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Linear Buckling Analysis of Shear Deformable Shallow Shells by the Boundary
Domain Element Method

P.M. Baiz1 and M.H. Aliabadi1

Abstract: In this paper the linear buckling problem of
elastic shallow shells by a shear deformable shell theory
is presented. The boundary domain integral equations
are obtained by coupling two dimensional plane stress
elasticity with boundary element formulation of Reissner
plate bending. The buckling problem is formulated as a
standard eigenvalue problem, in order to obtain directly
critical loads and buckling modes as part of the solu-
tion. The boundary is discretised into quadratic isopara-
metric elements while in the domain quadratic quadrilat-
eral cells are used. Several examples of cylindrical shal-
low shells (curved plates) with different dimensions and
boundary conditions are analysed. The results are com-
pared with finite element solutions, and very good agree-
ment is obtained.

keyword: Shallow Shell, Buckling, Shear Deformable
Theory, Boundary Element Method.

1 Introduction

The behavior of curved plates under compression loads is
of major concern in areas such as aerospace, in which the
design requirements of weight critical applications usu-
ally leads to thin panels with stability problems.

The first study of stability of shells can be traced back
in 1911 by Lorenz, in which he presented solutions for
cylinders subjected to axial compression. More com-
plete descriptions of shell stability have been presented
by Timoshenko and Gere (1961) for several classical
problems, and by Brush and Almorth (1975) for nonlin-
ear theories. Other works dealing with shell buckling can
be found in Gerard and Becker (1957), giving an overall
view of shell buckling problems; Nash’s review [Nash
(1966)] with several hundred papers on shell buckling;
Singer (1982) who reports on experimental investigations
and Bushnell (1985) who concentrates on numerical pro-
cedures for the modeling and solution of complex non-
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linear problems. Other more recent and useful bibliogra-
phies and review papers can be found in works by Noor
(1990), Teng (1996) and Knight and Starnes (1997).

The applications of the Boundary Element Method
(BEM) to stability problems for plate and shallow shell
structures have been investigated since the 80’s. Manolis,
Beskos, and Pineros (1986) developed a direct bound-
ary element formulation dealing with linear elastic sta-
bility analysis of Kirchhoff plates. More recently, Syn-
gellakis and Elzein (1994) presented an extended bound-
ary element formulation to incorporate any combina-
tion of loading and support conditions; Nerantzaki and
Katsikadelis (1996) presented a boundary element for-
mulation for buckling of plates with variable thickness;
and Lin, Duffield, and Shih (1999) described a gen-
eral boundary element formulation for different bound-
ary conditions and arbitrary planar shapes.

In the case of post-buckling formulations for thin elastic
plates O’Donoghue and Atluri (1987) introduced the first
boundary element approach to nonlinear plate analysis;
while for thin shallow shells, Zhang and Atluri (1988)
presented a boundary element formulation applied to the
analysis of snap-through phenomena. In all these cases,
plate and shallow shell BEM formulations have used the
Classical or Kirchhoff-Love theory.

Although for most practical applications the classical
theory is sufficient; it has been shown by Reissner (1947)
that Kirchhoff theory of thin plates is not in agreement
with the experimental results for problems with stress
concentrations (stresses at an edge of a hole when the
hole diameter became so small as to be of the order of
magnitude of the plate thickness); or also in the case
of composite shells, where the ratio of Young’s modu-
lus to shear modulus can be very large (low transverse
shear modulus compared to isotropic materials). There-
fore, shell theories accounting transverse shear deforma-
tion overcome problems associated with the application
of the classical theory, and additionally can be used for
the analysis of thin and thick shells.
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Recent developments with shear deformable plate the-
ory by BEM include de works of Purbolaksono and Ali-
abadi (2005b) for large deformation; Wen, Aliabadi, and
Young (2006) for post-buckling; and Supriyono and Ali-
abadi (2006) for combined large deflection and plasticity.

Application of shear deformable theory to the linear elas-
tic buckling problem of plates using the boundary el-
ement method has been presented recently by Purbo-
laksono and Aliabadi (2005a); and to the best knowl-
edge of the authors, no study on the linear elastic buck-
ling analysis of shallow shell structures by BEM has
been reported, for classical (Kirchhoff-Love) or shear de-
formable (Reissner or Mindlin) theories. Other works on
plates and shells by BEM can be found in Beskos (1991),
and recent advances in BEM and their solid mechanics
applications are in Aliabadi (2002).

