i−1(a) of the original crack
with crack length a. By this numerically highly effec-
tive MVCCI or 1C-method (1 calculation) the SERR is
calculated by

G1C
I (a) = lim

∆a→0

1
t∆a

W y,

W y =
1
2

Fy,i(a) ∆uy,i−1(a). (23)

The assumptions under which Eq. (23) is holding are the
same as for Eq. (22). The term lim∆a → 0 in Eq. (23)
expresses that the MVCCI or 1C-method is an approx-
imate approach, with convergence to the exact solution
only for ∆a → 0. However, it has been shown in Rybicki
and Kanninen (1977) that for small ∆a also a good accu-
racy can be achieved.

In the case of in-plane mixed mode loading conditions
at the crack tip or in the 3D-case including out-of-plane
shear the additional mode II or mode III SERRs can be
obtained readily by substituting the relevant x- and z-
components of the nodal point forces and the relative
nodal point displacements into Eq. (23). The total SERR
at the crack tip or at a nodal point located along the crack
front is then defined by

G1C
T (a) = ∑

i
G1C

i (a), i = I, II, III. (24)

Thus, the numerically highly effective MVCCI-method
for 2D-fracture analysis can be generalized in conjunc-
tion with standard low order volume element discretiza-
tions in a rather straight-forward way in order to cover
also complex 3D-fracture problems. First, Eqs. (22)-
(24) have to be evaluated at all nodal point positions
k = 1,2, . . . along the crack front (Figure 11b) and they
have to be interpreted there with respect to a locally de-
fined crack front coordinate system, respectively. Sec-
ond, the constant thickness t at the 2D-problems has to
be replaced by an effective thickness ∆tk, which is cor-
related to the nodal point position k under considera-
tion and evaluation (Figure 11). The resulting formulae
with reference to Buchholz, Grebner, Dreyer, and Krome
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Figure 11 : Computational VCCI-methods a.) for 2D and b.) for 3D finite element discretizations.

(1988) are

G1C
I (a,∆tk)k = lim

∆a→0

1
∆tk ∆a

W y
k ,

W y
k =

1
2

(Fy,i(a) ∆uy,i−1(a))k ,

G1C
II (a,∆tk)k = lim

∆a→0

1
∆tk ∆a

W x
k ,

W x
k =

1
2

(Fx,i(a) ∆ux,i−1(a))k ,

G1C
III (a,∆tk)k = lim

∆a→0

1
∆tk ∆a

W z
k ,

W z
k =

1
2

(Fz,i(a) ∆uz,i−1(a))k ,

∆tk =
tk,k−1 + tk+1,k

2
, (25)

which are holding for 6- and 8-node volume element
discretizations (Figure 11b). In the following it will be
shown that also in the 3D-case through this method, good
results are obtained even for non-singular, low order stan-
dard elements and rather coarse FE meshes, if the layout
of the mesh around the crack front is homogeneous.

Through further generalizations of the method also the
numerically more effective non-singular, higher order el-
ements can be utilized for the fracture analysis of 2D and
3D crack problems, see Buchholz (1984, 1994); Buch-
holz, Wang, Lin, and Richard (1998); Buchholz, Cher-
gui, and Dhondt (1999).

5 Case studies

In this section we present in a number of case studies
detailed numerical and experimental results of the single
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Figure 12 : SEN specimen with an inclined crack front
(α) and/or inclined crack plane (β) subjected to a.) three
point bending, b.) four point in-plane shear and c.) four
point out-of-plane shear.
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Figure 13 : Deformed FE-model of the SEN specimen with α = β = 90◦ subjected to 3PB. a.) Full specimen, b.)
crack tip detail in front view and c.) crack tip detail in sub view.

edge notched (SEN) specimen with a normal or inclined
notch plane and the following geometrical parameters:
length l = 260mm,2le = 240mm, thickness t = 10mm,
width w = 60mm, norm. crack length a/w = 1/3, see
Figure 12. The specimens are subjected to three point
bending, four point in-plane shear and four point out-of-
plane shear by a force F = 2kN/mm. In the case of three
point bending, specimens with normal (β = 90◦) or in-
clined (β = 45◦,30◦) notch planes are considered.

