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Abstract: The paper presents an overview of recent
work by the authors and their collaborators on multi–
disciplinary optimization for conceptual design, based
on the integrated modeling of structures, aerodynamics,
and aeroelasticity. The motivation for the work is the de-
sign of innovative aircraft configurations, and is therefore
first–principles based, since in this case the designer can-
not rely upon past experience. The algorithms used and
the philosophy behind the choices are discussed.
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1 Introduction

The aim of this paper is to present an overview of the
work of the authors and their collaborators in the field
of MDO/CD (Multi–Disciplinary Optimization for Con-
ceptual Design), for innovative aircraft configurations,
specifically, for civil aviation applications.

In this paper, we emphasize the philosophy used in de-
veloping the methodology, what are the criteria used to
chose the numerical algorithms utilized, what are the cur-
rent limitations and what needs to be done. Within this
context (that is, multi–disciplinary optimization for the
conceptual design in civil aviation), the authors have de-
veloped (and are still in the process of developing) a com-
puter code called MAGIC (Multidisciplinary Aircraft de-
siGn of Innovative Configurations). It should be empha-
sized that the code MAGIC is not to be considered as
a completed piece of software, but as an ever evolving
code. Therefore, this paper presents the state of the art
on the project – current developments and future objec-
tive are discussed in the concluding remarks.

MAGIC is an evolution of the code FLOPS (Mc Cullers
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(1984)), which is essentially based on elementary and/or
empirical algorithms. Such an approach is not possi-
ble for innovative configurations, for which the designer
cannot rely upon past experience. Thus, the first and
foremost criterion used in developing MAGIC is that the
algorithm be based on first principles, whenever possi-
ble. This is the approach used in particular in devel-
oping the MAGIC modules for structures, aerodynam-
ics, and aeroelasticity (see, e.g., Morino (1974), Morino
(1993), Morino, Mastroddi, De Troia, Ghiringhelli, and
Mantegazza (1995), Morino and Bernardini (2001), and
Morino (2003)), which are all first–principles based and
are described in this paper.

In order to validate the code, as it was being developed,
MAGIC has been used, by the authors and their collab-
orators, to perform numerical studies. It may be noted
that the original motivation and source of inspiration for
our work has been a specific innovative aircraft config-
uration, which has, as a distinguishing feature, a low
induced drag. This was proposed by Frediani (1999)
and by him denoted as the Prandtl–Plane, in honor of
the Prandtl (1924) work on unswept box wings, which
have an induced drag considerably lower that the stan-
dard configuration.3 Thus, most of the studies performed
with MAGIC deal with the wing design of the Prandtl–
Plane, with the fuselage assumed as given (see, for in-
stance, Bernardini, Frediani, and Morino (1999), Mas-
troddi, Bonelli, Morino, and Bernardini (2002), Morino,
Bernardini, Da Riz, and Del Rio (2002), and Morino,
Bernardini, and Mastroddi (2003)). These studies have
confirmed that the induced drag of this configuration is
considerably lower than the induced drag of an equiva-
lent monoplane. This fact allows one to reduce the wing–
span of this configuration without major drag penalties,
thereby enhancing the capability of respecting the maxi-
mum spanwise dimensions (critical for the NLA – New

3 The Prandtl–Plane has a counter–swept box–wing, i.e., a biplane
with a backward–swept low front wing and forward–swept high
back wing (which acts as a horizontal stabilizer as well); these are
connected to each other by vertical streamlined connections.
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Large Airplanes – with classical wing configuration), as
required by existing airport regulations. Moreover, as
shown by Morino, Iemma, Bernardini, and Diez (2004),
the low induced drag could allow one to reduce commu-
nity noise at take–off (because of the lower power re-
quired) and possibly chemical pollution. Other advan-
tages of the Prandtl–Plane are discussed in details in Fre-
diani (2004), to which the reader is referred for a discus-
sion of different types of Prandtl–Plane configurations. It
may be noted that the Prandtl–Plane is closely related to
the joined–wing concept; comprehensive overviews on
joined–wing configurations are presented in Wolkovitch
(1986) and Livne (2001).

It should be noted that, the proposed methodology (as
well as the code MAGIC) is by no means limited to the
Prandtl–Plane; for instance, in Carpentieri, van Tooren,
Bernardini, and Morino (2004), it has been successfully
applied also to the optimal design of a Blended–Wing–
Body configuration.

A crucial aspect of the philosophy used is related to the
fact that we are currently emphasizing the conceptual de-
sign phase (MDO/CD). Hence, it is highly desirable to
use algorithms that produce accurate predictions with a
relatively small computational effort. In other words, the
numerical algorithms used should be very efficient and
at the same time adequately accurate and apt to be re-
fined as much as necessary. In this paper, we use the
term “modeling” to refer to algorithms (such as bound-
ary elements in aerodynamics) that capture the essence of
the phenomenon (at a level quantitatively acceptable dur-
ing the conceptual design phase), and the term “simula-
tion” to refer to those algorithms (such as computational
fluid dynamics) that provide a more accurate description
of the phenomenon (beyond the level required during the
conceptual design phase) at the expense on much higher
computational cost. Accordingly, in this work we ad-
dress the advantages of modeling over simulation in the
context of MDO/CD.

A second crucial aspect is that the code MAGIC is at
the moment geared specifically towards for civil avia-
tion applications; hence, advantage is taken of this aspect
whenever possible, for instance in the use of potential
flows (i.e., flows that are potential everywhere except for
a zero–thickness wake surface emanating from the trail-
ing edge), which are combined with integral boundary
layers for the analysis of viscous effects. In summary,
the physical models chosen must be able to capture the

essence of the phenomenon within the specific applica-
tion of interest, thereby avoiding any unnecessary sophis-
tication.

The last crucial aspect in the philosophy we are follow-
ing is that strong emphasis be given to the integration of
the various disciplines. This implies not only that special
care be given to the interfaces, but also that the concur-
rency of certain types of analysis be exploited whenever
possible. For instance, the fact that the natural modes of
vibration must be evaluated for the dynamic aeroelastic
analysis implies that a modal analysis may be used for
the stress analysis as well. Similar considerations hold
for steady and unsteady aerodynamics algorithms. What
we are saying here is that the final objective is to develop
a code that is not a collection of some codes used for the
individual disciplines – in our view, it is necessary to start
from scratch. Indeed, the methods that are the most con-
venient for the individual disciplines are not necessarily
the most convenient in the global context. Therefore, our
work is based upon a critical analysis of the methodolo-
gies that are best suited for the stated goal.