The present paper reports on the investigation of a new
boundary domain element formulation for the buckling
analysis of shear deformable shallow shells. Initially,
basic concepts of shear deformable shallow shells, and
boundary integral equations are described. The buckling
problem is formulated as a standard eigenvalue problem,
to provide direct evaluation of critical load factors and
buckling modes. Numerical procedure to solve the for-
mulation is presented, first the in plane stresses at domain
points are calculated and subsequently the boundary inte-
gral equations for the buckling problem are solved. Sev-
eral examples in which results from the proposed BEM
formulation are compared with FEM results and good
agreements are obtained.

2 Boundary domain integral equations for shear de-
formable shallow shells

Consider a shallow shell of an isotropic linear elastic
material, with uniform thickness h, Young’s modulus E,
Poisson ratio v and shear modulus G = E/2(1+v), with a
quadratic middle surface defined by R1 and R2, which are
principal curvatures of the shell in the x1− and x2− direc-
tions, respectively. The indicial notation used throughout
this paper is as follows: the Greek indices (α,β,γ) will
vary from 1 to 2 and Roman indices (i, j,k) from 1 to 3.

Equilibrium equations for shear deformable plate bend-
ing (Reissner-Mindlin) and 2D elasticity for shallow
shells can be written in indicial notation as follows Ali-
abadi (2002):

Mαβ,β −Qα = 0; (1)

Qα,α −kαβNαβ +q3 = 0; (2)

Nαβ,β +qα = 0 (3)

where k11 = 1/R1, k22 = 1/R2 and k12 = k21 = 0; (
),β= ∂( )/∂xβ. Nαβ denote membrane stresses, Mαβ rep-
resent bending moments, Qα is the shear forces for plate
bending and qi are the body forces.

Generalized displacements are represented as wi and uα,
where wα denotes rotations of the middle surface (w1 and
w2), w3 denotes the out-of-plane displacement, and uα
denotes in-plane displacements (u1 and u2). The general-
ized tractions are denoted as pi and tα, where pα denotes
tractions due to the stress couples (p1 and p2), p3 denotes
the traction due to shear stress resultant (p3) and tα de-
notes tractions due to membrane stress resultants (t1 and
t2) as shown in figure 1.

The constitutive equations based on Reissner’s varia-
tional theorem of elasticity Reissner (1950) can be writ-
ten as follows:

Mαβ = D
1−ν

2

(
wα,β +wβ,α +

2ν
1−ν

wγ,γδαβ

)
(4)

Qα = C(wα +w3,α) (5)

Nαβ = B
1−ν

2

(
uα,β +uβ,α +

2ν
1−ν

uγ,γδαβ

)
+B

[
(1−ν)kαβ +νδαβkφφ

]
w3 (6)

where B(= Eh/
(
1−ν2

)
) is the tension stiffness;

D(= Eh3/
[
12

(
1−ν2

)]
) is the bending stiffness;

C(=
[
D(1−ν)λ2

]
/2) is the shear stiffness; λ =

√
10/h

is called the shear factor; and δαβ is the Kronecker delta

function. The term Nαβ is separated into N(i)
αβ, which are

due to in-plane displacements, and N(ii)
αβ , which are due

to curvature and out-of-plane displacements.

The integral equations for shear deformable shallow shell
problems are derived by considering the integral repre-
sentations of the governing equations (1)-(3) from the
following integral identities:
Z

Ω

[
(Mαβ,β −Qα) W ∗

α +(Qα,α −kαβNαβ +q3) W ∗
3

]
dΩ

= 0 (7)

and
Z

Ω
(Nαβ,β +qα) U∗

αdΩ = 0 (8)
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Figure 1 : Sign convection for generalised displacement and tractions.

where U∗
α and W ∗

i (i = α,3) are weighting functions and
Ω is the projected domain of a shell on x1 − x2 plane,
bounded by boundary Γ. Equation (7) is an integral rep-
resentation related to the governing equations for bend-
ing and transverse shear stress resultants, while equation
(8) is an integral representation related to the governing
equations for membrane stress resultants.

