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Buckling of Honeycomb Sandwiches: Periodic Finite Element Considerations

D. H. Pahr1 and F.G. Rammerstorfer1

Abstract: Sandwich structures are efficient
lightweight materials. Due to there design they ex-
hibit very special failure modes such as global buckling,
shear crimping, facesheet wrinkling, facesheet dimpling,
and face/core yielding. The core of the sandwich
is usually made of foams or cellular materials, e.g.,
honeycombs. Especially in the case of honeycomb
cores the correlation between analytical buckling pre-
dictions and experiments might be poor (Ley, Lin, and
Uy (1999)). The reason for this lies in the fact that
analytical formulae typically assume a homogeneous
core (continuous support of the facesheets). This work
highlights problems of honeycomb core sandwiches
in a parameter regime, where the transition between
continuous and discrete support of the facesheets is
studied. Periodic finite element unit cell models are
utilized for this task, which offer the big advantage of
a homogeneous load introduction to the structure. The
finite element models are found to be well suited for
all kinds of buckling predictions. Different uni- and
bi-axial loadings are considered as well as influences of
core height, core material, core geometry, and facesheet
thickness are investigated. Finally, a new analytical
approach is introduced for the unexpected core cell wall
buckling under in-plane compression of the sandwich,
which predicts the critical load very accurately.

keyword: Sandwich Buckling, Wrinkling, Dimpling,
Periodic Unit Cells, Finite Element Method

1 Introduction

Sandwich structures exhibit very high structural efficien-
cies (ratio of strength or stiffness to weight) and, there-
fore, are of interest in the use of aerospace structures.
A sandwich consists of two thin load bearing facesheets
glued on a lightweight core that prevents the facesheets
from buckling individually. Quasi homogeneous cores
(e.g., made of foam) and cellular cores (e.g., honeycomb
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cores) respectively, are typically used.

Failure modes of sandwich structures, as stated in stan-
dard literature, are: global buckling, shear crimping,
facesheet wrinkling, facesheet dimpling, face/core yield-
ing, core-face debonding (Plantema (1966), Zenkert
(1995)).

Comparisons of analytical and experimental results (Ley,
Lin, and Uy (1999)) show poor correlations if honey-
comb cores are used. Sandwiches with honeycomb cores
show, besides other failure modes, facesheet dimpling,
which comes from the non-continuous facesheet support
by the core. This non-continuous support influences also
the wrinkling behavior of the facesheets. In Lamberti,
Venkataraman, Haftka, and Johnson (2003) it is stated
that one wrinkling half wave has to go over at least two
honeycomb cells in order to obtain reliable analytical es-
timations based on continuous support assumptions. This
fact might be the reason for the poor agreement between
analytical and experimental results in Ley, Lin, and Uy
(1999).

The present study aims to highlight the above mentioned
problems in the transition zone where one buckling half
wave length is smaller than the length of two honeycomb
cells. Analytical and finite element analyses are applied.
The Finite Element Method (FEM) Bathe (1996) is used
for numerical instead of physical experiments. The ad-
vantage of this approach lies in the avoidance of com-
plex, not very reliable and expensive experiments as well
as in the possibility of investigating new core geometries,
which are not realized yet.

Our specific objectives are to: (1) introduce a new type
of finite element model for the problem - namely periodic
unit cell models, (2) investigate different loading condi-
tions (uni-axial compression, bending, bi-axial compres-
sion), (3) compute influences of different facesheet thick-
nesses, core heights, core materials, (4) compare differ-
ent cell geometries (hexagonal, square) of a structured
core.

One of the novelties of this work is the usage of peri-
odic finite element unit cell models for studying all kind
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of sandwich failure modes (global buckling, wrinkling,
dimpling, yielding), instead of FEM models of sandwich
specimens. This approach requires complex boundary
conditions for proper load introduction (see Léotoing,
Drapier, and Vautrin (2004)). Furthermore, a new ana-
lytical formula is introduced for cell wall buckling under
multi-axial in-plane compression loading.

2 Methods

In this section the homogenization as well as the ana-
lytical buckling formulae for different sandwich failure
modes - global buckling, facesheet wrinkling of sand-
wiches with thin and thick cores, facesheet dimpling,
face/core yielding, cell wall buckling under multi-axial
in-plane compression - are considered, and the periodic
finite element models are described.

In the following critical membrane loads per unit width
of the sandwich are denoted as N and M, whereas critical
loads per unit width of a single facesheet are denoted as
F . It is assumed that this membrane loads are sufficiently
homogeneous.

If not denoted otherwise, uni-axial loading is assumed in
the analytical expressions.

