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An Efficient Backward Group Preserving Scheme for the Backward in Time
Burgers Equation

Chein-Shan Liu1

Abstract: In this paper we are concerned with the
numerical integration of Burgers equation backward in
time. We construct a one-step backward group preserv-
ing scheme (BGPS) for the semi-discretization of Burg-
ers equation. The one-step BGPS is very effectively to
calculate the solution at an initial time t = 0 from a given
final data at t = T , which with a time stepsize equal to
T and with a suitable grid length produces a highly ac-
curate solution never seen before. Under noisy final data
the BGPS is also robust to against the disturbance. When
the solution appears steep gradient, several steps BGPS
can be used to retrieve the desired initial data.

keyword: Past cone dynamics, Backward group pre-
serving scheme, Backward Burgers equation, Ill-posed
problem.

1 Introduction

In this paper we are concerned with the numerical inte-
gration of backward in time Burgers equation:

ut +uux =
1
R

uxx, a < x < b, 0 < t < T,

u(a, t) = ua(t), u(b, t) = ub(t), 0 ≤ t ≤ T,

u(x,T) = f (x), a ≤ x ≤ b,

where R is the Reynolds number characterizing the vis-
cosity of fluid. Given a velocity function f (x) at the final
time t = T , the problem is retrieving the past history and
initial profile of the fluid velocity.

Burgers’ equation has been of considerable physical in-
terest because it is an appropriate simplification of the
Navier-Stokes equations, and is also the governing equa-
tion for a number of one-dimensional flow systems in-
cluding the convection and diffusion of heat, weak shock
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propagation, compressible turbulence, and continuum
traffic simulation.

The Burgers equation was first appeared in a pa-
per by Bateman (1915) and was named after Burgers
(1948,1974). The behavior of Burgers equation ex-
hibits a delicate balance between advection and diffu-
sion. Moreover, it is one of the few nonlinear partial
differential equations that exact and complete solutions
are known in terms of the initial values [Cole (1951);
Hopf (1950)]. Thus, the Burgers equation is a useful
test medium for investigating various numerical meth-
ods on partial differential equations. In the past several
decades there were much studies on the numerical solu-
tions of Burgers’ equation, for example, Fletcher (1983),
Basdevant, Deville and Haldenwang (1986), Arina and
Canuto (1993), Özis and Özdes (1996), Hon and Mao
(1998), Kutluay, Bahadir and Özdes (1999), Lin and
Zhou (2001), Wei and Gu (2002), Özis, Aksan and Özdes
(2003), and references therein.

Here we propose a new numerical scheme for solving the
well-known Burgers equation backward in time. How-
ever, while most papers are concerned with the numerical
integrations of the forward problems of Burgers’ equa-
tion, there are only a few papers which are devoted to
the inverse problems of Burgers equation, for example,
Carasso (1977) and Marbán and Palencia (2002).

We would develop a backward group preserving scheme
for the backward problems of Burgers equation. It is
an extension of the work of Liu (2001, 2004) by taking
the time backward of equations into account. Numeri-
cal schemes adopted for backward problems are usually
implicit. The explicit schemes that have been applied to
solving the backward problems are apparently not very
effective up to now. As mentioned by Ames and Epper-
son (1997), because the backward problems are ill-posed,
they are necessary ill conditioned from a numerical point
of view, and the problem must be regularized before any
approximation can be constructed. Obviously, most peo-
ple assert that the backward problems are impossible to
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solve using classical numerical methods and require spe-
cial techniques to be employed.

Our proposed scheme is based on the numerical method
of line which is a well-developed numerical method that
transforms partial differential equations into a system of
ordinary differential equations. The major contributions
of this paper are applying the group preserving property
of the resultant system in the development of numerical
scheme and giving a conviction that the proposed scheme
is workable to the backward in time Burgers equation.
Specifically, the proposed scheme is easy to implement
and time saving. Usually, the resultant differential equa-
tions system is highly-dimensional for an accuracy con-
sideration when one applies the line method to partial dif-
ferential equations, and thus it is desired to use an easily-
implemented program with a minimal step and a mini-
mal stage in the numerical method. Of course, for the
ordinary differential equations the Runge-Kutta method
is the most popular one to implement; however, it would
be seen that the Runge-Kutta scheme can not be applied
to the backward in time Burgers equation due to its fast
divergence of the numerical solutions.