On the basis of all these considerations, our choices have
been towards the following methodologies: (i) a linear
elastic finite–element beam model for the wing structure
(statics and mode evaluation), (ii) quasi–potential flows
for the aerodynamic analysis, with an integral boundary–
layer analysis for the viscous effects, and (iii) modal
analysis and reduced order model (ROM) for aeroelas-
ticity. All three of them assure the high efficiency re-
quired, with an accuracy that is quite adequate for the
conceptual design, within civil aviation applications. We
will address these issues in some details in the remainder
of the paper. We then critique our choices and provide
an overview of our current research activity that would
allow us to overcome the present limitations and move
towards a more general, but still efficient, formulation,
possibly of interest for preliminary design.

2 A Brief Survey on MDO

In order to put the present paper in the proper context,
a brief review of the current trends in MDO (for Multi–
Disciplinary Optimization, or Multidisciplinary Design
Optimization) is presented in this section. This review
has no pretense of being exhaustive – it has simply the
limited objective of making the reader aware of the cur-
rent interest in MDO and of the complexity of the prob-
lems. It may be noted that much of the work reviewed
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in this section is not geared toward conceptual design.
Nonetheless, it appears appropriate to present the review
of such a work, in order to emphasize the difference be-
tween the current main trends in MDO and our approach
to the problem (i.e., preliminary design). For the same
reason, when we discuss our work we use the acronym
MDO/CD (Multi–Disciplinary Optimization for Concep-
tual Design) and not just MDO.

The relevant scientific and technological developments
on aerospace–engineering optimization during the last
decades have demonstrated the growing need of Con-
current Engineering (CE) teams (Technical Commitee
(1991)), or of a Collaborative Engineering environment
(Monell and Piland (1999)) able to move forward ad-
vanced aircraft design. Indeed, these kinds of design
methodologies are intrinsically multidisciplinary, since
they involve at least aerodynamic and structural tasks (for
a more detailed design, the flight stability, propulsion and
control systems must also be added).

From these analyses, it becomes more and more apparent
how complex aircraft design can be, and how a new fig-
ure of engineer is emerging for connecting all the specia-
lized tasks coming out from the updating of whichever
other discipline and hence from any specialized engineer-
ing branch. Also, low computing time, design reliability,
overall life–cycle cost effectiveness and manufacturabil-
ity, are additional crucial issues that should be taken into
account in this framework.

The concept of MDO typically comprises all these issues
in the design process, since it is a formal methodology
with a mathematical description that takes into account
the synergistic and intrinsic coupling that exist in physi-
cal complex systems, enabling the optimal design of mul-
tidisciplinary complex engineering systems.

It is worth to point out that optimal solutions to problems
have very old roots in aerospace engineering – as pointed
out by Ashley (1982), it is inherent to the human nature
to find the best solutions to the problem – but it is only
in the last few decades that MDO problems and concepts
have come to the forefront, in a clearly defined manner
(Haftka and Gürdal (1992)).

Many studies have been dedicated to quantitative analy-
sis of the coupling between systems (Arian (1997)), and
to approaches able to unify the interaction among the
various disciplines. Moreover, a very important matter
pertains sensitivity analyses, already widely discussed

by Sobieszczanski-Sobieski (1986) (where the problem
of extending sensitivity analysis to Computational Fluid
Dynamics codes is analyzed), as well as in Yates (1987),
Bergen and Kapania (1988), Barthelemy and Bergen
(1989), Baysal and Eleshaky (1991), Taylor, Hou, and
Korivi (1992), Giunta (1999), Park, Green, Montgomery,
and Raney (1999), and Taylor, Green, Newman, and
Putko (2001).

Sobieszczanski-Sobieski and Haftka (1996) underlines
how the two main challenges in MDO are computational
costs and organizational complexity. Since then, this po-
sition has evolved to include the more recent challenge
of MDO: solution methodology and its software frame-
work. In this sense, a remarkable contribution and an
interesting research direction is given in Alexandrov and
Lewis (2000a), Alexandrov and Lewis (2000b), Alexan-
drov and Lewis (2000c), and Alexandrov and Lewis
(2002), which analyze the concepts of structural and al-
gorithmic perspectives by studying the optimization by
Linear Decomposition and Collaborative Optimization
(bi–level optimization) and Distributed Analysis Opti-
mization (single level optimization) approaches (the con-
cept of Collaborative Optimization is also widely de-
scribed in Kroo and Manning (2000)).

Regarding the issue of obtaining an MDO architecture
enabling one to reduce the computational cost, the con-
cepts of Nested Analysis and Design (NAND) approach
or the Simultaneous (SAND) one, are widely described
in Newman, Hou, and Taylor (1996), where it is also
shown how NAND and SAND approaches “differ only
in the frequency at which the iterative analysis and opti-
mization interact”. A contribution to this kind of prob-
lems is given, for example, in Gumbert, Hou, and New-
man (2005).

Since analytical and numerical results have shown the
deep relationship between the MDO formulation and the
solution feasibility and since, in most problems, it is not
possible to decide a–priori a certain formulation, the ca-
pability of reconfiguration of the system has been de-
scribed as necessary by MDO requirement (see Alexan-
drov and Lewis (2003)). The previous considerations
constitute the basis for the development of an innova-
tive approach defined as reconfigurable multidisciplinary
synthesis (REMS), which is analyzed in Alexandrov and
Lewis (2004a) and Alexandrov and Lewis (2004b). In
Alexandrov and Lewis (2004a) the REMS approach is
defined as a “conceptual framework that comprises an
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abstract language and a collection of processes that pro-
vide a means for dynamic reasoning about MDO prob-
lems in a range of contexts, with assistance from com-
puter science techniques”. Hence, the REMS introduc-
tion is useful in order to understand the internal structure
of MDO problems and constitutes also a way to better
understand solution methodologies.

As mentioned above, the purpose of this short intro-
duction is not to review all the MDO research fields in
an exhaustive way, but simply to remind the reader of
the complexity and current relevance of MDO problems.
Nonetheless, it is appropriate at least to mention the ef-
fort done in optimization with variable–fidelity models,
i.e., in giving some approximation models in optimiza-
tion (Alexandrov, Lewis, Gumbert, Green, and Newman
(2000) and Alexandrov, Nielsen, Lewis, and Anderson
(2000)), the need for comparison between the optimiza-
tion methods (Kodiyalam and Yuan (2000)), as well as
Knowledge Based Engineering discussed in van Tooren
(2004), which illustrates modelling techniques that allow
one to address different configurations within the same
model.