2.1 Homogenization

The constitutive law for an effective plane periodic media
in terms of classical lamination theory can be written as
(see Jones (1999):

(
NNNh

MMMh

)
=
(

AAAh BBBh

BBBh DDDh

)(
εεεh

χχχh

)
(1)

with the resultant forces

NNNh = (N11 N22 N12)T ,

the resultant moments

MMMh = (M11 M22 M12)T ,

the reference-surface strains

εεεh = (E11 E22 2E12)T ,

and the reference-surfacde curvatures

χχχh = (−χ11 −χ22 −2χ12)T .

If the homogenization problem is solved by the Finite El-
ement Method (FEM) these quantities have to be related
to nodal forces and nodal displacement. The homoge-
nized stiffness matrices AAAh, BBBh and DDDh can than be com-
puted from FEM results.

Following the theory of homogenization (Suquet (1987))
periodic boundary conditions (BCs) have to be applied
on the boundaries of an appropriate FE-unit cell (as
shown in Figure 1) in order to ensure that for each un-
deformed and deformed configuration the translated unit
cells fit with each other. Considering the periodic BCs,
the macroscopic displacement field within the unit cell is
completely defined by the displacements of characteris-
tic points, so called master nodes (A, A+, B, B+, and 0,
0+ in Figure 1).
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l2 = 2 l′2 pB
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Figure 1 : Unit cell definition for a plane periodic media
(for a rectangular cell: d2 = 0)

Consequently, the distributed loads acting along the
boundary of the unit cell are condensed to concentrated
nodal forces at the master nodes (e.g. F

A
, uA in Figure 1).

The relations between these nodal quantities and the
quantities in the homogenized constitutive law (Equation
(1)) start with the definition of the characteristic rotations
and displacements (for similar equations see Anthoine
(1995), Hohe (2003)). The rotations R,S and twisting
T of the unit cell are given by:

R1 = − 1
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2 −uA
2 )− (u0+

2 −u0
2)
)

R2 =
1
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1 )− (u0+

1 −u0
1)
)
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Note that R3 = S3 = 0 are zero constants in order to en-
sure that translated unit cells fit with each other.

The connections of the master node displacements and
the characteristic translations (U,V) are:
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The third and sixth equations are thickness compatibility
conditions.

Using the definitions of Equation (2) and Equation (3)
the homogenized strains and curvatures follow from (see
Anthoine (1995)):

E11 =
U1

2 l′1

E21 =
U2

2 l′1

E12 =
V1

2 l′2
−U1 d2

4 l′1 l′2

E22 =
V2

2 l′2
−U2 d2

4 l′1 l′2
(4)

χ11 = − R2

2 l′1
χ21 = T

χ12 = T

χ22 =
S1

2 l′2
− T d2

2 l′2
(5)

The above derivations may also be written in the form of:

UUU = EEE ·PPP ←→ Ui j = Eim Pm j , (6)

where UUU is the generalized master node displacement
tensor, EEE is the homogenized strain and PPP is the general-
ized periodicity tensor containing the unit cell geometry
l1, l2 and d2. and in extended form as (for more details
see Pahr (2003)):(

U1 V1

U2 V2

)
=
(

E11 E12

E21 E22

)
·
(

pA
1 pB

1
pA

2 pB
2

)
(7)

A similar relation is obtained for the curvatures as:

RRR = χχχ ·PPP ←→ Ri j = χim Pm j , (8)

and in extended form as:( −R2 −S2

R1 S1

)
=
(

χ11 χ12

χ21 χ22

)
·
(

pA
1 pB

1
pA

2 pB
2

)
(9)

The generalized resultant forces NNN are obtained by inte-
gration of the stresses through the thickness which yields:

NNN =
l3

2V

(
FFF ·PPPT +PPP ·FFFT

)
(10)

with

FFF =

(
F

A
1 F

B
1

F
A
2 F

B
2

)
and NNN =

(
N11 N12

N21 N22

)
, (11)

where FFF is the generalized master node force tensor. V is
the volume of the unit cell and “·” stands for the dot prod-
uct. That means if EEE is given (strain controlled loading)
UUU follows from Equation (6), FFF is calculated by using
FE-analyses and NNN is computed from Equation (10).

Similarly a generalized resultant moment MMM can be found
as:

MMM =
l3 l3
2V

(
∆FFF ·PPPT +PPP ·∆FFFT) (12)
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with

∆FFF =
(

∆FA
1 ∆FB

1
∆FA

2 ∆FB
2

)
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(

FA+
1 −FA

1 FB+
1 −F B

1
FA+

2 −FA
2 FB+

2 −F B
2

)
,

(13)

where for strain controlled loading Equation (8) and
Equation (12) is needed. Finally NNN, MMM, EEE , χχχ are used

in Equation (1), and AAAh, BBBh, DDDh are computed.