For the three-dimensional finite element analysis the
notch is considered as an already shaped crack. The
MVCCI-computations are realized on a-priori refined
meshes adjacent to the crack front with 6 or 8 node non-
singular volume elements and about 30.000 DOFs, see
for instance Figure 13a.

Related experiments are performed on specimens of
transparent PMMA-material (Poisson’s ratio ν ≈ 0.3), so
that the crack front can be observed at different stages of
propagation. The numerical and experimental findings
are compared under special consideration of some 3D
effects near the free surface with the theoretical results
obtained by the asymptotical analysis.

5.1 Three point bending, straight notch plane

We consider first an SEN-specimen with α = β = 90◦

subjected to three point bending, see Figure 12a. Let
us enforce a plane strain state in the plate by applying
symmetry boundary conditions uz = 0 on the two faces
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Figure 14 : SERRs versus crack front for the SEN spec-
imen with α = β = 90◦ subjected to 3PB.

parallel to the x-y plane at z/t = ±0.5. The SERR in
this case is expected to be constant over the crack front
and equal to the corresponding GI value obtained by a
2D plane strain analysis Murakami (1987). The results
in Figure 14 show that this is the case, indeed, within an
accuracy of 2%, which is sufficient for our purposes.

Next, the SEN-specimen is analyzed with stress-free
boundary conditions on the plate faces. The deformed
FE-model is shown in Figure 13 and corresponding re-
sults for the SERR can be found in Figure 14.

In this case GI is about constant in the inner part of the
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specimen, but it is found to be distinctly higher compared
with the 2D case, which means that the 2D results are not
conservative. Adjacent to the free surface a well-known
3D-effect is observed, with decreasing GI values for in-
creasing z/t and and a stronger gradient for z/t → 0.5.

The decrease of GI for z/t → 0.5 is related to the Pois-
sons ratio and the laterally less constrained strains along
the crack front adjacent to the free surface. This results in
the necking of the free surface, which can be realized in
a sub view on the corner, where the crack front intersects
the boundary of the specimen, see Figure 13c. The under-
standing of this 3D-effect has also been confirmed by a
further FE-analysis with Poissons ratio set to zero. In this
case GI was found to be perfectly constant all along the
crack front and the related FE-model showed no necking
effect at the free surfaces.

Let us analyze how this effect can be explained from the-
oretical point of view. In the case of a crack normal to
the free surface the corresponding corner singular expo-
nents are λI∗ = 0.393 and λII∗ = 0.548, see Figure 5. The
third one near 1.0 is not considered, since very weak.
However, due to the symmetrical loading only the sym-
metrical mode II∗ can be excited. This mode incorpo-
rates a displacement jump over the crack faces only in
y-direction, see Figure 7. Consequently ∆uy �= 0,∆ux =
0,∆uz = 0 in Eq. (25) and the only non-zero SERR-
component is GI

9. The leading order of the displace-
ments in an asymptotical expansion is λII∗ = 0.548 and,
according to the concept of weak and strong singular-
ities, this leads to GI decreasing to zero for z/t → 0.5
(weak singularity). Of course, due to a limited mesh re-
finement for z/t → 0.5 the FE-analysis is unable to rec-
ognize the exact values in the neighborhood of a singular
point at the free surface. This conclusion is confirmed
by additional calculations with stronger refined meshes
in z-direction, where stronger decreased GI values for
z/t → 0.5 are observed. It is also in very good agree-
ment with some recent numerical results about the SIF
distribution along the crack front of a semi-circular sur-
face crack in a plate, a quarter-circular surface crack in
a bar and a corner-crack at a circular hole in a plate Han
and Atluri (2002), which from asymptotical point of view
should exhibit the same behavior at the free surface as the

9 Even if the notation Gx,y,z is more appropriate for the situation
around a corner the traditional notation GI,II,III is used in order to
guarantee the compatibility with the 2D case. The SERR compo-
nents GI,II,III should be understood here in an asymptotical sense.

example discussed here. The numerical study in Han and
Atluri (2002) is based on an alternating method, where
the sub-domain with the surface crack was treated by
the symmetric Galerkin-Boundary-Element-Method Han
and Atluri (2003) and the uncracked global structure by
FEM.