2.1 Rotations and out of plane integral equations

The boundary domain integral representation related to
the governing equations for bending and transverse shear
stress resultants of a boundary source point x′ are de-
rived by using the weighted residual method as shown in
Dirgantara and Aliabadi (1999) and Dirgantara (2002).
After taking into account all the limits and the jump
terms:

ci j(x′)wj(x′)+
Z

Γ
−P∗

i j(x′,x)wj (x)dΓ(x)

=
Z

Γ
W ∗

i j(x′,x)p j (x)dΓ(x)

−
Z

Γ
W ∗

i3

(
x′,x

)
kαβB

1−ν
2

×[
uα (x)nβ +uβ (x)nα +

2ν
1−ν

uγ (x)nγδαβ

]
dΓ(x)

+
Z

Ω
kαβB

1−ν
2

[
uα (X)W ∗

i3,β
(
x′,X

)
+uβ (X)W ∗

i3,α
(
x′,X

)
+

2ν
1−ν

uγ (X)W ∗
i3,γ

(
x′,X

)
δαβ

]
dΩ(X)

−
Z

Ω
W ∗

i3

(
x′,X

)
kαβB×

[
(1−ν)kαβ +νδαβkγγ

]
w3 (X)dΩ(X)

+
Z

Ω
W ∗

i3(x′,X)q3(X)dΩ(X) (9)

where
R− denotes a Cauchy principal value integral,

x′,x ∈ Γ, X ∈ Ω are source and field points respectively,
ci j(x′) are the jump terms, nβ are the components of the
outward normal vector to the shell boundary. The value
of ci j(x′) is equal to 1

2 δi j when x′ is located on a smooth
boundary and equal to δi j when collocation is at domain
points X.

W ∗
i j and P∗

i j are the displacement and traction fundamental
solutions respectively, derived by Vander Weeen (1982)
and W ∗

i3,β is the derivative of the displacement fundamen-
tal solutions with respect to the field point X. All these
kernels are given in appendix A.

2.2 In plane displacement integral equations

In the same way, the boundary domain integral equation
related to the governing equations for membrane stress
resultants of a boundary source point x′ can be written as
Dirgantara and Aliabadi (1999), Dirgantara (2002):

cθα
(
x′

)
uα(x′)+

Z
Γ
− T ∗(i)

θα (x′,x)uα(x)dΓ(x)

+
Z

Ω
U∗

θα,β(x′,X)B
[
kαβ (1−ν)+νδαβkγγ

]
w3(X)dΩ(X)

=
Z

Γ
U∗

θα(x′,x)tα(x)dΓ(x)+
Z

Ω
U∗

θα(x′,X)qα(X)dΩ(X)

(10)

where U∗
θα and T (i)∗

θα are the well known fundamental so-
lutions for in-plane displacements and membrane trac-
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tions respectively, while U∗
θα,β is the derivative of the dis-

placement fundamental solution with respect to the field
point X. These kernels are also given in appendix A. The
upper index (i) on T ∗

θα refers to the in plane displacement,

as it was explained with N(i)
αβ.

Equations (9) and (10) represent the five boundary-
domain integral equations for shear deformable shallow
shell theory, the first two are in (9) (i = 1,2) and are for
rotations (w1 and w2), the third (i = 3) also in (9) is for
the out-of-plane displacement (w3). The last two are in
(10) (θ = 1,2) and are for in-plane displacements (u1 and
u2).

It is important to mention that due to the curvature terms
(containing kαβ), equations (9) and (10) have to be solved
simultaneously and not only for collocation on boundary
points x but also on domain points X.

3 Governing integral equations for linear buckling
of shear deformable shallow shells

In this section the buckling phenomenon of shallow
shells is studied, initially the membrane stress resultants
in the domain are considered to be unknown due to ex-
ternal loads on the boundary; therefore, determination of
membrane stress resultants in the domain is the first step
solution for the analysis. Next, the shell buckling equa-
tions are obtained by introducing multiplication factors
of body forces or transverse loads (λ) in the governing
integral equations.