The equations for stress controlled loading look similar.
There the master nodal forces follow from given resultant
forces as:

FFF =
V
l3

NNN · (PPPT)−1 (14)

∆FFF =
V

l3 l3
MMM · (PPPT)−1 (15)

The required relation between master node displace-
ments and homogenized strains/curvatures follows di-
rectly from the inverse of Equation (6)/(8) as:

EEE =
1
2

(
UUU ·PPP−1 +(PPP−1)T ·UUUT

)
(16)

and

χχχ =
1
2

(
RRR ·PPP−1 +(PPP−1)T ·RRRT ) . (17)

For the computation of the homogenized stiffness matri-
ces six independent load cases are needed and the peri-
odic BCs have to be applied on the FE unit cell model.
These tasks are done by the house software UCTOOL.
The homogenization problem is solved by the commer-
cial FE software ABAQUS.

2.2 Global Buckling

The problem of global buckling of a sandwich beam
is dealt with in the classical sandwich literature (e.g.
Plantema (1966)):

1
PG =

1
PE +

1
PS , (18)

where PE denotes the Euler buckling load (with neglec-
tion of the core stiffness):

PE =
π2 Ef J

l2
K

J = 2 tf b
(hc

2

)2
(19)

and PS is the shear crimping load per unit width (with
neglection of the transverse shear stiffness of facesheets
and assumption of relatively thin facesheets):

PS = Gbhc . (20)

Here G denotes the effective transverse core shear mod-
ulus (Gxz or Gyz), hc the core height, b the width of
the sandwich, tf the facesheet thickness, Ef the facesheet
Young’s modulus, and lK the buckling length. The mate-
rial parameters for all applied cores and facesheets can be
found in Table 1 and Table 2. The core values (Table 1)
are similar to those of core material data sheets, although
they are based on FE computations.

Table 1 : Honeycomb core dimensions and material pa-
rameters

Param. Description Alu Nomex Unit
SW cell size 4.7625 4.7625 mm
hc core height 10. . . 50 10. . . 50 mm
tc cell wall thickness 0.05 0.05 mm
Ec Young’s modulus of core 60000. 1600. MPa
νc Poisson ratio of core 0.3 0.3 -
σY wall yield stress of core 220. 220. MPa
Ex
∗ eff. Young’s mod. of core 0.94 0.0251 MPa

Ey
∗ eff. Young’s mod. of core 0.94 0.0251 MPa

Ez
∗ eff. Young’s mod. of core 1679. 44.794 MPa

Gyz
∗ eff. shear mod. of core 242.47 6.4658 MPa

Gxz
∗ eff. shear mod. of core 363.83 9.7021 MPa

Gxy
∗ eff. shear mod. of core 0.562 0.01499 MPa

νyz
∗ eff. Poisson ratio of core 1.7E-4 1.67E-4 -

νxz
∗ eff. Poisson ratio of core 1.7E-4 1.67E-4 -

νxy
∗ eff. Poisson ratio of core 0.999 0.999 -

kthick
x

∗ foundation stiffness† 364.569 9.728 MPa
kthick

y
∗ foundation stiffness† 364.217 9.719 MPa

∗ computed with spatially periodic finite element models
† based on Vonach and Rammerstorfer (2001)

Table 2 : Facesheet dimensions and material parameters

Param. Description Alu Steel Unit
tf facesheet thickness 0.01. . . 0.5 0.01. . . 0.5 mm
Ef Young’s modulus 60000. 210000. MPa
νf Poisson’s ratio 0.3 0.3 -
σY yield stress 220. 400. MPa

2.3 Wrinkling

Wrinkling is a common local stability problem, which
leads to the loss of stiffness and to a subsequent catas-
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trophic failure. The literature divides the wrinkling prob-
lem into two different cases. The first case is the ”thick
sandwich” case, where it is assumed that the sandwich
thickness is big enough to avoid interaction between the
two facesheets. The second case is the ”thin sandwich”
case, where the facesheets interact. Both cases have been
compared and discussed more closely in Ley, Lin, and
Uy (1999), Yusuff (1955) and are used in standard sand-
wich literature (Plantema (1966), Zenkert (1995), Allen
(1969)).

In very simple approaches thin cores are practically mod-
elled as plates on an elastic foundation (Winkler foun-
dation). Assuming a symmetric wrinkling pattern the
critical compression load per unit width of a facesheet
is given by (Yusuff (1955),Allen (1969)):

FWrink,thin = 2 tf

√
Ef Ez tf

6(1−ν2
f )hc

, (21)

where Ez is the effective Young’s modulus of the core
in thickness direction (z-direction), which are given in
Table 1. Equation (21) assumes a symmetric sandwich
(i.e. geometry, material, load, and solution are symmet-
ric with respect to the mid-plane). Anti-symmetric buck-
ling modes, bending loading, etc. are not taken into
account, a fact which leads to wrong results for many
cases. A more general approach is proposed in Vonach
and Rammerstorfer (2001), with which all these prob-
lems are solved and which is applicable to sandwich
beams, plates, and shells of arbitrary configurations with
respect to anisotropy of core and facesheet materials.
However, in order to find the relevant solution an opti-
mization problem has to be solved.