The above named necking effect at the free surface
for Poisson’s ratios ν �= 0 is also exactly predicted by
the asymptotical analysis: The trace of mode II∗ on
the free surface in Figure 7 shows clearly some non-
zero z-displacements, which result in a surface necking,
whereas for ν = 0 this z-displacements vanish (Figure 8),
so that the necking effect should disappear too. More-
over, for ν = 0 the mode II∗ is completely identical to
the plane strain mode I, so that a perfectly constant GI

distribution along the crack front is expected, exactly as
observed.

In a related experiment the development of a typically
curved crack front with retarded crack growth adjacent
to the free surfaces is observed, as can be expected due
to the shape of the GI distribution, Figure 15.

Figure 15 : Curved, fatigued crack front with α ≈ 101◦

of the cracked SEN specimen with β = 90◦ subjected to
3PB.

The angle under which the propagating crack intersects
the free surface is slightly obtuse, which corresponds
well to the critical angle of α ≈ 101◦ for β = 90◦, see
Figure 6.
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b.)

a.)

Figure 16 : Deformed FE-model of the SEN specimen
with α = 90◦ and β = 45◦ subjected to 3PB. a.) Center
part of the full specimen, b.) crack tip detail in front view.

This is in very good agreement with the result in Refer-
ence Bazant and Estenssoro (1979).

5.2 Three point bending, inclined notch plane

Next, a SEN specimen with α = 90◦ and an inclined
notch plane (β = 45◦) subjected to three point bending is
considered, see Figure 12a. In this case, not only mode
I but also mode III loading conditions are generated, due
to the inclined notch plane, as can be realized in the de-
formed FE-model in Figure 16.

As a reference, the problem of an inclined crack in an
infinite elastic space with a simple tension far field σ0

can be used. The corresponding SIFs are given by kI =
σ0

√
πasin2 β and kIII = σ0

√
πasinβcosβ, which gives a

ratio kIII/kI = 1 for β = 45◦ Pook (1993).

The results of the MVCCI calculations for the SEN spec-
imen are plotted in Figure 17. In the inner part of the
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Figure 17 : SERRs versus crack front for the SEN spec-
imen with α = 90◦ and β = 45◦ subjected to 3PB.

specimen GI ,GIII are found to be nearly constant, but
with a ratio GIII/GI ≈ 0.5 and for z/t > 0.25 the SERR
GI decreases distinctly, whereas GIII increases. Further-
more the 3D-analysis by the MVCCI-method shows that
also mode II loading conditions are induced locally, due
to a strong mode coupling effect between mode III and
II. Moreover, GII shows remarkably increasing values for
z/t → 0.5. The corresponding deformation of the speci-
men can be seen in Figure 16a and in the crack tip detail
given in Figure 16b. In particular, considerable mode-II
or in-plane sliding displacements of the crack faces can
be realized in Figure 16b, in addition to the expected
crack opening and out-of-plane sliding displacements.
These results are also in very good agreement with the
numerical analysis of the SIF distribution along the crack
front of an inclined semi-circular surface crack in a plate
Han and Atluri (2002), which from asymptotical point of
view should exhibit the same behavior at the free surface
as the example discussed here.