In summary, the field of MDO is quite complicated and
in a state of evolution. Hence, the optimization model for
the preliminary design of a complete aircraft presented in
this paper is to be considered as a small contribution that
allows one to appreciate the complexity and the multi–
tasks of the MDO approach – indeed, the analysis of a
complete aircraft is one of the main issues of MDO re-
search. It should be emphasized again that MAGIC is
an evolving piece of software and that, contrary to the
literature reviewed above, the emphasis here is on con-
ceptual design for civil aviation applications. Thus, the
presentation of the mathematical models reflect the cur-
rent state of the code development. The paper is written
for a broad audience, since the typical reader is not neces-
sarily familiar with the literature in all the fields included
here. Thus, the material presented is as much as possi-
ble self–contained. Hence, for the sake of completeness,
we include some mathematical issues (e.g., completeness
of the modes of vibration and relationship with finite–
element models), which we consider relevant to under-
standing the validity of the formulation, and which are
dealt with only in the most specialized literature, while
typically ignored even in the aeroelastic literature. Cur-
rent research activity and projected future developments
are dealt within the concluding remarks.

3 Modeling vs. simulation in structural dynamics

As mentioned above, here we want to emphasize the ad-
vantages of modeling over simulation, of course within
the context of conceptual design. Thus, we begin with
structural dynamics, which presents a clear exemplifica-
tion of what we mean by “modeling” and “simulation,”
and for which the advantages of modeling over simula-
tion are apparent (aerodynamics and aeroelasticity are
examined in the following sections). In the following,
we discuss the linear formulation, which is standard in
conceptual aircraft design. Combining the linearized mo-
mentum equation with the constitutive equations for lin-
ear elastic material and the expression for the linear strain
tensor yields ρü+Lu = f, where L denotes a self–adjoint
tensor operator with Cartesian components Lik(...) =
−Ci jkl(...)/l]/ j (where (. . .)/ j := ∂(. . .)/∂x j).4 Using the
Galerkin method (more precisely, the Bubnov–Galerkin
method, Reddy (1986)), one seeks an approximate solu-
tion of the type u(x, t) = ∑N

n=1 un(t)Ψn(x), where {Ψn}
is a set of linearly independent vector functions which
satisfy suitable homogeneous boundary conditions.5 In
the Galerkin method, the approximate equations are ob-
tained by taking the inner product between the resulting
expression and the function Ψn (n = 1, . . .,N), to obtain
a system of linear second–order differential equations, in
the unknown u = {un}, given by

Mü+Ku = f, (1)

where the elements of M = [Mkn], K = [Kkn], and f =
{ fk} are given by (disregarding the volume – e.g., gravity
– forces, f, which are negligible in typical aeronautical
applications)6

Mkn =
Z

VS

ρ Ψk ·ΨndV = Mnk (2)

4 We prefer to derive the structural dynamics equations from the
differential approach to emphasize the relationship between finite–
element (simulation) and modal (modeling) methods, as well as the
commonality between solids and fluids. The same results would be
obtained using the Lagrange equations of motion.

5 For the issues related to the distinction between essential and nat-
ural boundary conditions, see, e.g., Reddy (1986).

6 The symmetry of the matrix M is self–evident from Eq. 2. The
symmetry of the matrix K stems from the facts that L is self–
adjoint and that Ψn are assumed to satisfy the corresponding ho-
mogeneous boundary conditions. Finally, the expression for fn has
been obtained by treating the forces t (which appear in the bound-
ary conditions) as volume forces (of the type tδ(η), where η is
the arclength along the normal to S) that appear in the differential
equation, thereby yielding homogeneous boundary conditions.
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Kkn =
Z

VS

Ψk ·LΨndV = Knk (3)

fk =
I

S
t ·ΨkdS (4)

Next, we discuss the choice for the functions Ψn. In the
finite–element method, un typically denotes nodal values
of the displacement components, whereas Ψn(x) are suit-
able interpolation functions. We refer to this approach
as simulation. Generally speaking, in order to have a
good approximation of the solution, the number N of
the unknowns un is very high (for a wing treated as a
beam, N = 10÷30; for the complete aircraft configura-
tion, N = 104÷106). Thus, the numerical solution of the
above equations is highly computer intensive.

As mentioned above, as an alternative, one may use a
modal approach (spectral method), i.e., set

u(x, t) =
M

∑
m=1

qm(t)Φm(x), (5)

where qn(t) are known as generalized (Lagrangian) coor-
dinates, whereas {Φn} are the normalized natural modes
of vibration of the structure (eigenfunction of the opera-
tor L), which satisfy the equation

LΦ = ρλΦ (6)

with homogeneous boundary conditions (for a complete
aircraft, these are t = Tn = 0). Note that the expansion
in Eq. 5 is legitimate, because the Φn’s form a complete
set of orthogonal functions. This may be shown as fol-
lows. Consider first a structure that is fully constrained
(i.e., not free to move in rigid body motion), such as a
cantilevered wing. In this case, we have: (1) L is invert-
ible; (2) L−1 has the same eigenfunctions as L, whereas
the corresponding eigenvalues are the reciprocal of those
of L; (3) the operator L−1 is an integral operator, over
a Jordan domain, with a kernel (influence function, i.e.,
Green function) which is at most weakly singular (i.e.,
integrable response to any unit load); (4) these types of
operators are compact (Kress (1989), theorem 2.21); (5)
the eigenfunctions of a self–adjoint operator correspond-
ing to different eigenvalues are orthogonal; those corre-
sponding to the same eigenvalue span an N–dimensional
space, from which one may extract an orthogonal basis

(via Gram–Schmidt process); (6) the set of all the or-
thogonal eigenfunctions of an invertible, compact, self–
adjoint operator is complete (Hochstadt (1989), theorem
13, p. 61, where now f0 = 0, since the null space of an
invertible operator consists only of the element 0). In the
case of an aircraft, the proof is a bit more complicated be-
cause L is not invertible, due to the rigid–body degrees of
freedom which span the null space of L; the generaliza-
tion of the above results to the case in which L is singular
may be obtained using the approach of Hochstadt (1989),
p. 76.

Using the Galerkin method and Eq. 5 yields M = I (the
expression for M stems from the well known property
of orthogonality of the natural modes; the modes are
assumed to be normalized, so as to have the value one
along the diagonal of M). In addition, K = Ω2, where
Ω2 = [ω2

nδkn] (with ω2
n = λn) (the expression for K fol-

lows from the definition of natural modes of vibration,
Eq. 6; also, recall that the eigenvalues of a self–adjoint
operator are all real, in our case, positive, λ = ω2 > 0,
because L is a positive definite operator, i.e., 〈a,La〉> 0,
for all a �= 0). Therefore, Eq. 1 reduces to

q̈+Ω2q = e, (7)

where e = {ek}, with ek =
H

S t ·ΦkdS .