The asymptotic solution of the general approach in
Vonach and Rammerstorfer (2001) is used for the buck-
ling load predictions of thick cores. The solution (critical
compression load per unit width of a facesheet) is then
given directly as:

FW,thick = 0.85 tf
3

√
Ef (kthick)2 if νf = 0.3 . (22)

The foundation stiffness kthick=kthick(Ez Gxz,Ex . . .) is
computed by a set of formulae which are taken from
Vonach (2001) (see Table 1). Equation (22) is similar to
the classical approach for thick cores, i.e., FW,thick,class =
0.85 tf

3
√

Ef Ez Gxz (νf=0.3, see Ley, Lin, and Uy (1999))
but includes the influence of the in-plane core stiffness
(Ex), which is disregarded in the classical approach.

The critical wrinkling load per unit width of the facesheet
can finally taken as:

FW = max (FW,thick, FW,thin) . (23)

2.4 Dimpling

Dimpling as a local mode of instability occurs only in the
case of cellular cores as, for example, honeycomb cores.
Many design approaches regarding dimpling are avail-
able (e.g. Plantema (1966), Norris and Kommers (1950),
Department of Defense (1968)). Here, the formula for
dimpling load prediction taken from the US Military
Handbook Department of Defense (1968) is used, which
is also suggested in Ley, Lin, and Uy (1999). There the
critical compression load per unit width of a facesheet is
given as:

FD =
2Ef tf
1−ν2

f

( tf
SW
2

)2
. (24)

SW corresponds to the cell size (see Figure 2).
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h

t
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Base Cell

Hexagonal 1x1 Cell Square: 2x3 Cells

2*t

2*tc

x

y
z

Figure 2 : Finite element model examples: Hexagonal
1×1 cell model (right, hc=10 mm, SW =4.7526 mm) and
rectangular (square) 2×3 cell model (left).

2.5 Cell Wall Buckling (under in-plane compressive
loading of the sandwich)

Finite element computations performed for the present
work have show that a further local instability mode un-
der in-plane compression can appear, namely cell wall
buckling. For an analytical prediction of this instability
a new failure model is introduced. The development of
the model starts with a look at the deformation pattern of
a honeycomb core. Figure 3 shows FE results of a 1×2
unit cell under compression loading.
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SW
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Single Cell Wall

Double Cell Wall undeformed

Figure 3 : Undeformed (dashed line) and deformed
shape, respectively, of an 1×2 unit cell (upper part not
shown).

One can see that the deviation of the regular core dis-
placement decays fast from the facesheet to the mid plane
(=cut plane) of the sandwich. These observations lead to
the following proposed model for cell wall buckling con-
siderations:

Step 1: Compute the overall displacement of a sandwich
unit cell as shown in Figure 3. Classical Lamina-
tion Theory (CLT, see Jones (1999)) is used for this
task. The core is modelled as a homogenized ma-
terial with effective properties as shown in Table 1.
These values are computed by spatial periodic finite
element unit cell models, i.e., without modelling the
facesheets (see Daxner (2003), Pahr (2003)). These
FEM models are similar to the plane periodic mod-
els as described later in this section. The obtained
overall displacements are denoted with 1ux and 1uy.

Step 2: The ”double cell wall” (t = 2 tc) is assumed to
carry the effective core stress. The (rather small)
displacements of these walls are computed and the
relevant component is denoted as 2ux.

Step 3: The ”single cell wall” (t = tc) is loaded with the
displacement from step 1 minus the displacement
from step 2 as:

∆u =

√(
la + 1ux− 2ux

)2
+
(SW

2
+ 1uy

)2
− lcw

(25)

and the cell wall stress is obtained from:

σCW = Ec
∆u
lcw

, (26)

where lcw and la are characteristic lengths (see Fig-
ure 3).

Step 4: This cell wall stress is assumed to be constant
within the considered cell wall and is compared to
the critical buckling stress for plate buckling (uni-
axial compression):

σPB = k Ec

( tc
lcw

)2
, (27)

in order to obtain the critical load multiplier for cell
wall buckling from:

λ =
σPB

σCW . (28)

The parameter k is the plate buckling factor which can
be taken from Plantema (1966) or Zenkert (1995). It
depends on the ratio hc/lcw as well as on the clamping
conditions along the four edges. In the considered case
the clamping conditions are something inbetween fully
clamped (fixed) and simply supported (rotational free).
It is found (see section 3) that a value of k inbetween the
ones corresponding to these two extreme values is a good
choice.