Through this study, we may have an easy-
implementation and explicit-one step backward group
preserving scheme (BGPS) used in the calculations of
backward in time Burgers equation, the accuracy of
which is much better than other schemes. The algorithm
is also applicable to other semilinear parabolic problems,
and it is an important contribution for calculating the
backward problems of semilinear parabolic type.

2 Forward problems and GPS

2.1 Dynamics on future cone

Group-preserving scheme (GPS) can preserve the in-
ternal symmetry group of the considered system. Al-
though we do not know previously the symmetry group
of nonlinear differential equations systems, Liu (2001)
has embedded them into the augmented dynamical sys-
tems, which concern with not only the evolution of state
variables but also the evolution of the magnitude of state
variables vector. That is, for an n ordinary differential
equations system:

ẋ = f(x, t), x ∈ R
n, t ∈ R

+, (1)

we can embed it to the following n+1-dimensional auge-
mented dynamical system:

d
dt

[
x

‖x‖
]

=

⎡
⎣ 0n×n

f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

⎤
⎦

[
x
‖x‖

]
. (2)
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Figure 1 : The construction of deleted cones in the
Minkowski space for forward and backward problems
signifies a conceptual breakthrough. The trajectory ob-
served in the state space x is a parallel projection of the
trajectory in the null cones along the ‖x‖ or −‖x‖-axis.

It is obvious that the first row in Eq. (2) is the same as
the original equation (1), but the inclusion of the second
row in Eq. (2) gives us a Minkowskian structure of the
augmented state variables of X := (xT,‖x‖)T satisfying a
future cone condition as shown in Fig. 1:

XTgX = 0, (3)
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where

g =
[

In 0n×1

01×n −1

]
(4)

is a Minkowski metric, In is the identity matrix of order
n, and the superscript T stands for the transpose. In terms
of (x,‖x‖), Eq. (3) becomes

XTgX = x ·x−‖x‖2 = ‖x‖2−‖x‖2 = 0, (5)

where the dot between two n-dimensional vectors de-
notes their Euclidean inner product. The cone condition
is thus the most natural constraint that we can impose on
the dynamical system (2).

Consequently, we have an n + 1-dimensional augmented
system:

Ẋ = AX (6)

with a constraint (3), where

A :=

⎡
⎣ 0n×n

f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

⎤
⎦ , (7)

satisfying

ATg+gA = 0, (8)

is a Lie algebra so(n,1) of the proper orthochronous
Lorentz group SOo(n,1). This fact prompts us to de-
vise the so-called group-preserving scheme, whose dis-
cretized mapping G exactly preserves the following
properties:

GTgG = g, (9)

det G = 1, (10)

G0
0 > 0, (11)

where G0
0 is the 00th component of G. Such G is an

element of the proper orthochronous Lorentz group de-
noted by SOo(n,1). The term orthochronous used in the
special relativity theory is referred to the preservation of
time orientation. However, it should be understood here
as the preservation of the sign of ‖x‖.

Remarkably, the original n-dimensional dynamical sys-
tem (1) in E

n can be embedded naturally into an

augmented n + 1-dimensional dynamical system (6) in
M

n+1. These two systems are mathematically equivalent.
Although the dimension of the new system is raising one
more, it has been shown that under the Lipschitz condi-
tion of

‖f(x, t)− f(y, t)‖≤ L‖x−y‖, ∀ (x, t), (y,t)∈ D, (12)

where D is a domain of R
n×R, and L is known as a Lip-

schitz constant, the new system has the advantage of al-
lowing us to devise group-preserving numerical scheme
as follows [Liu (2001)]:

X�+1 = G(�)X�, (13)

where X� denotes the numerical value of X at the discrete
time t�, and G(�) ∈ SOo(n,1) is the group value of G at
time t�.