It is a rather common belief that the finite–element for-
mulation (Eq. 1) is more accurate than the modal ap-
proach (Eq. 7). This is not necessarily true. In fact,
it is easy to show that using the Galerkin method with
the base functions given by the approximate eigenfunc-
tions (i.e., Eq. 7, with ωk and ek obtained from the ap-
proximate finite–element model, Ku = ω2Mu) is fully
equivalent to diagonalizing the finite–element equations.
From this observation, we gather that – if the number
of modes M equals the number of finite element un-
knowns N – the approximate–mode equations are fully
equivalent to the finite–element equations (Eq. 1). On
the other hand, in the modal model one may drastically
reduce the number of unknowns (truncation of the sys-
tem to the first M modes), typically with no significant
loss in accuracy. Indeed, in aeroelastic analysis, we al-
ways have M << N (the modes corresponding to the
lowest frequencies are used; for a complete configura-
tion, M = 10÷30, a considerable reduction with respect
to the finite–element approach, where for a full configu-
ration N = 105 ÷106). Consequently, it is apparent that,
within a MDO/CD context, structural–dynamics model-



6 Copyright c© 2006 Tech Science Press CMES, vol.13, no.1, pp.1-18, 2006

ing (i.e., approximate–mode approach) is preferable to
structural–dynamics simulation (i.e., finite elements).

Another rather common belief is that an advantage of
the modal approach (Eq. 7), over the finite–element one
(Eq. 1), is due to the fact that, in Eq. 7, the equations
are uncoupled. Whereas this fact is true within the field
of structural dynamics, this property does not apply in
aeroelasticity and aircraft dynamics, because in this case
coupling appears through the aerodynamic forces, which
are functions of the unknown u. Nonetheless, the modal
approach is still the most advantageous in aeroelastic-
ity and aircraft dynamics as well – the reason is that,
for smooth functions, the convergence rate of an expan-
sion in terms of orthogonal functions, such as the natural
modes of vibration, is very high.

This implies that even approximate natural modes (ob-
tained by using the finite–element method described
above, as applied to the solution of the eigenvalue prob-
lem) are adequate, because the relevant aspect is the or-
thogonality of the base functions, not the decoupling of
the equations. Indeed, it is easy to show that the approx-
imate finite–element modes of vibration satisfy the same
orthogonality conditions as the exact ones.

Finally, a few comments on the convergence rate are in
order. For M << N, the Mth approximate mode is vir-
tually identical to the exact one. Hence, the convergence
rate of the approximate–mode expansion is initially simi-
lar to that of spectral methods (i.e., much higher than that
for finite–elements; for a discussion of the convergence
properties of spectral methods – of which the expansion
in terms of the natural mode of vibration is a particu-
lar case – the reader is referred to Gottlieb and Orszag
(1977)). On the other hand, as M increases to its maxi-
mum value, N, the convergence rate becomes gradually
poorer, since for M = N, the modal expansion is fully
equivalent to the finite–element one, as the two span ex-
actly the same space. Moreover, it should be noted that
the value of N is not dictated by the convergence of the
approximate modes of vibration to the exact ones, but
simply by the convergence of the flutter speed (the only
parameter relevant in MDO), as both M and N go to in-
finity (with considerable reduction of N).

4 Modeling vs. simulation in aerodynamics

Next, consider aerodynamics. Again, we begin with
simulation methodologies, as useful background for dis-

cussing the modeling methodology proposed here. In
our definition, aerodynamics simulation is based upon
the solution of the conservation equations of mass (con-
tinuity), momentum (Euler or Navier–Stokes), and en-
ergy, by a methodology broadly known as CFD (Compu-
tational Fluid Dynamics). The CFD method most com-
monly used is the finite–volume technique, which con-
sists of writing a discretized form of the conservation
principles for a small volume. This may be considered
as a special approach to obtain finite–difference expres-
sions, and also as a very crude finite–element formula-
tion for the above equations (with weight functions equal
to one within the element, and to zero otherwise – par-
tition of unity). Again, the number of degrees of free-
dom for a complete aircraft configuration is very high
(e.g., 105 ÷ 107, the lower numbers being obtained in
the inviscid case, or when an inviscid–viscous coupling
is used, e.g., with a finite–volume Euler external–flow
analysis coupled with a boundary–layer or thin–Navier–
Stokes analysis). Thus, these techniques are highly com-
puter intensive; while fundamental in a simulation envi-
ronment, they are not suitable in an MDO/CD context,
in which it is desirable to utilize simpler methods, able
to yield accurate solutions with computational efforts re-
duced as much as possible.

Indeed, in the case of interest here – civil aviation –
we are dealing primarily with high–Reynolds–number at-
tached flows, and traditional numerical methods in aero-
dynamics (where a boundary element code is coupled
with an integral boundary–layer analysis) are tools more
convenient than CFD.7 Specifically, the method we pro-
pose for MDO/CD is a boundary–element analysis for
compressible (subsonic) quasi–potential flows (i.e., flows
that are potential everywhere except for the wake sur-
face, which is the locus of the points emanating from
the trailing–edge, Morino (2003)), coupled with an inte-
gral boundary–layer analysis; the potential–viscous cou-

7 Here, at the risk of oversimplifying the situation, we think of a
fluid dynamicist as someone starting with very low Reynolds num-
bers, in the limit Re = 0, and working his way up; indeed, much of
the work in CFD started with low Reynolds number flows. On
the contrary, an aerodynamicist starts from attached flows with
very high Reynolds number, in the limit Re = ∞, and works his
way down. Indeed, classical aerodynamic formulations are based
upon Prandtl’s work on viscous/inviscid interaction, with thin at-
tached boundary layers, which imply very high Reynolds numbers.
For the attached high–Reynolds–number flows of interest here, the
aerodynamicist’s approach is at least as accurate as that of the com-
putational fluid dynamicist (see, e.g., Cebeci and Cousteix (1998)).
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pling is based upon the Lighthill (1958) transpiration–
velocity approach (see Section 6). The reason for this
choice is that the proposed boundary element method
for quasi–potential subsonic flows requires the same or-
der of magnitude of computational effort as the meth-
ods typically used in industry for conceptual design
(e.g., vortex–method analysis for incompressible poten-
tial flows), while at the same time is obviously more
sophisticated than those methods in terms of physi-
cal/geometrical representation and considerably more ac-
curate.