The accuracy of the proposed model depends on how
good the mean stress in the cell wall is captured by the
analytical approach. Otherwise the factor k becomes an
unphysical fitting parameter. This validation is done in
the result section.

2.6 Facesheet Yielding

Von Mises plasticity is used for predicting facesheet
yielding. In the analytical approach the actual von Mises
stress is compared to the face yield stress, where the cur-
rent stress state within the facesheet is obtained from
CLT. Thus multi-axial loading can be taken into account
very simply.

In the FEM approach the von Mises stresses are averaged
within the different sections (facesheets, core materials
with different thicknesses). These average stresses are
compared to the yield stress of the considered material in
order to obtain a critical load multiplier.

2.7 Multi-axial Loading

A sandwich plate or shell, as considered in the present
work, can be loaded in-plane by membrane forces Nxx,
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Nyy, Nxy and moments Mxx, Myy, Mxy, respectively. Here,
for yielding and cell wall buckling the multi-axial stress
state is computed by using CLT. With respect to wrin-
kling and dimpling the membrane forces in the facesheets
can be estimated by:

FN
i j =

Ni j

2

FM
i j =

Mi j

hc
(29)

if the in-plane stiffness of the core is neglected. For ex-
ample, if the critical load multipliers λ of a sandwich
(t f =0.01 mm, hc =10mm, aluminum facesheets, hexag-
onal aluminum core, compressive Nxx loading) are com-
puted with and without considering the in-plane stiffness
of the core, respectively, a difference of 0.64% is found,
which verifies this neglection.

In the case of wrinkling and dimpling an interaction for-
mula (taken from Ley, Lin, and Uy (1999)) is used to ob-
tain the critical load multiplier λ of the sandwich under
both membrane and bending loads (FN

xy = FM
xy = 0):

1
λ

= p

√(FN
xx +FM

xx

FW,D
xx

)p
+
(FN

yy +FM
yy

FW,D
yy

)p
, (30)

where FW,D
xx , FW,D

yy are the critical wrinkling and dim-
pling loads from Equation (23) and Equation (24), re-
spectively, and p is a coefficient which is chosen as p=3
in Ley, Lin, and Uy (1999).

2.8 Finite Element Modelling

Finite element unit cell simulations are performed in or-
der to validate the approximating analytical approaches
and to get more insight into the instability phenomena.

The proposed periodic finite element models show the
following characteristics:

• Three-dimensional shell models of the sandwich
(see Figure 2) composed of quadratic 8 noded shell
elements are applied.

• The smallest FE model size is shown in Figure 2,
left. Larger FE model sizes are denoted with ”nx×
ny”, where nx and ny are the number of base cells in
x and y direction, respectively. For example, Figure
2 (right) shows a 2×3 cell model.

• The core geometry can be hexagonal (Figure 2, left)
or square (Figure 2, right). Other possible core ge-
ometries are not investigated in this paper.

• The cell wall thickness for walls normal to the y-
axis is 2 tc due to the manufacturing process. The
other walls have a thickness of tc.

• Plane periodic boundary conditions are applied
along corresponding edges (see Pahr (2003), Hohe
(2003)).

• Loads can be membrane forces Ni j, moments Mi j

or a combination of forces and moments. Figure 4
shows the deformation pattern for a 1×2 cell model
under the six possible unit load cases. The loads
are unit loads with a value of ”1”, i.e. the critical
load multiplier λ is equal to the critical load of the
sandwich.

Compression x: N Compression y: N Shear: N

Moment: M Twist: MMoment: M

xx yy xy

xyyyxx

x

y

Figure 4 : Deformation pattern of different load cases on
a unit cell: Compression 2×, Shear, Moments 2×, Twist.
Dashed lines represent the undeformed state.

• Analysis steps are a pre-load step followed by a
classical linear buckling step. Investigations of dif-
ferent pre-load levels as well as geometric non-
linear analyses have shown that the considered mod-
els are not sensitive to geometric non-linearities.
However it should be mentioned, that possible im-
perfection sensitivities are not considered in the
present work.
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• The models are generated by the pre-
processor ABAQUS/CAE and solved with
ABAQUS/Standard (ABAQUS (2005)). The
post-processing is done by a user script written in
PYTHON.

• Figure 2 shows typically used mesh density. Finer
meshes have shown that this mesh is sufficiently
fine.

• The global buckling length lk in the analytical mod-
els corresponds to the size of the FE unit cells.

• The number of core cells along the x and y direc-
tion depends on the problem (wrinkling, dimpling,
global buckling) which is to be solved.