2.2 GPS for forward differential equations system

The Lie group generated from A ∈ so(n,1) is known as
a proper orthochronous Lorentz group. An exponential
mapping of A(�) admits a closed-form representation:

exp[∆tA(�)]=

⎡
⎢⎣

In + (a�−1)
‖f�‖2 f�fT

�
b�f�
‖f�‖

b�fT�
‖f�‖ a�

⎤
⎥⎦ , (14)

where

a� := cosh

(
∆t‖f�‖
‖x�‖

)
, b� := sinh

(
∆t‖f�‖
‖x�‖

)
. (15)

Substituting the above exp[∆tA(�)] for G(�) into Eq. (13)
and taking its first row, we obtain

x�+1 = x� +η�f�

= x� +
b�‖x�‖‖f�‖+(a�−1)f� ·x�

‖f�‖2 f�. (16)

From f� ·x� ≥−‖f�‖‖x�‖ we can prove that

η� ≥
[

1−exp

(
−∆t‖f�‖

‖x�‖
)] ‖x�‖

‖f�‖ > 0, ∀∆t > 0. (17)

This scheme is group properties preserved for all ∆t > 0.
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3 Backward problems and BGPS

3.1 Dynamics on past cone

Corresponding to the initial value problems (IVPs) gov-
erned by Eq. (1) with a specified initial value x(0) at a
zero time, for many systems in the engineering applica-
tions, the final value problems (FVPs) may happen due
to the fact that one wants to retrieve the past histories of
states exhibited in the physical models. These time back-
ward problems can be described as

ẋ = f(x, t), x ∈ R
n, t ∈ R

−. (18)

With a specified final value x(0) at t = 0, we intend to
recover the past values of x in the past time of t < 0.

We can embed Eq. (18) into the following n + 1-
dimensional augemented dynamical system:

d
dt

[
x

−‖x‖
]

=

⎡
⎣ 0n×n − f(x,t)

‖x‖
− fT(x,t)

‖x‖ 0

⎤
⎦

[
x

−‖x‖
]
. (19)

It is obvious that the first equation in Eq. (19) is the same
as the original equation (18), but the inclusion of the sec-
ond equation gives us a Minkowskian structure of the
augmented state variables of X := (xT,−‖x‖)T satisfy-
ing a past cone condition:

XTgX = x ·x−‖x‖2 = ‖x‖2−‖x‖2 = 0. (20)

Here, we should stress that the cone condition imposed
on the dynamical system (2) is a future cone as shown in
Fig. 1, and that for the dynamical system (19) the cone
condition (20) imposed is a past cone as shown in Fig. 1.

Consequently, we have an n + 1-dimensional augmented
system:

Ẋ = BX (21)

with a constraint (20), where

B :=

⎡
⎣ 0n×n − f(x,t)

‖x‖
− fT(x,t)

‖x‖ 0

⎤
⎦ (22)

satisfying

BTg+gB = 0, (23)

is a Lie algebra so(n,1) of the proper orthochronous
Lorentz group SOo(n,1). Here, the term orthochronous

should be understood as the preservation of the sign of
−‖x‖.

According to the above Lie algebra property of B we can
derive a backward group-preserving scheme as Eq. (13)
for Eq. (6):

X�−1 = G(�)X�. (24)

The above is a backward single-step numerical scheme.
Below we derive a group-preserving scheme for Eq. (21).

3.2 BGPS for backward differential equations system

An exponential mapping of B(�) admits a closed-form
representation:

exp[∆tB(�)] =

⎡
⎢⎣

In + (a�−1)
‖f�‖2 f�fT

� − b�f�
‖f�‖

−b�fT�
‖f�‖ a�

⎤
⎥⎦ , (25)

where a� and b� were defined by Eq. (15).