3.1 Integral equations for in plane stresses

The membrane stress resultants at domain points X′ can
be evaluated from the derivative of equation (10) and by
using the relationship in equation (6), resulting in the fol-
lowing boundary-domain integral equation:

Nαβ
(
X′) =

Z
Γ

U∗
αβγ(X′,x)tγ(x)dΓ(x)

−
Z

Γ
T ∗

αβγ(X′,x)uγ(x)dΓ(x)

−
Z

Ω
− U∗

αβγ,θ(X′,X)B
[
kγθ (1−ν)+νδγθkφφ

]×
w3(X)dΩ(X)+ fαβ(w3

(
X′))

+
Z

Ω
U∗

αβγ(X′,X)qγ(X)dΩ(X)

+B
[
(1−ν)kαβ +νδαβkφφ

]
w3

(
X′) (11)

The kernels U∗
αβγ and T ∗

αβγ in equation (11) are linear

combination of the first derivatives of U∗
αβ and T ∗

αβ with
respect to the source point X′ and can be found in Dirgan-
tara and Aliabadi (1999), Dirgantara (2002) and are also
listed in appendix A. U∗

αβγ,θ is the derivative of U∗
αβγ with

respect to the field point X and is given in appendix A.

The term fαβ in equation (11) arises from the integration
of the curvature term over the surface Γ′ centered at the
load point X′. Details of the procedure to obtain this term
are given in appendix B.

Another approach that could be used for the evaluation of
stresses at internal points consist of a numerical differen-
tiation of displacements by means of the shape functions
of the domain cells, after internal displacement have been
found, Zhang and Atluri (1988). The boundary-domain
integral equation (11) although computational more time
consuming and mathematically more cumbersome, gives
more accurate results and therefore it was adopted in this
work.

3.2 Integral formulation for the linear buckling prob-
lem

Appropriate forms of the linearized buckling problem
can be derived by transforming the shell integral equa-
tion (9) into an equivalent shell buckling formulation and
introducing a critical load factor λ, resulting in a group of
equation in terms of the prebuckling membrane stresses
and the buckled shell displacements, as follows:

ci j(x′)wj(x′)+
Z

Γ
−P∗

i j(x′,x)wj (x)dΓ(x)

=
Z

Γ
W ∗

i j(x′,x)p j (x)dΓ(x)

−
Z

Γ
W ∗

i3

(
x′,x

)
kαβB

1−ν
2

×[
uα (x)nβ +uβ (x)nα +

2ν
1−ν

uγ (x)nγδαβ

]
dΓ(x)

+
Z

Ω
kαβB

1−ν
2

[
uα (X)W ∗

i3,β
(
x′,X

)
+uβ (X)W ∗

i3,α
(
x′,X

)
+

2ν
1−ν

uγ (X)W ∗
i3,γ

(
x′,X

)
δαβ

]
dΩ(X)

−
Z

Ω
W ∗

i3

(
x′,X

)
kαβB

(
(1−ν)kαβ +νδαβkφφ

)×
w3 (X)dΩ(X)



Linear Buckling Analysis 23

+λ
Z

Ω
W ∗

i3(x′,X)q3(X)dΩ(X)

+λ
Z

Ω
W ∗

i3(x′,X)(Nαβw3,β),α(X)dΩ(X) (12)

where (Nαβw3,β),α is a body term due to the large deflec-
tion of w3(X). This term is the common extra term that
appears in the nonlinear equilibrium equations of plates
and shells (e.g. see the nonlinear equilibrium equation
6.10 in Brush and Almorth (1975)).

It is important to notice again that because of the pres-
ence of the curvature terms in (12), this equation has to
be solve simultaneously with equation (10).

The deflection equation w3 at the domain points X′ is re-
quired as the additional equation to arrange an eigenvalue
equation, as follows:

w3(X′) =
Z

Γ
W ∗

3 j(X′,x)p j (x)dΓ(x)

−
Z

Γ
P∗

3 j(X′,x)wj (x)dΓ(x)

−
Z

Γ
W ∗

33

(
X′,x

)
kαβB

1−ν
2

×[
uα (x)nβ +uβ (x)nα +

2ν
1−ν

uγ (x)nγδαβ

]
dΓ(x)

+
Z

Ω
kαβB

1−ν
2

[
uα (X)W ∗

33,β
(
X′,X

)
+uβ (X)W ∗

33,α
(
X′,X

)
+

2ν
1−ν

uγ (X)W ∗
33,γ

(
X′,X

)
δαβ

]
dΩ(X)