In contrast to previous works (e.g. Léotoing, Drapier, and
Vautrin (2004)) a special treatment of the load introduc-
tion region is not needed in the case of periodic FE mod-
els. Of course, a critical point is the periodicity. This
means that the geometry, material, load and solution has
to be periodic. The latter is fulfilled in dimpling, cell wall
buckling, and yielding analyses. For dimpling a 1×2
cell model is found to be sufficient. For wrinkling and
global buckling modes larger models have to be utilized
and the obtained buckling pattern is approximative. Nev-
ertheless, if a sufficiently large number of cells is chosen
properly (see Figure 13) than the error in the results is
found to be negligibly small (see result section).

3 Results

The failure behavior of a sandwich structure under dif-
ferent loading conditions (Figures 5 - 7) shows dimpling,
facesheet yielding, and cell wall buckling. The aluminum
core of the specifically considered sandwich has a con-
stant thickness of hc=10 mm. The aluminum facesheets
have thicknesses ranging from 0.01 to 0.5 mm. For all
cases a very good agreement between the analytical and
the finite element results is found. A 1×2 unit cell size
is found to be sufficiently large in the considered case, if
global buckling is not considered.

Under uni-axial compression of the sandwich (Figure 5)
dimpling and cell wall buckling are the critical failure
modes, where wrinkling and facesheet yielding does not
occur. Global buckling (in this case mainly shear crimp-
ing) is also not critical due to the small considered unit
cell, i.e., small bucking length. Dimpling is critical for a
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Figure 5 : Critical load multiplier λ over facesheet thick-
ness of an aluminum (facesheet material) - aluminum
(hexagonal core material) sandwich (hc=10 mm) under
uni-axial compression Nxx. Lines are analytical results,
symbols are FE results. The thick line and solid circles
represent the critical load multipliers.

facesheet thickness lower than 0.1 mm and shows a full
dimpling wave over one honeycomb cell (Figure 5, A).
For cell wall buckling predictions a constant plate buck-
ling factor of k =2.9 has been seen to be appropriate and
one full buckle half wave is visible within the buckled
cell walls (Figure 5, B).
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Figure 6 : Critical load multiplier λ over facesheet
thickness of a hexagonal aluminum-aluminum sandwich
(hc=10 mm) under uni-axial bending Mxx.

Bending moments (Figure 6) lead to dimpling for small
facesheets thicknesses and to facesheets yielding for
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thickness of a hexagonal aluminum-aluminum sandwich
(hc=10 mm) under bi-axial compression Nxx

Nyy
=1.

larger thicknesses. Different dimpling patterns (Figure
6, A) and cell wall buckling patterns (Figure 6, B) are
visible for small and large core thicknesses, respectively.

A bi-axially loaded sandwich (Figure 7) shows a behav-
ior similar to the uni-axially loaded sandwich. However
a reduced buckling load is appearant. The buckling inter-
action formula (Equation (30)) works well for this type
of bi-axial loading. The good agreement between the an-
alytical, and finite element results for cell wall buckling
(open squares in Figure 7) and facesheets yielding (open
triangles) is only reached if the proposed CLT approach
is used for the analytical computations, i.e., if the core
stiffness is taken into account. The buckling factor k is
the same as for uni-axial loading, where k = 2.9.

For the verification of the cell wall buckling model, FE
and analytical results of the mean ”single” cell wall stress
(t = tc) are compared (see Figure 8). They agree very
well for thicker cores. The solid line in Figure 8 shows
the analytical results calculated with the introduced cell
wall buckling model. The finite element results for these
stresses in the considered case are averaged and the stan-
dard deviation is computed from these stresses (solid
symbols and error bars in Figure 8). The difference in
the computed mean stresses ranges from 17.0. . . 3.6% for
hc=10. . . 50 mm.

Based on this validation, cell wall buckling predictions
(Figure 9) show, as expected, that the critical load is a
function of the core height. The considered aluminum-
aluminum honeycomb sandwich has a facesheet thick-
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Figure 8 : Mean compression stress in the ”single”
cell walls (t = tc) due to loading Nxx = 1N/mm as a
function of the core height (hc=5. . . 50 mm). The solid
symbols represent the averaged FEM stresses within the
cell walls, the error bars are the standard deviation of
the FEM stresses, and the solid line show the cell wall
stresses obtained from the analytical model. The stress
field is also shown for the lower half of an 1×2 cell.
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ling failure is cell wall buckling. The numbers along the
critical line are the plate buckling factors k.

ness of 0.2 mm in order to result in cell wall buckling
as critical failure mode. The good agreement of both,
analytical and computational, predictions is obtained if
the plate buckling coefficient is taken from buckling fac-
tor diagrams of plates under compression for different
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Figure 10 : Critical load multiplier λ over facesheet
thickness of aluminum-aluminum sandwich (hc=10 mm)
with hexagonal and rectangular cores (hc=10 mm) under
uni-axial compression Nxx. Both sandwiches show the
same effective core density.

cell wall length to height ratios. The constraint along the
plate boundaries are assumed to lie in between the fully
clamped and the simply supported case.