One could mean now, the decreasing GI values toward
the free surface are expected, due to the global bending
moment distribution in the specimen — for the type of
loading presented here the bending moment is maximal
in the middle of the specimen (y = 0) and decreases for
|y| > 0. One could also mean, that the observed GII val-
ues at the free surface are related to the shear effect of
the loading. Additional investigations on a SEN spec-
imen under four-point bending10 have shown, however,

10 In the case of four-point bending two forces are applied symmet-
rically with respect to the x-z plane, in contrast to the three-point
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Figure 18 : Cracked SEN specimen with α = 90◦ and
β = 45◦ subjected to 3PB. View of the crack at a cer-
tain stage of propagation (left) and both parts of a fully
cracked specimen with facets (right).

that the same phenomena are observed in the case of a
constant bending moment and a vanishing shear effect
also, so that some global loading arguments cannot ex-
plain the SERR distribution in Figure 17.

From the asymptotical point of view, the two singular
exponents for this case are λI∗ = 0.388 and λII∗ = 0.676.
Since no special symmetry is present both modes are ex-
cited and the leading order of the displacements in the
neighborhood of the free surface is λI∗ = 0.388, which
corresponds to a strong singularity. Mode I∗ incorpo-
rates jumps in both Ux and Uz over the crack faces, i.e.
∆ux �= 0,∆uz �= 0 in Eq. (25), which results in GII,GIII as
non-zero components of the SERR and therefore suggest
a “combination” of modes II and III at the free surface.
The strong singularity λI∗ = 0.388 causes increasing val-
ues of GII ,GIII for z/t → 0.5 as expected, whereas the
weak-singular mode II∗ results in decreasing GI-values
with z/t → 0.5, exactly as observed in Figure 17. In Fig-
ure 18 the strong impact of these locally varying mixed
mode loading conditions on the crack shape at a certain
stage of propagation can be realized. On a macro scale
the crack twists off its original plane, due to the locally
effective GI ,GII values, see Figure 18 left. On a meso

bending, where only one force in the x-z plane is used.

Figure 19 : Cracked SEN specimens with α = 90◦ and
β = 45◦ subjected to 3PB at three different stages of crack
propagation.

scale the crack surface of the twisted crack is not smooth,
in particular at the beginning of crack growth, but reveals
narrow facets forming some angle φ with the direction
of the overall crack growth, see Figure 18 right. They
are likely to be caused by the locally effective GIII val-
ues and have also been observed and discussed by Pook
Pook (1995). The facet angle can approximately be given
by

tan2φ =
2kIII

kI(1−2ν)
, (26)

according to Pook (1995). Here the facets are connected
with some irregular cliffs and merge at some later stage
of propagation, Figure 19. However, this may not be al-
ways the case, as can be seen in Figure 20, where the
same experiment for a SEN-specimen with β = 30◦ is
shown: The separate cracks, which were initiated at the
free-surface corners of the original crack front have not
merged yet and may also not merge at a later stage of
crack propagation.

In both cases, the crack growth starts11 at the free surface
as expected, see Figures 19 and 20.

11 Even if this seems to be a problem of a local onset and not of an ex-
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Figure 20 : Cracked SEN specimens with α = 90◦ and
β = 30◦ subjected to 3PB at three different stages of crack
propagation.

The facet angle at the boundary can be obtained from
Eq. (26) assuming kIII/kI = ∞, which results in φ = 45◦

and a new crack plane, which is normal to the free sur-
face (original notch plane β = 45◦). Simultaneously,
the crack plane kinks off from the original direction of
propagation due to the locally effective GI ,GII values,
as already mentioned. Applying the Maximum-SERR
criterion Nuismer (1975); Richard (1985) and assuming
kI/kII = 0 at the corner a kink-off angle of 70◦ is ob-
tained, as in the case of pure mode II loading. The above
geometrical relations γ = 90◦,δ = 90◦ − 70◦ = 20◦ are
illustrated in Figure 21. With a new crack plane, which
is normal to the free surface, a crack front termination
angle α ≈ 68◦ is expected, see Figure 6. The visible an-
gle µ of the crack path at the free surface coincides here
with δ = 20◦. A good agreement with the experimental
observation in Figures 19 and 18 can be realized.