−
Z

Ω
W ∗

33

(
X′,X

)
kαβB

(
(1−ν)kαβ +νδαβkφφ

)×
w3 (X)dΩ(X)

+λ
Z

Ω
W ∗

33(X′,X)q3(X)dΩ(X)

+λ
Z

Ω
W ∗

33(X′,X)(Nαβw3,β),α(X)dΩ(X) (13)

To arrange an eigenvalue equation, the derivatives
w3,β(X) and w3,αβ(X) have to be expressed in terms of
w3(X), see section 4.3. Therefore the last integrals in
equations (12) and (13), can be expressed as follows:

ci j(x′)wj(x′)+
Z

Γ
−P∗

i j(x′,x)wj (x)dΓ(x)

=
Z

Γ
W ∗

i j(x′,x)p j (x)dΓ(x)

−
Z

Γ
W ∗

i3

(
x′,x

)
kαβB

1−ν
2

×

[
uα (x)nβ +uβ (x)nα +

2ν
1−ν

uγ (x)nγδαβ

]
dΓ(x)

+
Z

Ω
kαβB

1−ν
2

[
uα (X)W ∗

i3,β
(
x′,X

)
+uβ (X)W ∗

i3,α
(
x′,X

)
+

2ν
1−ν

uγ (X)W ∗
i3,γ

(
x′,X

)
δαβ

]
dΩ(X)

−
Z

Ω
W ∗

i3

(
x′,X

)
kαβB

(
(1−ν)kαβ +νδαβkφφ

)×
w3 (X)dΩ(X)

+λ
Z

Ω
W ∗

i3(x′,X) fb(X)dΩ(X) (14)

and,

w3(X′) =
Z

Γ
W ∗

3 j(X′,x)p j (x)dΓ(x)

−
Z

Γ
P∗

3 j(X′,x)wj (x)dΓ(x)

−
Z

Γ
W ∗

33

(
X′,x

)
kαβB

1−ν
2

×[
uα (x)nβ +uβ (x)nα +

2ν
1−ν

uγ (x)nγδαβ

]
dΓ(x)

+
Z

Ω
kαβB

1−ν
2

[
uα (X)W ∗

33,β
(
X′,X

)
+uβ (X)W ∗

33,α
(
X′,X

)
+

2ν
1−ν

uγ (X)W ∗
33,γ

(
X′,X

)
δαβ

]
dΩ(X)

−
Z

Ω
W ∗

33

(
X′,X

)
kαβB

(
(1−ν)kαβ +νδαβkφφ

)×
w3 (X)dΩ(X)

+λ
Z

Ω
W ∗

33(X′,X) fb(X)dΩ(X) (15)

where:

fb = q3 +Nαβ,αf(r),βF−1w3 +Nαβf(r),αf(r),βF−1w3 (16)

4 Numerical implementation

In order to solve the integral equations presented in the
previous section, the boundary Γ and the domain Ω must
be discretized. Generally, BEM formulations rely on
continuous boundary elements and cells. However, be-
cause of the presence of singular integrals in the domain
during the evaluation of the stresses Nαβ, it was decided
to implement continuous and discontinuous (partially or
totally) quadrilateral internal cells; while on the bound-
ary semi-discontinuous elements are used for corners to
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avoid difficulties with discontinuity of the tractions at
corners.

From the implementation point of view, the use of dis-
continuous or semi discontinuous elements requires the
consideration of two different meshes: the geometric
mesh, defined by the geometric nodes which always lie
on the boundary of the element; and the functional mesh,
defined by the functional nodes which can exist any-
where within the element boundaries. In the domain this
distinction allows the use of a whole range of quadrilat-
eral cell elements by just defining an appropriate set of
parameters, as it will be explained later.

4.1 Discretization

In the present study, quadratic isoparametric boundary
elements are used to describe the geometry and the func-
tion along Γ. In the same way for the domain, quadratic
quadrilateral isoparametric elements are used to describe
the geometry and the function over Ω.