A comparison of different core geometries (hexago-
nal and square, Figure 10) shows that hexagonal cores
give higher critical dimpling loads (for tf <0.1 mm),
where square cores avoid cell wall buckling. The two
aluminum-aluminum sandwiches in Figure 10 (hc=10
mm) have the same effective core density and are loaded
in x-direction. Critical modes are dimpling for thin
facesheets. Cell wall buckling and facesheets yielding,
respectively, is critical for thicker facesheets. Wrinkling
is not critical for these stiff cores. The agreement be-
tween analytical and FE results is very good for hexago-
nal cores. Dimpling predictions for square cores are only
approximate if the dimpling formula (Equation (24)) is
used instead of the plate buckling formula (similar to
Equation (27)).

The transition from dimpling to wrinkling failure (see
Figure 11) is observed by using a ”soft” Nomex core.
If this sandwich with a hexagonal honeycomb core is
loaded under bending (Mxx) the critical failure mode for
very thin facesheets is dimpling followed by a combina-
tion of dimpling-wrinkling (see A and B in Figure 11) for
moderate thick faces. The wrinkling wave length is pe-
riodic with respect to the basic cell (1×1 cell). Thicker
facesheets (C and D) show a typical wrinkling pattern
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Figure 11 : Critical load multiplier λ over facesheet
thickness of a aluminum (facesheet) - Nomex (hexago-
nal core) sandwich (hc=10 mm) under uni-axial bending
Mxx.

with increasing wave lengths, where a deviation of the
analytical (homogeneous core assumption) and finite ele-
ment computations (cellular core) is visible. Howeverm,
at these load levels facesheet yielding is already critical.

Dimpling, wrinkling of thick and thin sandwiches as well
as global buckling are observed if steel facesheets are at-
tached to a Nomex core (Figure 12). The model consists
of 35 base cells in x direction. A constant core height
(hc=25 mm) and an increasing facesheet thickness leads
to dimpling for tf < 0.06 mm. In the range of 0.06 < tf <

0.2 mm wrinkling of thick cores is the critical mode
(Figure 12, A), which is followed by thin core wrin-
kling. In the second case an antisymmetric wrinkling
pattern (influence of opposite facesheet) is visible. Fi-
nally, a global, shear dominated buckling occurs (Figure
12, C). The analytical prediction of the wrinkling stresses
is rather poor (Figure 12, A and B). In these cases one
half wave (HW) is running over 0.73 (A) and 1.25 (B)
honeycomb cells, which is less then the suggested value
of at least 2 HW/cell for accurate analytical wrinkling
predictions. However, a very good analytical prediction
of global buckling is visible. The buckling length for this
case is chosen as lk = 1.0 l, where l is the length of the
finite element model in x direction.

A comparison of the wrinkling half wave length (Figure
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13) shows a good agreement between finite element and
analytical results. The error bars assumes that the number
of wrinkles within the FE model is plus/minus one half
wave length. They show a very small error due to the
restriction by the periodic FE model. The FE model has
35×1 cells. An increase of the cell numbers in loading
direction would reduce this error. Whereas, the error in
the relevant results, i.e. buckling loads, is smaller than
the error in the wrinkling half wave length. For example,
the difference between results obtained from a 10×1 FE
model and that from the presented 35×1 model is 0.02%!

Results for local buckling loads of sandwiches under bi-
axial loading are shown in Figure 14. Two core ma-
terials (aluminum and Nomex) as well as two differ-
ent facesheet thicknesses are considered by the models.
Thicker facesheets (tf=0.2 mm) lead to cell wall buckling,
thin facesheets (tf=0.05 mm) to dimpling. Problems with
the suggested dimpling interaction formula become ob-
vious. For example, the rather ”soft” Nomex core leads
to an overestimation of the dimpling loads (Figure 14) in
the range of 37.0%. . . 99.4%. In the case of an aluminum

Figure 13 : Comparison of wrinkling half wave lengths
for three different facesheet thicknesses (tf=0.15, 0.20,
0.25 mm) of a steel (facesheet) - Nomex (hexagonal core)
sandwich (hc=25 mm) under uni-axial compression Nxx.
The analytical results (crossed bars) are compared to the
FEM results (solid bars, 35×1 cells). Error bars corre-
spond to the maximum error due to the usage of a peri-
odic FE model.

core the obtained agreement is better (error in the range
of 7.4% . . . 31.4%). The cell wall buckling predictions
in Figure 14 by the proposed analytical model agree well
with the finite element results.