In this section, for simplicity, we present the formulation
for the limited case of incompressible quasi–potential
flows (the extension of the formulation to compressible
flows is treated extensively in Morino (1993), Morino
and Bernardini (2001), and Morino (2003), to which
the reader is referred for details). An inviscid, incom-
pressible, initially–irrotational flow remains, at all times,
quasi–potential. In this case, the velocity field, v, may
be expressed as v = ∇ϕ (where ϕ is the velocity poten-
tial). Combining with the continuity equation for incom-
pressible flows, ∇ · v = 0, yields ∇2ϕ = 0. The bound-
ary conditions for this equation are as follows. The sur-
face of the body, SB , is assumed to be impermeable; this
yields (v− vB) ·n = 0, i.e., ∂ϕ/∂n = χ := vB ·n (where
∂/∂n = n ·∇, whereas vB is the velocity of a point x ∈ SB ,
and n is the outward unit normal to SB). At infinity,
in a frame of reference fixed with the undisturbed air,
we have ϕ = 0. The boundary conditions on the wake
surface, SW , are obtained from the balance principles of
mass and momentum across a surface of discontinuity
and are given by: (i) the wake surface is impermeable,
and (ii) the pressure, p, is continuous across it. These im-
ply that, for x on SW , (i) Δ(∂ϕ/∂n) = 0, where Δ denotes
discontinuity across SW , and (ii) Δϕ = constant in time
following a wake point xW (whose velocity is the average
of the fluid velocity on the two sides of the wake), i.e.,
Δϕ(xW , t) = Δϕ(xTE , t − τ), where τ is the time required
to the material point to move from the trailing edge point
xT E to the wake point xW . Hence, Δϕ on the wake equals
the value it had when xW left the trailing edge. Finally, the
trailing–edge condition states that, at the trailing edge,
Δϕ on the wake equals ϕ2 −ϕ1 on the body, where the
subscripts 1 and 2 denote the two sides of the wing sur-
face (for a detailed analysis of this issue, see Morino and
Bernardini (2001)). Once the above problem has been
solved, the pressure is obtained from the Bernoulli theo-

rem.

In the methodology used in the code MAGIC, the
above problem for the velocity potential is solved by a
boundary–element formulation. The boundary integral
representation for this problem, using the above wake
boundary conditions, is given by (see Morino (1993) and
Morino (2003))

ϕ(x, t) =
I

SB

(
Gχ−ϕ

∂G
∂n

)
dS (y)

−
Z

SW

ΔϕT E (t −τ)
∂G
∂n

dS (y), (8)

with G = −1/4π‖y− x‖, whereas χ is prescribed from
the above impermeability boundary condition. Note that,
in the absence of the wake, Eq. 8, in the limit as x tends
to SB , yields a boundary integral equation for ϕ on SB ,
with χ on SB known from the boundary condition. Once
ϕ on the body is known, ϕ (and hence v and, by using
Bernoulli’s theorem, p) may be evaluated everywhere in
the field. The situation is similar in the presence of the
wake, since, by applying the wake and trailing–edge con-
ditions, Δϕ on the wake may be expressed in terms of
ϕ over the body at preceding time steps. It should be
noted that the geometry of the wake is not known a pri-
ori. However, in the case of airplanes one may assume,
with virtually no loss in accuracy, the wake to be parallel
to the undisturbed flow (small–disturbance assumption),
which we take to be the direction of the x–axis (v∞ = U∞i;
for a free wake analysis, see Morino (1993)). Consis-
tently, we have that τ is given by τ = (xW −xT E )/U∞. Note
that now the integral operator is linear. Then, taking the
Laplace transform of Eq. 8, with zero initial conditions,
one obtains8

ϕ̃(x) =
I

SB

(
Gχ̃− ϕ̃

∂G
∂n

)
dS (y)

−
Z

SW

Δϕ̃T E e−sτ ∂G
∂n

dS (y), (9)

where ˜ denotes Laplace–transformed functions. Equa-
tion 9 may be discretized by dividing the surfaces SB

and SW into small elements, S j ( j = 1 · · · ,NB), and Sn

(n = 1, · · · ,NW ) respectively, and assuming ϕ̃, χ̃, and

8 The role of the initial conditions in aerodynamics is addressed in
Morino (1974). However, this is only of theoretical interest, since
its implementation is not feasible, as well as inconsequential.
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Δϕ̃ to be constant within each element.9 This yields
the matrix EIE (used in the next section), which relates
the vector of the values of the velocity potential (evalu-
ated at the element centers), to the vector of the normal–
wash, χ = ∂ϕ/∂n (also evaluated at the element centers).
Note that the dependence of EIE upon s is transcendental
in nature, because of the exponentials arising from the
Laplace transform of the delay.

5 Aeroelastic modeling

In this section, we show how the structural and the aero-
dynamic modeling may be coupled to obtain the formu-
lation for aeroelasticity. This is accomplished by noting
that the vector of the generalized aerodynamic forces is
given by

ẽ = qDE(š)q̃, (10)

where q
D

= 1
2ρ∞U2

∞ is the dynamic pressure, whereas
š = s�/U∞ is the dimensionless Laplace parameter (also
known as complex reduced frequency; note that the re-
duced frequency, k = ω�/U∞, is given by k = Imag(š)).
The matrix E is given (in the Laplace domain) by E(š) =
EGF EBT (š)EIE (š)EBC(š), where:

(i) the matrix EBC (obtained from the boundary condi-
tion, χ = (U∞i+∑n u̇nΦn) · n) relates the vector f̃χ
of the dimensionless normal–wash at the element
centers, to the generalized coordinates vector q̃, as
f̃χ = EBC q̃;

(ii) EIE (obtained from the integral equation, see para-
graph that follows Eq. 9) relates the vector f̃ϕ of
the dimensionless velocity potential at the element
centers, to f̃χ, as f̃ϕ = EIE f̃χ;

(iii) the matrix EBT (obtained from the linearized
Bernoulli theorem, cp = −2(ϕ̇+U∞∂ϕ/∂x)/U2

∞ ) re-
lates the vector c̃p of the pressure coefficient at the
element centers, to f̃ϕ, as c̃p = EBT f̃ϕ;

(iv) the matrix EGF (obtained from the definition of ek)
relates the vector ẽ of the generalized aerodynamic
forces, to c̃p, as ẽ = qDEGF c̃p.

9 We refer to this as the zeroth–order boundary–element formula-
tion, see Morino (2003); for a third–order formulation, see Morino
and Bernardini (2001).

Combining the structural dynamics equations, Eq. 7, one
obtains, in the Laplace domain,

s2q̃+Ω2q̃ = qDE(š)q̃+ I.C. (11)

where I.C. comprises the structural initial condition
terms (as mentioned above, it is convenient to assume
zero initial conditions for aerodynamics).

In order to find the time–domain solution of this equa-
tion one should solve for q̃, and take the inverse Laplace
transform. This in turn involves finding the infinite roots
of the (transcendental) equation Det[s2I+Ω2 −qDE(š)].
In order to avoid this, some traditional methods, such
as the V–g and the p–k methods, have been used in the
past. These are briefly illustrated below in order to make
the reader appreciate the advantage of using reduced or-
der models. Consider first the V–g method.10 Setting
q(t) = q̃ eiωt , and combining Eqs. 7 and 10 yields

−ω2q̃+Ω2q̃ =
1
2

ρ∞U2
∞ E(k) q̃ (12)

In the modified V–g method (see the qualifications in the
footnote above), Eq. 12 is left–multiplied by Ω−2/ω2 to
yield

[A(k)−λI] q̃ = 0 (13)

with λ = 1/ω2 and A(k) = Ω−2
(

1
2 ρ∞E(k)�2/k2 + I

)
.