Substituting the above exp[∆tB(�)] for G(�) into Eq. (24)
and taking its first row, we obtain

x�−1 = x� +η�f�

= x� +
−b�‖x�‖‖f�‖+(a�−1)f� ·x�

‖f�‖2 f�. (26)

From f� ·x� ≤ ‖f�‖‖x�‖ it follows that

η� ≤
[

exp

(
−∆t‖f�‖

‖x�‖
)
−1

] ‖x�‖
‖f�‖ < 0, ∀∆t > 0. (27)

This scheme is group properties preserved for all ∆t > 0.

Comparing Eqs. (26) and (16) they have the same form
in addition that the sign before b�‖x�‖‖f�‖ in the numer-
ators. In the later we will call this numerical scheme
the backward group preserving scheme (BGPS), which
is slightly different from the group preserving scheme
(GPS) introduced in Section 2 for the forward differential
dynamics.

Previously, Liu, Chang and Chang (2006) have applied
the BGPS method to the backward in time heat con-
duction problems, and found that this method is rather
promising. Here we extend this method to the nonlinear
Burgers equation.
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4 Solving Backward Burgers equation by BGPS

4.1 Semi-Discretization

The numerical method of line is simple in concept that
for a given system of partial differential equations dis-
cretize all but one of the independent variables. The
semi-discrete procedure yields a coupled system of or-
dinary differential equations which are then numerically
integrated.

For the one-dimensional backward in time Burgers equa-
tion:

ut +uux =
1
R

uxx, a < x < b, 0 < t < T, (28)

u(a, t) = ua(t), u(b, t) = ub(t), 0 ≤ t ≤ T, (29)

u(x,T) = f (x), a ≤ x ≤ b, (30)

we adopt the numerical method of line to discretize the
spatial coordinate x by

∂u(x, t)
∂x

∣∣∣∣
x=a+i∆x

=
ui+1(t)−ui−1(t)

2∆x
, (31)

∂2u(x, t)
∂x2

∣∣∣∣
x=a+i∆x

=
ui+1(t)−2ui(t)+ui−1(t)

(∆x)2 , (32)

where ∆x is a uniform discretization spacing length, and
ui(t) = u(a + i∆x, t), such that Eq. (28) can be approxi-
mated by

∂ui(t)
∂t

=
1

R(∆x)2 [ui+1(t)−2ui(t)+ui−1(t)]

−ui(t)
ui+1(t)−ui−1(t)

2∆x
. (33)

The next step is to advance the solution from the final
condition to the desired time t = 0. Really, in Eq. (33)
there are totally n coupled nonlinear differential equa-
tions for the n variables ui(t), i = 1,2, . . .,n, which can
be numerically integrated to obtain the numerical solu-
tions.

4.2 One-step BGPS

Applying scheme (26) to Eq. (33) and using the boundary
conditions: u0(t) = ua(t) and un+1(t) = ub(t), we can
compute the solution of the backward in time Burgers
equation by BGPS.

Starting from a final condition XK = X(T) we attempt to
calculate the value X(0) at the desired time t = 0. Sup-
pose that the total time T is divided by K steps, that is,
the time stepsize we use in the BGPS is ∆t = T/K. By
Eq. (24) we can obtain

X0 = G1(∆t) · · ·GK(∆t)XK, (34)

where X0 approximates the real X(0) within a certain
accuracy depending on ∆t. However, let us recall that
each Gi, i = 1, . . .,K, is an element of the Lie group,
and by the closure and transtive properties of Lie group
G1(∆t) · · ·GK(∆t) is also an element of the Lie group de-
noted by G. Hence, we have

X0 = G(K∆t)XK = G(T )XK . (35)

This is a one-step transformation from X(T ) to X(0).

The most simple method to calculate G(T ) is given by

G(T ) = exp[T B(K)]

=

⎡
⎢⎣

In + (a−1)
‖fK‖2 fKfT

K − bfK
‖fK‖

− bfTK
‖fK‖ a

⎤
⎥⎦ , (36)

where

a := cosh

(
T‖fK‖
‖xK‖

)
, b := sinh

(
T‖fK‖
‖xK‖

)
. (37)

That is, we use the final x(T ) to calculate G(T ). Then
from Eq. (26) we obtain a one-step BGPS:

x0 = xK +
−b‖xK‖‖fK‖+(a−1)fK ·xK

‖fK‖2 fK . (38)

The accuracy and efficiency are demonstrated by numer-
ical examples given below.