4 Discussion

Dimpling can only be expected for very thin facesheets
(in the considered cases approximately tf < 0.1 mm).
High deviations of the analytical dimpling predictions
from finite element results are visible (Figure 14, A), be-
cause the dimpling formula does not take different core
materials into account, i.e., the stiffness of the core ma-
terial influences the accuracy of the analytical dimpling
loads. A new analytical dimpling approach has to be de-
veloped. Furthermore, the interaction formula (Equation
(30)) should be improved. In a first step the coefficents
p might be reduced (p =1. . . 3). A comprehensive study
on this topic should be a future task.

Cell wall buckling is only found in hexagonal cores
with not too thin facesheets, i.e., in the considered cases
tf >0.05 . . . 0.1 mm. A new model for the treatment of
this instability is presented. No othre comparable ap-
proach could be found in the literature. The stiffness
loss of the core due to cell wall buckling might influ-
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plier λ of aluminum-aluminum sandwiches with hexag-
onal cores (hc=10 mm) under bi-axial compression Nxx,
Nyy. Critical analytical dimpling loads (tf = 0.05) are the
same for aluminum and Nomex core material.

ence the post buckling behavior of the sandwich (next
visible buckling mode, e.g. wrinkling) significantly. The
introduced cell wall buckling formula, which is based on
CLT stress computations, is well suited for in-plane load-
ing of the sandwich. Beside the clamping conditions, the
buckling factor k is a function of core thickness as ex-
pected from the literature and lies in between a physi-
cally meaningful range. Due to the fact that the analyt-
ically computed cell wall stresses and the average finite
element stresses are very similar (see Figure 8), k should
not be seen as a ”fitting parameter”, but rather dependent
on clamping conditions at the interface between core and
facesheets as well as on the SW/hc ratio.

Plastic yielding of facesheets is found to be the rele-
vant failure mode for sandwiches under bending, where
facesheet thicknesses greater than 0.1 mm (aluminum)
. . . 0.25 mm (Nomex) exist. The analytical estimations
of the stresses in the facesheets should be based on CLT
in order to take multi-axial stresses into account.

Wrinkling and global shear dominated buckling is ob-
served for very stiff (steel) facesheets and very soft
(Nomex) honeycomb cores. The finite element models
for these analyses are larger than the one for dimpling
predictions. If at least approximately 10 . . . 20 wrin-
kling waves are realized within the FE model the error
which comes from the periodicity constraint (only dis-
crete wavelength numbers possible within the FE model)

becomes negligible. The poor correlation between an-
alytical and finite element results (Figure 12) can be
explained by the assumption of a continuous core sup-
port (homogenized core material) in the analytical model.
This means that one wrinkling half wave has to go over
at least two honeycomb cells in order to get reliable an-
alytical wrinkling predictions. Otherwise the core has
to be considered as a discrete structure. The error which
comes from the continuous core assumptions can be con-
siderable. In the considered case (Figure 12) this error is
up to 35%.

Summarizing, it can be said that for a wide range of pa-
rameters good agreements between analytical and finite
elements results verify the utilized analytical formulae
as well as the periodic finite element approach. Further-
more, finite element unit cell models are well suited for
accurate predictions of the critical sandwich failure loads
and represent a cheap reliable method (compared to ex-
periments) to validate new analytical design formulae as
well as to investigate new sandwich designs.

References

ABAQUS (2005): Standard User’s Manual, Version
6.5. Hibbit, Karlsson & Sorensen, Inc., Pawtucket, RI,
USA.

Allen, H. G. (1969): Analysis and Design of Structural
Sandwich Panels. Pergamon Press, Oxford, UK.

Anthoine, A. (1995): Derivation of the in-plane elastic
characteristics of masonry through homogenization the-
ory. Int. J. Sol. Struct., vol. 32, no. 2, pp. 137–163.

Bathe, K.-L. (1996): Finite Element Procedures.
Prentice-Hall, Inc., NJ, USA.

Daxner, T. (2003): Multi-Scale Modelling and Simula-
tion of Metallic Foams. Fortschritt-Berichte VDI Reihe
18 Nr. 285. VDI-Verlag, Düsseldorf, Germany.

Department of Defense, U. S. (1968): Structural
Sandwich Composites. U.S. Military Handbook MIL-
HNDBK-23A, Washington, DC.

Hohe, J. (2003): A direct homogenisation approach for
determination of the stiffness matrix for microheteroge-
neous plates with application to sandwich panels. Com-
posites Part B, vol. 34, pp. 615–626.



Buckling of Honeycomb Sandwiches 241

Jones, R. M. (1999): Mechanics of Composite Materi-
als. Taylor and Francis Inc., Philadelphia, USA, second
edition.

Lamberti, L.; Venkataraman, S.; Haftka, R.; John-
son, T. (2003): Preliminary design optimization of stiff-
ened panels using approximate analysis models. Int. J.
Numer. Meth. Eng., vol. 57, pp. 1351–1380.
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