Equation (9) can be rewritten in a discretized form as:

ci j(x′)wj(x′)+
Ne

∑
n=1

3

∑
m=1

wnm
j

Z ξ=+1

ξ=−1
P∗

i j(x′,x)Φm(ξ)Jn(ξ)dξ

=
Ne

∑
n=1

3

∑
m=1

pnm
j

Z ξ=+1

ξ=−1
W ∗

i j(x′,x)Φm(ξ)Jn(ξ)dξ

−
Ne

∑
n=1

3

∑
m=1

kαβB
1−ν

2

(
unm

α nnm
β +unm

β nnm
α

+
2ν

1−ν
unm

γ nnm
γ δαβ

)
×

Z ξ=+1

ξ=−1
W ∗

i3

(
x′,x

)
Φm(ξ)Jn(ξ)dξ

+
Nc

∑
k=1

9

∑
l=1

kαβB
1−ν

2
ukl

α

Z η=+1

η=−1

Z ξ=+1

ξ=−1
W ∗

i3,β
(
x′,X

)×
Ψl(ξ,η)Jk(ξ,η)dξdη

+
Nc

∑
k=1

9

∑
l=1

kαβB
1−ν

2
ukl

β

Z η=+1

η=−1

Z ξ=+1

ξ=−1
W ∗

i3,α
(
x′,X

)×
Ψl(ξ,η)Jk(ξ,η)dξdη

+
Nc

∑
k=1

9

∑
l=1

kααBνukl
γ

Z η=+1

η=−1

Z ξ=+1

ξ=−1
W ∗

i3,γ
(
x′,X

)×
Ψl(ξ,η)Jk(ξ,η)dξdη

−
Nc

∑
k=1

9

∑
l=1

kαβB
[
(1−ν)kαβ +νδαβkγγ

]
wkl

3 ×
Z η=+1

η=−1

Z ξ=+1

ξ=−1
W ∗

i3

(
x′,X

)
Ψl(ξ,η)Jk(ξ,η)dξdη

+
Nc

∑
k=1

9

∑
l=1

qkl
3

Z η=+1

η=−1

Z ξ=+1

ξ=−1
W ∗

i3

(
x′,X

)×
Ψl(ξ,η)Jk(ξ,η)dξdη (17)

where Ne and Nc are number of boundary elements and
internal cells respectively. Φm are the boundary shape
functions. Ψl are the domain shape functions. ξ and
η are local coordinates. Jn and Jk are the Jacobian of
transformation for boundary elements and internal cells
respectively. A complete description of the boundary el-
ements and domain cells used in this work is given in
Appendix C.

Equations (10,14 and 15) have also to be expressed in the
same way as equation (17), but for the sake of space the
complete expression will not be shown here.

In the case of the domain integral that contains fb in
equations (14 and 15), when q3 = 0, the integral can be
discretized as follows:Z
Ω

W ∗
i3(x′,X) fb(X)dΩ(X)

=
Nc

∑
k=1

9

∑
l=1

wkl
3 · f kl

bw

Z η=+1

η=−1

Z ξ=+1

ξ=−1
W ∗

i3

(
x′,X

)×
Ψl(ξ,η)Jk(ξ,η)dξdη (18)

where f kl
bw = Nkl

αβ,αf(r),βF−1 +Nkl
αβf(r),αf(r),βF−1.

4.2 Treatment of the integrals

Generally speaking, two different kinds of integrals can
be defined for both the boundary and domain. Depending
on the integrands, integrals can be classified as: Regular,
in which case they can be evaluated using the standard
gauss quadrature rule or; Singular, when the collocation
point belongs to the element over which the integration is
performed, in this case special techniques must be used.

All the singular integrals appearing in the displacement
and internal stress integral equations are dealt with by us-
ing well established techniques and are treated separately
based on their order of singularity.

On the boundary, near singular integrals (when the col-
location node is close to the integration element) are
treated with the element subdivision technique Aliabadi
(2002). Weakly singular integrals O(lnr) are treated us-
ing a nonlinear coordinate transformation as reported by
Telles Telles (1987). Strong singular integrals O(1/r) are
computed indirectly by considering the generalized rigid
body motion, as explained in Dirgantara (2002).
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The domain singular integrals can also be separated in
weakly O(1/r) and strong O(1/r2). Weak singular in-
tegrals are treated by a simple technique such as polar
coordinate transformation, followed by a regular proce-
dure Aliabadi (2002). Strong singular integrals require
special techniques such as the ones described by Leitao
Leitao (1994).