Then, one performs a sweep over k and identifies all the
values, km, for which there exists a real positive eigen-
value, λm. In this case, the solution is physically mean-
ingful and corresponds to sinusoidal motion. From km

and λm, one obtains Um = 1/
√

λm and ωm = kmUm/�.

10 The name arises from the fact that originally V was used to denote
the undisturbed velocity, U∞ , whereas g was used to denote an ar-
tificial structural–damping coefficient that was introduced in order
to assure that the solution would be indeed on the imaginary axis
(i.e., of the eiωt−type), which was the only type of aerodynamics
available in those days. While the essence of the method may be
illustrated without discussing the role of the artificial damping g,
as outlined in the text, nonetheless, to be specific, in the traditional
V –g method, an unknown structural damping term of the type igΩ2

is added (see Fung (1955), p. 239, Bisplinghoff, Ashley, and Half-
man (1955), pp. 566 and 611, and Bisplinghoff and Ashley (1962),
p. 384); then, one still has Eq. 13, with now λ =(1+ig)/ω2. Then,
g is interpreted as the amount of structural damping to be added in
order to have a sinusoidal solution (i.e., positive g corresponds to
an unstable solution). When g = 0 one obtains the same results as
discussed in the text. Note that, for each root, there corresponds a
different value of g. Thus, g is understood as that corresponding to
the least damped root.
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The flutter speed is given by the lowest Um. Next, con-
sider the p–k method (Hassig (1971)). This consists of
writing Eq. 12, with ω replaced with the Laplace pa-
rameter (the name stems from the fact that the complex
reduced frequency š = s�/U∞ is traditionally denoted by
the symbol p, here used to denote pressure). Then, one
iterates with k(n+1) = Imag(š(n)). As in the V –g method,
only one root (the critical one) is meaningful.

It is apparent from the brief outline above, that these
methods are cumbersome and not apt for use in
MDO/CD. In recent years, a new trend has emerged that
consists of rational matrix approximations of the func-
tion E = E(k), such that the resulting equations form
a system of first–order ordinary differential equations,
whose stability analysis requires simply the use of a
root locus of the eigenvalues of a matrix by varying
U∞ (finite–state aeroelasticity, or reduced–order models).
Probably, the earliest example of this approach is the
work of Jones (1940) who gives a rational approxima-
tion for the Theodorsen function and the corresponding
time–domain approximation for the Wagner function. In
the matrix formulation, the concept was introduced by
Roger (1977). A widely used scheme is that by Karpel
(1982). An interesting approach to the problem is pre-
sented by Venkatesan and Friedmann (1986). The spe-
cific reduced–order model of interest here is based on the
model presented in Morino, Mastroddi, De Troia, Ghir-
inghelli, and Mantegazza (1995). This consists of ex-
pressing the aerodynamic matrix E(š) as11

E(š) 	 Ê(š) = E2š2 +E1š+E0 +(šI+F)−1G (14)

where Ek, G, and F are fully populated square matrices,
which are independent of š. These matrices are evaluated
by a least square procedure on a set of numerical data for
the matrix of the aerodynamic forces E(š). The aeroe-
lastic system resulting from Eqs. 11 and 14 is equivalent
to

s2q̃+Ω2q̃ =
1
2

ρ∞U2
∞
(
š2E2q̃+ šE1q̃+E0q̃+ r̃

)
(šI+F)r̃ = Gq̃, (15)

which may be easily transformed into the time domain
to yield a system of linear homogeneous first–order dif-
ferential equations of the type ẋ = A(U∞)x, where xT =
11 The leading term being of O(š2) is motivated by the fact that we

want Ê(š) to have the same order as E(š) (i.e., O(š2), which stems
from EBC(š)= O(š), EIE (š) = O(1), EBT (š) = O(š), whereas EGF (š)
is independent of š).

[qT , q̇T , rT ]. This approach allows one to perform the flut-
ter analysis through a root locus of the eigenvalues of
the matrix A(U∞), thereby avoiding the above mentioned
traditional methods, which unnecessarily complicate the
optimization procedure.

The same reduced–order model is used for the gust re-
sponse analysis (see Morino, Bernardini, and Mastroddi
(2003) for details).

6 Viscous flow modeling

In this section, we consider the modeling for the viscous–
flow correction. The analysis is limited to steady at-
tached high–Reynolds–number flows, where the vorti-
cal region (i.e., boundary layer and wake) has a small
thickness (as mentioned above, viscosity effects are usu-
ally not included in conceptual design for unsteady aero-
dynamics, which is only needed for the linear analysis
of flutter and gust response). Outside boundary layer
and wake, the flow is irrotational and is solved by using
a quasi–potential–flow model obtained by introducing,
in the boundary integral formulation described above,
a viscous–flow correction based on Lighthill’s equiva-
lent sources approach (Lighthill (1958)). This consists
of modifying the impermeability boundary conditions
∂ϕ/∂n = vB ·n, into ∂ϕ/∂n = vB ·n+χV , where the tran-
spiration velocity χV is given by

χV =
∂

∂s1

Z δ

0
(ue−u)dη+

∂
∂s2

Z δ

0
(ve −v)dη (16)

where s1 and s2 are local orthogonal arclengths over the
wing surface, δ is the boundary–layer thickness, and ue

and ve the velocities at the external edge of the boundary
layer respectively in s1 and s2 directions; a similar cor-
rection is used on the wake surface, with Δ(∂ϕ/∂n) =
(χV )2 + (χV )1 (see Morino, Salvatore, and Gennaretti
(1999) for an in–depth analysis of this point). An integral
formulation is used for the boundary layer (for attached
flows, this approach yields results as accurate as those
obtained by differential methods, with considerably re-
duced computational effort).

We have considered three models with different levels of
sophistication: (1) a very simple model based upon the
classical Blasius theory used as strip theory, (2) a two–
dimensional integral boundary–layer formulation used as
strip theory (see below), and (3) a three–dimensional in-
tegral boundary layer formulation (see also below). Note
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that, in general, three–dimensional effects within the
boundary layer may be neglected with a minor loss of
accuracy for applications to wings with large aspect ratio
and reduced sweep angle; this is even more applicable in
the case of the Prandtl–Plane wing, where no tip effect
exists. In all the models, the viscosity correction to the
potential flow is evaluated through the Lighthill (1958)
transpiration velocity, as mentioned above (through both
SB and SW ).