In the case of an original notch plane of β = 30◦ the situ-
ation is slightly more complicated. The inclination angle
β of the new crack plane with respect to the free surface
can be calculated by the simple geometrical relation

cosβ = cosγ sinδ, (27)

tension, using the concept for predicting crack nucleation on sharp
notches proposed in Leguillon (2001), very similar results can be
obtained. Within this approach the problem of the local onset is
handled in a very similar way as a crack extension by replacing the
crack SIF by a notch stress concentration factor. The concept of
strong and weak singularities still remains true.

γ

δµ

β

a.) b.)

φ

Figure 21 : a.) Geometrical relations and b.) expected
shape and orientation of crack growth at the point, where
a new crack is initiated near the free surface of a SEN
specimen with an inclined notch plane subjected to 3PB.

where 90◦ −δ denotes the kink-off angle and γ the facet
angle with respect to the free surface. In the case of γ =
75◦ and δ = 20◦ the new crack plane will have β ≈ 85◦

and again a crack front termination angle α ≈ 68◦ is ex-
pected. Moreover, the visible angle µ of the crack path at
the free surface, see Figure 21, should be

tanµ = sinγ tanδ, (28)

which results in µ ≈ 19.5◦ for our case. Both, the termi-
nation angle α ≈ 68◦ and µ ≈ 19.5◦ agree well with the
experimental observation, see Figure 20.

5.3 Four point in-plane shear

The next case to be considered is the SEN-specimen sub-
ject to four point in-plane shear loading (Figure 12b),
which results in the deformed FE-model shown in Fig-
ure 22. In this case the generated GII values are rather
constant in the inner part of the specimen, see Figure 23,
but for z/t > 0.4 they increase remarkably, which means
again that the corresponding 2D results are not con-
servative. Furthermore the detailed 3D-analysis by the
MVCCI-method shows that also mode III loading con-
ditions are induced locally, although the external loading
of the SEN-specimen does not contain any out-of-plane
shear component.

In Buchholz, Chergui, and Richard (2001b) the appear-
ance of GIII is interpreted as a weak mode coupling ef-
fect between mode II and mode III, which is related to
Poisson’s ratio and the laterally less constrained strains
adjacent to the free surface. Thus, this effect is distinct
for z/t → 0.5, but less pronounced more inside the spec-
imen and vanishes for z/t = 0. In the front view of the
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a.)

b.) c.)

Figure 22 : Deformed FE-model of the SEN specimen
with α = β = 90◦ subjected to in-plane 4PS. a.) Full
specimen, b.) crack tip detail in front view and c.) crack
tip detail in axionometric view.

deformed crack tip detail of the specimen (Figure 22b)
clearly the generated in-plane sliding displacements of
the crack faces can be seen, but in the axionometric view
of the same crack tip detail (Figure 22c) also the small in-
duced out-of-plane sliding displacements can be realized
at the corner where the crack front intersects the free sur-
face. The interpretation and understanding of this effect
is confirmed again by a further FE-analysis with Pois-
son’s ratio set to zero Buchholz, Chergui, and Richard
(2001a). In this case GII was found to be perfectly con-
stant along the crack front and GIII was found to vanish
completely.

From the asymptotical point of view the in-plane shear
loading (anti-symmetrical with respect to the notch
plane) cannot excite the symmetrical mode II∗ at the
surface and therefore the only singular mode which is
present is mode I∗, with the corresponding singular ex-
ponent λI∗ = 0.393. This mode incorporates for ν �= 0
both displacement jumps in x and z-direction (Figure 7),
which results in GII,GIII �= 0 at the free surface, so that
this effect is interpreted as a coupling between mode II
and III. The resulting strong singular behavior is man-
ifested in strongly increasing values of GII ,GIII, how-
ever as already discussed, the numerics only leads to fi-
nite values at the free surface. For ν = 0.0 mode I∗ is
equivalent to the plain strain mode II, see Figure 8 bot-
tom, so that in this case GII should be constant along the
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Figure 23 : SERRs versus crack front for the SEN speci-
men with α = 90◦ and β = 90◦ subjected to in-plane 4PS.

crack front, whereas GIII should disappear, exactly as ob-
served.