4.3 Example 1

For the Burgers equation (28) with the following bound-
ary conditions and initial condition:

u(0, t) = u(1, t) = 0, (39)
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u(x,0) = sinπx, (40)

the exact solution is obtained by transforming them
through the Hopf-Cole transformation [Hopf (1950);
Cole (1951)]:

u =
−2φx

Rφ
, (41)

to the following heat conduction equation, boundary con-
ditions and initial condition:

φt =
1
R

φxx, 0 < x < 1, 0 < t < T,

φx(0, t) = φx(1, t) = 0,

φ(x,0) = exp

[Z x

0

−R
2

sinπξdξ
]

= exp

[
R
2π

(cosπx−1)
]
. (42)

Then, applying the method of separation of variables and
the Fourier transform to the above linear equation we ob-
tain

φ(x, t) = a0 +
∞

∑
k=1

ak exp

[−(kπ)2t
R

]
cos(kπx), (43)

where

a0 = exp

[−R
2π

]Z 1

0
exp

[
Rcosπx

2π

]
dx, (44)

ak = 2exp

[−R
2π

]Z 1

0
exp

[
Rcosπx

2π

]
cos(kπx)dx. (45)

Substituting Eq. (43) for φ into Eq. (41) we obtain the
solution for u:

u(x, t) =
2π∑∞

k=1 kak exp[−(kπ)2t/R] sin(kπx)
Ra0 +R∑∞

k=1 ak exp[−(kπ)2t/R]cos(kπx)
.

(46)

In order to calculate the backward in time Burgers equa-
tion we let t = T in Eq. (46) to be our final data:

u(x,T) =
2π∑∞

k=1 kak exp[−(kπ)2T/R] sin(kπx)
Ra0 +R∑∞

k=1 ak exp[−(kπ)2T/R]cos(kπx)
.

(47)

In practice, we calculate the above series with 100 terms,
and each ak is calculated by the ten-point Gaussian
quadrature.
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Figure 2: The comparison of exact solutions and numerical solutions for Example
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Figure 2 : The comparison of exact solutions and nu-
merical solutions for Example 1 of backward Burgers’
equation with different final times: T = 0.5,1,3,5 sec.

We first consider a small solution case with R = 1. In
Fig. 2 we show the numerical results and numerical er-
rors for different final times of T = 0.5,1,3 sec. The
numerical results are calculated by BGPS with one step
but keeping ∆x = 1/200. Let us further investigate a very
severely ill-posed case of this problem, where T = 5 sec
was employed, such that when the final data is in the or-
der of O(10−22) we want to use BGPS to retrieve the
desired initial data sinπx, which is in the order of O(1).
Even for this severe case up to T = 5 sec, our computa-
tion is stable, and the maximum error occurring at x = 0.5
is about 0.004.

In order to enhance our perception about this difficult
problem, we apply the fourth-order Runge-Kutta method
(RK4) to this problem with a variable transformation
s = T − t as that used by Liu (2004) for the heat con-
duction equation, such that Eq. (28) becomes

us = uux −uxx. (48)
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Figure 3: The comparison of exact solutions and numerical solutions for Example
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Figure 3 : The comparison of exact solutions and nu-
merical solutions for Example 1 by one-step RK4 with
different final times: T = 0.1,0.15 sec.

For the prescribed boundary conditions (39) and the final
time condition (47) which becomes an initial condition of
the above equation with the initial value given at s = 0.
Spatially discretized the terms ux and uxx as that given by
Eqs. (31) and (32), we obtain a set of ordinary differential
equations which can be integrated by the RK4.

We consider two cases of T = 0.1,0.15 sec, and when
applying the RK4 in the calculations with a fixed ∆x =
1/200 and two time stepsizes of ∆t = 0.1,0.15 sec we at-
tempt to recover the data given by Eq. (40) with one-step
RK4. Two-step RK4 calculations are already led to the
divergence of numerical solutions for both cases. From
Fig. 3(a) it can be seen that the one-step RK4 makes
oscillatory solutions, and the accuracy is very poor as
shown in Fig. 3(b).