The first model, limited to laminar flows, with an em-
pirical correction for turbulent flows, was used initially,
just to have an order of magnitude of the correction. In
the second one, the laminar portion is computed by the
Thwaites (1949) method, the turbulent portion by the
Green, Weeks, and Brooman (1973) ‘lag–entrainment’
method; the transition from laminar to turbulent flow
is detected by the Michel (1952) method. Matching
of the boundary–layer solution with the viscous–flow–
corrected potential–flow solution is obtained through
classical direct iteration. The viscous drag is evalu-
ated with the Squire and Young (1938) approach. Fi-
nally, the three–dimensional integral boundary–layer al-
gorithm uses two equations for momentum (extension of
von Kármán equation to three–dimensional flows) cou-
pled by two auxiliary equations: the first is the kinetic
energy equation and the second is the transport equation
for the maximum shear stress coefficient (‘lag’ equation;
see Morino, Bernardini, Da Riz, and Del Rio (2002) for
details). In order to complete the problem, following
Nishida (1986) and Milewski (1987), we use the stream-
wise closure relations proposed by Drela (1989), along
with the crosswise relations of Johnston (1960). The
Mughal (1992) scheme is used for the solution. The
matching of the thin–layer solution with the potential–
flow solution, is obtained by the simultaneous coupling
method by Drela (1989), which solves the viscous and
inviscid equations simultaneously; this scheme is stable
even for separated flows.

Other contributions to the drag (such as interference
drag) are currently evaluated by empirical corrections
from Mc Cullers (1984).

7 Validation

As mentioned above, MAGIC is in a state of evolution.
Thus, it seems appropriate to present some numerical re-
sults (from Morino, Bernardini, and Mastroddi (2003)),
simply to clarify the extent of the applicability of the

current version of the code MAGIC, which although not
fully developed, is nonetheless already quite a useful tool
for conceptual design (see also Morino, Bernardini, Gre-
gorio, Willcox, and Harris (2004) and Carpentieri, van
Tooren, Bernardini, and Morino (2004), which present
additional results obtained with extensions of MAGIC,
pertaining, respectively, life–cycle costs and a Blended–
Wing–Body configuration).

The results presented here have been obtained using for
the wing a beam model (for the static analysis as well
as the evaluation of the natural modes of vibration).
The aerodynamic formulation presented above is used
for steady as well as unsteady aerodynamics. For the
evaluation of the steady–state potential–aerodynamics
loads (lift and induced drag), we use the formulation
of Gennaretti, Salvatore, and Morino (1996) – an ex-
act extension of the work by Trefftz (1921). The un-
steady quasi–potential aerodynamics formulation is used
for flutter and gust response (when the viscosity effects
are typically negligible). The finite–state reduced order
model for the generalized forces is used in the aeroelastic
analysis. The two–dimensional integral boundary–layer
formulation, used as ‘strip–theory’ in three–dimensional
applications, has been validated by comparison with ex-
perimental results available in literature, in the case of:
(i) isolated wing, (ii) biplane, and (iii) box–wing con-
figuration (see Bernardini, Frediani, and Morino (1999),
which presents in particular the polar at Re = 5.1 ·105 of
a box–wing configuration; the results are in good agree-
ment with the experimental and numerical results by Gall
and Smith (1987). On the basis of these results, we used
the strip–theory approach, which we believe to be a better
candidate for MDO/CD in that yields results comparable
to the three–dimensional ones, with less computational
effort.

For the sake of conciseness, the results presented are lim-
ited to a standard 622–passenger configuration, a cruise
altitude of 30.000 ft and a cruise Mach number of M∞ =
0.75 (the results are from Morino, Bernardini, and Mas-
troddi (2003), to which the reader is referred for ad-
ditional results, in particular for an application to the
Prandtl–Plane). As mentioned above, in the present ver-
sion of the code, the fuselage is prescribed (in other
words, the optimization pertains solely the wing system).
The fuselage is 72.84m (239 ft) long, 8.23m (27 ft) wide,
and 7.01m (23 ft) high. Also, the aircraft span is set
to be b = 80m (262.4 ft), i.e., the limit given by air-
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Figure 1 : Objective function for standard configuration.

port constraint. The propulsion system consists of four
underwing–mounted turbo–fan engines.

We decided to concentrate on empty weight and effi-
ciency, giving only a lower boundary for the range and
prescribing the fuel volume. Hence, the objective func-
tion considered for the results presented in the following
is a combination of: (i) aerodynamic efficiency, E (as in-
dicative of operative costs), (ii) empty weight, We (as in-
dicative of manufacturing costs), J = Ere f /E +We/Were f ,
where subscript ref denotes reference values of the above
variables (for a deeper analysis of this point, see the
life–cycle cost analysis of Morino, Bernardini, Gregorio,
Willcox, and Harris (2004)).

The evaluation of the aircraft empty weight, We, is based
on a standard recursive algorithm (see Corning (1977))
for conceptual design.

Starting from the reference configuration, a preliminary
analysis has been performed to define the constraint lim-
its (see Table 1) and the reference parameters to be in-
troduced in the objective function in order to normal-
ize it. Regarding the limit values of the constraints we
have imposed: (i) a minimum range value Rmin = 5000
nm; (ii) a maximum value of the normal stress in spars
and stringers σmax = 400MPa; (iii) a maximum value of

Table 1 : Constraints for the objective function

Range constraint R ≥ Rmin

Maximum normal stress constraint σmax ≤ σmax
max

Maximum shear stress constraint τmax ≤ τmax
max

Flutter speed constraint UF ≥ UFmin

Divergence speed constraint UD ≥ UDmin

Volume of fuel constraint VF ≤ VFavailable

Gust load constraint Δn ≤ Δnmax

Longitudinal static–stability CMα ≥Cmax
Mα

the shear stress in the skin τmax = 200MPa; (iv) a min-
imum flutter/divergence speed UFmin ≡ UDmin = 320m/s;
(v) a maximum value of the incremental gust load factor
Δnmax = 2.5; (vi) a maximum pitch moment coefficient
Cmax

Mα
= −10−3.

Table 2 summarizes the design variables and the state
space variables in the initial and final configurations,
whereas Figures 1 and 2 depict respectively the objec-
tive function and the critical constraint (flutter velocity)
evolutions. The initial and optimized configuration are
also depicted in Figs. 3 and 4.
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Figure 2 : Critical constraint for standard configuration.

Figure 3 : Wing planform: initial configuration.

8 Concluding remarks

The code MAGIC, in the version reported here, has a se-
ries of limitations that are currently being addressed. The
items that require improvement and that are under con-
sideration may be grouped in the following categories:
(1) applications to other innovative configurations; (2)
structures and materials; (3) aerodynamics; (4) aeroe-
lasticity; (5) aeroacoustics; (6) life-cycle costs; (7) op-
timizer.