Because the above named mode coupling effect is related
to the Poisson’s ratio, it does not influence further crack
growth considerably (“weak” coupling). This is con-
firmed by experimental findings for the SEN-specimen
under in-plane 4PS loading conditions for unstable crack
growth. Due to the generated predominant GII loading
conditions along the crack front, the crack kinks off from
the initial crack (or notch) plane and the experimentally
observed kink-angle is constant along the crack front and
appears hardly to be influenced by the discussed weak
coupling effect between mode II and III: No shear lips
or facets can be observed, in spite of mode III. Con-
sequently this case can be considered as a plane prob-
lem approximately, so that the kink-off angle can be pre-
dicted by the well established maximum SERR Nuismer
(1975); Richard (1985) or the maximum tangential stress
criterion Erdogan and Sih (1963); Richard (1985) result-
ing in a value of ≈ 70◦ for the case of pure mode II load-
ing with kI/kII = 0.

This has been confirmed also through detailed experi-
mental studies on the compact tension shear (CTS) spec-
imen Richard (1981, 1985) with an initial mode I pre-
crack (α = β = 90◦) subjected to pure in-plane shear
loading, in combination with a special loading device
Richard and Benitz (1983); Richard (1985), which cov-
ers the full range of in-plane mixed mode loadings. The
observed crack growth at an early stage of crack propa-
gation is shown in Figure 24, where an interesting effect



Propagation of Surface-breaking Cracks 21

Figure 24 : Cracked CTS specimen with α = β = 90◦

and a mode I pre-crack subjected to in-plane shear.

can be seen at the crack front near to the free surface.

Since the termination angle of the mode I pre-crack is
101◦ (see Figure 6), an inclination angle β = 86◦ of the
new crack can be calculated by Eq. (27) with γ = 180◦−
101◦ = 79◦ and δ = 90◦ − 70◦ = 20◦. The new crack
is not in pure mode I and the in-plane shear component
of the loading excites the mode I∗ at the corner. The
strong singularity results in an early crack propagation
adjacent to the free surface. The acute crack termination
angle, which is realized in Figure 24, corresponds well
to the theoretically expected critical value of α ≈ 68◦ for
β = 86◦, Figure 6.

5.4 Four point out-of-plane shear

Finally, the out-of-plane shear loading of the SEN-
specimen is considered (Figure 12c), which results in the
deformed FE-model of the specimen as shown in Fig-
ure 25.

In this case the generated GIII values are about constant
and predominant along the crack front for z/t < 0.4, see
Figure 26.

The component GIII only increases for z/t → 0.5. But
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Figure 26 : SERRs versus crack front for the SEN spec-
imen with α = β = 90◦ subjected to out-of-plane 4PS.

furthermore for z/t > 0.25 also the remarkably increas-
ing mode II loading conditions are analyzed by the
MVCCI-method. In Buchholz, Chergui, and Richard
(2001b) they are understood to be locally induced along
the crack front through a strong mode coupling effect be-
tween mode III and II, which was found to be not related
to Poisson’s ratio, but to the global deformation behavior
of the specimen. This has been confirmed again by Buch-
holz, Chergui, and Richard (2001a), where in the case
ν = 0 the GIII values decrease slightly, but the GII curve
is not affected. In the front view of the deformed crack tip
detail of the specimen (Figure 25b) clearly the generated
out-of-plane sliding displacements of the crack faces can
be seen, but in the axionometric view (Figure 25c) also
the induced and in this case considerably great in-plane
sliding displacements of the crack faces are obvious.