Really, in the backward numerical integration of the
Burgers equation a simple employment of the finite dif-
ference or finite element method with negative time steps
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Figure 4 : The influence of time steps on the numerical
errors with T = 0.1 sec: (a) one-step, (b) two-step, and
(c) three-step.

is numerically unstable. Even a one-step calculation can
alleviate the problem of stability, there also has the prob-
lem of accuracy.

With this in mind, we can appreciate the stable behav-
ior of BGPS, which is stable even for several time steps.
To demonstrate this fact let us consider the same case
T = 0.1 sec as that calculated by RK4. In Fig. 4 we plot
the maximum numerical errors at the initial time as func-
tions of the number of grid points calculated respectively
by one-step, two-step and three-step BGPS. The errors of
one-step BGPS are in the range of [0.03679, 0.03681],
the errors of two-step BGPS are in the range of [0.03270,
0.03272], and the errors of three-step BGPS are in the
range of [0.02874, 0.02875]. It can be seen that the grid
number affects the accuracy very little, and the errors are
much smaller than that calculated by the RK4. When
compare the numerical results for T = 0.1 sec with the re-
sults for the cases of T = 0.5,1,3,5 as shown in Fig. 2(b),
it can be found that the one-step BGPS is more effective
when T is larger. We can conclude that the BGPS is ac-
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Figure 5: The comparison of exact solution and numerical solutions for Example 1
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Figure 5 : The comparison of exact solution and numer-
ical solutions for Example 1 with a large R = 100.

curate for the integration of backward in time Burgers
equation, which is much accurate than the RK4.

From the above calculations it can be seen that the
method of BGPS is useful for small solutions with small
R = 1. We also observe that in several numerical exper-
iments, the distance backward in time where significant
accuracy can be attained is much larger than would be
expected on the basis of our calculations; for example,
for the case of T = 5 sec the final data is very small in
the order of O(10−22) almost uncomputable by PC, and
we can still retrieve the initial data very accurate.

Let us turn to a large R = 100. This problem appears a
steep gradient of the solution as shown in Fig. 5(a) with
a solid thick line when T = 0.22 sec. For this case the
series solution converges very slowly and instead of we
use the GPS developed in Section 2 to calculate the re-
quired data at a final time T = 0.22 sec. In this calcula-
tion the grid length was fixed to be ∆x = 1/100, and the
time stepsize used for GPS was ∆t = 0.001 sec. Then we
retrieve those final data by BGPS to the data at the ini-
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Figure 6 : The comparison of exact solutions and numer-
ical solutions for Example 2 with data at different times
been retrieved: t = 0.75,0.5,0.0625,0 sec.

tial time t = 0 as shown in Fig. 5(a) with a dashed line,
from which it can be seen that the result is rather good
and close to the exact solution as shown by the solid line
in Fig. 5(a). The maximum numerical error as shown in
Fig. 5(b) is smaller than 0.036. The time stepsize used in
the BGPS was given by ∆t = 0.22/12 sec. Because the
final data exhibits a steep variation near to the end point
x = 1, it is hard to use a one-step BGPS to recover the
initial data. However, 12 steps BGPS calculations can
approximate the desired initial data.

4.4 Example 2

Next, we consider a Burgers equation with a time-
dependent source:

ut +uux = uxx +
1
2

e−2t sin(2x), 0 < x < π, 0 < t < T,

(49)

u(0, t) = 0, u(π, t) = 0, 0 ≤ t ≤ T, (50)
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Figure 7: The comparison of exact solution and numerical solution for Example 2
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Figure 7 : The comparison of exact solution and numer-
ical solution for Example 2 with data at a fixed point x0.

u(x,T) = e−T sinx, 0 ≤ x ≤ π. (51)

The source term is chosen such that u(x, t) = e−t sinx is
a solution of the above equations.