Regarding different types of innovative configurations,

Figure 4 : Wing planform: optimized configuration.

as mentioned above, our applications thus far are lim-
ited to the 620–passenger Prandtl–Plane and, recently, a
Blended–Wing–Body aircraft (Carpentieri, van Tooren,
Bernardini, and Morino (2004)). Other applications are
being considered, ranging from a 250–passenger com-
muter airplane to a general aviation airplane.

Regarding the structural model, the current finite–
element model, a simple equivalent–beam model, has
been used in the results presented above. This is accept-
able for the conceptual design of the types of problems
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Table 2 : Initial and optimized parameters

Design and state space variable Initial Optimized

Root chord (m) 17.0 15.86
Tip chord (m) 7.0 4.76

Root spar thickness (m) 0.020 0.014
Tip spar thickness (m) 0.010 0.011
Sweep angle (degree) 30.00 27.85

Wing root built–in angle (degree) 6.0 7.0
Wing tip built–in angle (degree) 3.0 3.6

Wing root skin thickness (m) 0.0025 0.0021
Wing tip skin thickness (m) 0.0015 0.0011

Empty weight (We) (Kg) 201,025 190,450
Range (R) (nm) 6,967 7,507

Efficiency (E) 16.43 17.19
Flutter speed UF (m/s) 390 351

Max direct stress (MPa) 167.3 205.0
Max shear stress (MPa) 121.8 185.5

I wing–system natural frequency (Hz) 0.66 0.63
II wing–system natural frequency (Hz) 1.85 1.65
Max wing–tip deflection in cruise (m) 1.95 2.53

considered thus far (standard and Prandtl–Plane wing,
with fuselage prescribed). The sophistication of this
model is already marginal for the Blended–Wing–Body
application (Carpentieri, van Tooren, Bernardini, and
Morino (2004)). Recently, a more sophisticated model
(beams plus in–plane loaded plates) has been added to
MAGIC (see Bernardini and Mastroddi (2004) for de-
tails). A full three–dimensional finite–element method
(which is based upon the Hermite interpolation, and has
been developed specifically for optimization, but is not
yet included in MAGIC), is presented in Morino, Bernar-
dini, Cerulli, and Cetta (2004). In addition, a weight
reduction technique based upon the approach used by
Wang and Wang (2004) is currently under considera-
tion. Another limitation of MAGIC regards the materials:
in the current version of MAGIC (wing optimization),
assumes the wing to be of a prescribed homogeneous
isotropic material. The extension to non–homogeneous
non–isotropic materials is relatively straightforward. On
the contrary, an optimization that automatically chooses
the most convenient material available is quite compli-
cated and no activity in this direction is currently under-
way (although highly desirable).

Regarding steady–state aerodynamics, the equations
used are linearized: thus, they are valid for subsonic anal-
ysis, but not for transonic analysis, which requires the
use of volume elements to take into account the non–
linear terms. A code for the steady–state transonic anal-
ysis has been developed (see, e.g., Iemma and Morino
(1997)), but not yet included in MAGIC. On unsteady
aerodynamics (aeroelasticity), we have a similar situa-
tion: a code for transonic analysis has been developed
(Iemma, Gennaretti, and Albanesi (2004)), but not yet in-
cluded in MAGIC; the formulation used is linear (specif-
ically, it is obtained by linearizing the non–linear volume
terms, and as well known this is adequate, since only
the stability boundary is of interest here); hence, the for-
mulation for reduced order model of Section 5 applies
here as well. The next item, aeroacoustics, has been ad-
dressed by Morino, Iemma, Bernardini, and Diez (2004)
and Iemma, Diez, and Morino (2005), where preliminary
work on the subject is presented (with take-off noise in-
cluded in the objective function). Major developments in
this direction is currently underway and is expected to be
incorporated in MAGIC, since community noise is one
of the major items of concern in civil aviation. Finally,
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as mentioned above the objective function is based upon
a linear combination of empty weight, fuel consumption,
and efficiency. In Morino, Bernardini, Gregorio, Will-
cox, and Harris (2004) the objective function is based
upon life–cycle costs. Further analysis in this direction is
warranted.

In reference to the last item – the optimizer – different
optimization strategies are being explored (e.g., conju-
gate gradient with feasible direction algorithm) and com-
pared to existing optimization codes, such as SNOPT
(Gill, Murray, and Saunders (2002)). Also, some of the
issues addressed above require that the optimizer be ex-
tended to include genetic algorithms (see, for instance,
Zhu, Liu, Wang, and Yu (2004)).

If all the items discussed above were to be included,
the models in code MAGIC would become much more
sophisticated and the code itself might become apt to
preliminary design. However, the inclusion of all these
items in MAGIC would render the code much too com-
puter intensive and its use be inconceivable for practical
preliminary–design applications, within the optimization
techniques presently available.

However, these types of applications would be possible
using an optimization procedure proposed by Alexan-
drov and Lewis (1998), where models with different lev-
els of sophistication may be combined. Specifically, in
the two–level implementation, a sophisticated model is
used to “calibrate” a simple one, through an affine trans-
formation which is kept constant during several iterations
of the optimization procedure. This yields the same level
of accuracy as the sophisticated model, with an efficiency
only slightly lower than that obtained with the simple
model. The implementation of the Alexandrov and Lewis
(1998) procedure in MAGIC is currently underway. As
mentioned above, this would allow us to overcome the
present limitations and move towards a more general, but
still efficient, formulation, possibly of interest for prelim-
inary design.
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Propeller-Theorie”. Zeitschrift für Angewandte Math-
ematik und Mechanik, vol. 1, pp. 206–218.

van Tooren, M. (2004): “Aircraft Design Support Using
Knowledge Engineeringand Optimization Techniques”.
In Proceedings of ICCES’04, Madeira, Portugal.

Venkatesan, C.; Friedmann, P. P. (1986): “New
Approach to Finite-State Modeling of Unsteady Aerody-
namics”. AIAA Journal, vol. 24, pp. 1889–1897.

Wang, M. Y.; Wang, X. (2004): “PDE–Driven Level
Sets, Shape Sensitivity and Curvature Flow for Structural
Topology Optimization”. CMES: Computer Modeling in
Engineering & Sciences, vol. 6, no. 4, pp. 373–395.

Wolkovitch, J. (1986): “The Joined Wing: An
Overview”. Journal of Aircraft, vol. 23, pp. 161–178.

Yates, E. C. (1987): “Aerodynamic Sensitivities
from Subsonic, Sonic and Supersonic Unsteady, Non-
planar Lifting-Surface Theory”. Technical Memorandum
100502, NASA, Langley Research Center, 1987.

Zhu, Z. Q.; Liu, Z.; Wang, X. L.; Yu, R. X. (2004):
“Construction of Integral Objective Function/Fitness
Function of Multi–Objective/Multi–Disciplinary Opti-
mization”. CMES: Computer Modeling in Engineering
& Sciences, vol. 6, no. 6, pp. 567–576.