From the asymptotical point of view, only mode I∗ with
λI∗ = 0.393 is excited, due to the out-of-plane shear load-
ing. This mode incorporates both jumps in x and z-
direction, which is interpreted as coupling between mode
II and III. The resulting strong-singular behavior is mani-
fested in strongly increasing values of GII,GIII, however,
as already discussed, the numerics only leads to a finite
value at the free surface.

In the corresponding experiment these loading conditions
along the crack front result in the very interesting crack
growth behavior which is shown in Figure 27. As one
could expect from the locations of the maximum values
of the total SERR GT at the upper and lower free surface
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a.)

b.) c.)

Figure 25 : Deformed FE-model of the SEN specimen with α = β = 90◦ subjected to out-of-plane 4PS. a.) full
specimen, b.) crack tip detail in front view and c.) crack tip detail in axionometric view.

Figure 27 : Cracked SEN specimen with α = β = 90◦

subjected to out-of-plane 4PS seen from different sides
and viewpoints.

of the specimen (z/t =±0.5) two separate cracks are ob-
served to initiate. The planes in which the cracks start
to grow appear to be governed by the generated mode III
loading conditions and have an anti-symmetric orienta-
tion with respect to the planes of symmetry of the speci-
men. An approximation of the angle with the initial notch
plane can again be found by Eq. (26), see Pook (1995).
Assuming kIII/kI = ∞, φ = 45◦ is obtained. The kink-
off from the initial propagation direction appear to be
strongly affected by the mode II loading conditions. By
the Maximum-SERR criterion Nuismer (1975); Richard
(1985) a kink-off angle of 70◦ is again obtained, assum-
ing kI/kII = 0. With γ = 45◦ and δ = 20◦ an inclination
angle β = 76◦ is obtained from Eq. (27), which corre-
sponds to a crack front termination angle α ≈ 68◦, Fig-

ure 6. Even if a measurement of this angle is not possi-
ble, due to the very irregular crack shape, an acute angle
seems to appear, which qualitatively agrees with the ex-
pected value. However, the angle µ = 14.5◦ of the crack
path at the free surface, which is expected from Eq. (28)
with γ = 45◦ and δ = 20◦ cannot be confirmed, the exper-
imentally observed angle seems to be greater. Figure 27
shows the two separate cracks at a certain stage of crack
growth from different sides and viewpoints.

6 Conclusion

In the present work the problem of an surface-breaking
crack with straight or inclined crack plane has been an-
alyzed from the asymptotical, numerical and experimen-
tal point of view. With the software presented in Sec-
tion 3 first the asymptotical expansion of the solution has
been constructed for arbitrary inclined crack shapes near
the point where the crack terminates on the free surface.
With respect to this point we can conclude

• The stress state there is three-dimensional and up to
four singular modes I∗−IV ∗ exist, which are in gen-
eral independent of the plain strain modes I,II,III.

• The state there is not plane stress.

• The state there is not plane strain, except for α =
π/2,β = π/2,ν = 0.0, where mode II∗ corresponds
to mode I and mode I∗ corresponds to mode II.
Mode III∗ is not equivalent to mode III, even for
ν = 0.0.
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• Based on the theory of 3D corner singularities it
is not appropriate to speak about “mode coupling”
effects between mode II and III. The corner mode
I∗ only exhibits jumps in the displacement compo-
nents Ux,Uz and therefore suggests a “combination”
of mode II,III.

Furthermore, by the concept of weak and strong singu-
larities the asymptotics of the usual fracture parameters
SIF and SERR in the neighborhood of the corner point
have been obtained. This allows the use of a conve-
nient single parameter description of failure also for the
surface-breaking crack problem. Moreover, we can con-
clude that:

• Near a corner point the SIF and SERR will in gen-
eral tend either to zero or to infinity.

• This asymptotics hides the incompatibility of the 2D
and 3D modes.