In the calculation we fix T = 1 sec and the final data is
u(x,1) = e−1 sinx. Applying the one-step BGPS for this
problem with a fixed ∆x = π/200, we plot the exact so-
lutions and numerical solutions in Fig. 6(a) at different
times t = 0.75,0.5,0.0625,0 sec to be retrieved; how-
ever, they are coincident very well. Therefore, we plot
the numerical errors in Fig. 6(b). It can be seen that the
errors are very small in the order of O(10−5). In Table
1 we compare the maximum errors with that obtained by
Marbán and Palencia (2002). It can be seen that our re-
sults are much better than that obtained by Marbán and
Palencia (2002).

In Fig. 7 we use the one-step BGPS technique to re-
cover the past history of u at the point x0 = π/2 with
t < T = 1 sec, wherein the exact solution is e−t . From
Fig. 7(a) it is hard to distinct the exact solution and nu-

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

0) =0

=1.0e-6

=2.0e-6

=3.0e-6

Figure 8 : The comparison of numerical solutions for
Example 2 with different levels of noise.
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Figure 9 : The maximum error as a function of the num-
ber of grid points.

merical solution, and thus we plot the numerical error in
Fig. 7(b). The error is very small in the order of O(10−4).

In the case when the input final measured data are con-
taminated by random noise, we are concerned with the
stability of BGPS, which is investigated by adding the
different levels of random noise on the final data. We
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Table 1 : Comparing the errors of one-step BGPS and that obtained by Marbán and Palencia (2002) of Example 2.
Evaluation past times Error of Marbán and Palencia Error of BGPS

t = T/16 1.324940E-02 1.979825E-05
t = T/8 8.925938E-03 1.742685E-05
t = T/4 3.251045E-03 1.329425E-05
t = T/2 2.424795E-04 7.038631E-06
t = 3T/4 7.889683E-06 2.806019E-06

use the function RANDOM−NUMBER given in Fortran
to generate the noisy data R(i), where R(i) are random
numbers in [−1,1]. The numerical results at the initial
time t = 0 sec were compared with the numerical result
without considering random noise in Fig. 8. The noise is
obtained by multiplying R(i) by a factor δ. It can be seen
that the noise levels with δ = 10−6,2× 10−6,3× 10−6

disturb the numerical solutions deviating from the exact
solution rather small.

Next we investigate the influence of the number of grid
points on the accuracy to recover the initial data with
T = 1 sec in Fig. 9. It can be seen that more grid points
can increase the accuracy up to the order O(10−6). How-
ever, it was found that even for small numbers of grid
point the one-step BGPS can also produce a rather accu-
rate numerical solution with error in the order O(10−3).

The above two computational examples supported that
we may use a one-step BGPS with a finer grid length
to compute the backward in time Burgers problem with
small R. On the other hand, there are four reasons for
a one-step BGPS: (a) the BGPS is group properties pre-
served for all ∆t > 0; (b) a one-step computation is much
time saving; (c) there has no error propagation in the one-
step computation; (d) it can increase the spatial resolu-
tion by increasing the number of grid points. Problems
where steep gradients occur require considerably more
precision in measurement, and the BGPS needs more
steps to retrieve the desired intial data.

5 Conclusions

In this paper we were concerned with the numerical in-
tegration problem of backward in time Burgers equation.
The key point was the construction of a past cone and a
backward group preserving scheme. It is a first time that
we could construct a geometry (past cone), algebra (Lie
algebra) and group (Lie group) description of the back-
ward problems governed by differential equations.

By employing the BGPS we can recover all past times
data with a high order accuracy. Two numerical examples
of the backward in time Burgers equation were work out,
which show that our numerical integration methods are
applicable to these problems, even for the very strongly
ill-posed ones. Under the noised final data the BGPS was
also robust enough to retrieve the initial data. In the com-
putations, a one-step BGPS was applicable to recover the
initial data, having a higher accuracy with a suitable finer
grid length. The efficiency of one-step BGPS was rooted
in the closure and transtive properties of the Lie group
that we used it to construct the numerical method for
backward in time Burgers equation.
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