• A crack which propagates self-similarly cannot
have an arbitrarily shape, but will take a crack front
termination angle, at which the corner singularity is
equal to the edge one. This angle has been deter-
mined for arbitrary inclined crack planes.

• If a numerical analysis is performed on a “wrong”
geometry, i.e. not exactly on that, which a propa-
gating crack would have, the corner influence will
still be present and will affect the accuracy of the
numerical results.

• Mode II∗ (mode I) is not always the critical mode,
as often assumed. For a wide range of crack front
termination angles mode II∗ is weak-singular at
the corner point, whereas mode I∗ (mode II/III) is
strong-singular, so that the latter will control frac-
ture at early propagation stages.

And finally we can conclude: Even if the region at which
the crack termination point dominates is small, it can be
the critical zone in which crack propagation takes place
first. A conservative approach to fracture of solids can
be guaranteed only by a reasonable consideration of all
relevant three-dimensional effects.

References

Bazant, Z.; Estenssoro, L. (1979): Surface singularity
and crack propagation. International Journal of Solids
and Structures, vol. 15, pp. 405–426.

Buchholz, F.-G. (1984): Improved formulae for the fi-
nite element calculation of the strain energy release rate
by the modified crack closure integral method. In Robin-
son, J.(Ed): Accuracy, Reliability and Training in FEM
Technology, pp. 650–659. Robinson and Associates.

Buchholz, F.-G. (1994): Finite element analysis of a
3d mixed-mode fracture problem by virtual crack closure
integral methods. In Krishna Murthy, A.; Buchholz, F.-
G.(Eds): Fracture Mechanics. Proc. of the Indo-German
Workshop on Advances in Fracture Mechanics, pp. 7–12,
Bangalore, India. Interline Publ., Bangalore, 1994.

Buchholz, F.-G.; Chergui, A.; Dhondt, G. (1999): A
comparison of SIF and SERR results with reference so-
lutions regarding 3D and mode coupling effects for dif-
ferent specimens. In Aliabadi, M.(Ed): Fracture and
Damage Mechanics 99, London.

Buchholz, F.-G.; Chergui, A.; Richard, H. (2001):
Computational fracture analysis by the MVCCI-method
regarding 3D and mode coupling effects for different
specimens and loading conditions. In de Freitas, M.(Ed):
Proc. of the 6th Int. Conf. on Biaxial/Multiaxial Fatigue
& Fracture, Vol. II, pp. 991–998, Lisboa, Portugal.

Buchholz, F.-G.; Chergui, A.; Richard, H. (2001):
Fracture analyses and experimental results on crack
growth under general mixed mode loading conditions. In
Guagliano, M.; Aliabadi, M.(Eds): Advances in frac-
ture and damage mechanics II. Proc. of the 2nd Int. Conf.
on fracture and damage mechanics, pp. 451–456, Milan,
Italy. Hoggar, Geneva, 2001.

Buchholz, F.-G.; Grebner, H.; Dreyer, K.-H.; Krome,
H. (1988): 2D- and 3D-applications of the improved
and generalized modified crack closure integral method.
In Atluri, S.; Yagawa, G.(Eds): Computational Mechan-
ics. Proc. of the Int. Conf. on Comp. Eng. Sci. (ICES 88)
Vol. I, pp. 14.i.1–14.i.4, Atlanta, Georgia, USA. Springer,
New York, 1988.

Buchholz, F.-G.; Wang, H.; Lin, J.; Richard, H.
(1998): 3D finite-element-analysis of different test
specimens for investigations on mixed mode I, II and III



24 Copyright c© 2006 Tech Science Press CMES, vol.12, no.1, pp.1-25, 2006

fracture. In Computational Mechanics. CD-ROM Proc.
of the 4th World Congr. on Comp. Mech. (WCCM IV),
pp. 1–21, Part III, Section 4, Paper 1, Buenos Aires, Ar-
gentina.

Costabel, M.; Dauge, M.; Duduchava, R. (2001):
Asymptotics without logarithmic terms for crack prob-
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