4.3 Evaluation of the derivative terms

Several derivative terms in the domain have to be ob-
tained, and although this procedure could be performed
with the polynomial interpolation of the domain cells, it
was considered more convenient the use of radial basis
functions f (r) in order to establish the same frame of
comparison with an only boundary formulation that will
be developed in a future publication.

The derivative terms w3,β(X) and w3,αβ(X) are approxi-
mated as follows:

w3(x1,x2) =
L

∑
m=1

f (r)mΨm (19)

where the radial basis function is chosen as f (r) =√
c2 + r2 and c2 =2. L is the total number of selected

points in the domain, which are the same domain points
used in the domain integration process. As it can be seen
from the integral equations (14) and (15), some of the in-
tegrals are on the domain Ω, for which quadratic isopara-
metric quadrilateral domain cells of 9 nodes are used.

The distance r in equation (19) is given by the following
expression:

r =
√

(x1 −xm
1 )2 +(x2 −xm

2 )2 (20)

The Ψm are coefficients determined by values at the L
domain points:

ΨΨΨ = F−1w3 (21)

Consequently, the first derivative of deflection w3,β can
be expressed as the product of the first derivative of the
radial basis function and the coefficients Ψm, as follows:

w3,β(x1,x2) = f(r),βF−1w3 (22)

In the same way, the second derivative of deflection w3,αβ
can be written as:

w3,αβ(x1,x2) = f(r),βf(r),αF−1w3 (23)

Similar to the above expressions, the derivative of in-
plane stress resultants Nαβ,α can be expressed as:

Nαβ,α(x1,x2) = f(r),αF−1Nαβ (24)

5 Numerical procedure

In this section a numerical procedure developed to solve
the equations shown in the previous sections is explained.
The solution steps towards the linear buckling solution
are given as follows:

• Initially, solution of the linear shallow shell bound-
ary integral equations (9) and (10) is obtained.

• After boundary and domain displacements as well
as boundary tractions are known, the membrane
stresses at domain nodes Nαβ(X′) are obtained from
equation (11).

• Approximated derivatives of membrane stresses and
out of plane displacement are obtained, as explained
in the subsection 4.3.

• Finally, the boundary integral equations of the buck-
ling problem (10), (14) and (15) are assembled and
solved; obtaining buckling modes and buckling load
factors.

This procedure is explained with more detail in the fol-
lowing subsections.

5.1 Shell in plane stresses

After discretized equations (9) and (10) as explained in
section 4.1, and point collocation the following linear
system of equations is obtained for every node:⎡
⎢⎢⎢⎢⎣

· · ·
· · ·
· · ·
· · ·
· · ·

c+Hp Hp Hp
w Hu Hu

Hp c+Hp Hp
w Hu Hu

Hp Hp c+Hp
w Hu Hu

0 0 Hw c+Hs Hs

0 0 Hw Hs c+Hs

· · ·
· · ·
· · ·
· · ·
· · ·

⎤
⎥⎥⎥⎥⎦

5×5(N+L)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...
w1

w2

w3

u1

u2
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

5(N+L)
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=

⎡
⎢⎢⎢⎢⎣

· · ·
· · ·
· · ·
· · ·
· · ·

Gp Gp Gp 0 0
Gp Gp Gp 0 0
Gp Gp Gp 0 0
0 0 0 Gs Gs

0 0 0 Gs Gs

· · ·
· · ·
· · ·
· · ·
· · ·

⎤
⎥⎥⎥⎥⎦

5×15NE

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...
p1

p2

p3

t1
t2
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

15NE

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b1

b2

b3

g1

g2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(25)

where bi are the product of the bending displacement fun-
damental solutions with the domain load q3, which in
this study is set to zero (q3 = 0 → bi = 0). Similarly
gα are the product of the membrane displacement fun-
damental solutions with the in plane domain loads qα,
which are also set to zero in this analysis (qα = 0). H
and G are boundary element matrices for tractions and
displacements fundamental solutions, respectively. The
indexes p and s on H and G refer to plate bending and
plane stress formulations respectively; while the indexes
u and w are coupled terms between plate bending and
plane stress formulations. N, L and NE are number of
boundary nodes, domain points and boundary elements,
respectively.

After performing all the collocation process, the known
and unknown quantities in equation (25) can be arranged
as a set of linear algebraic equation:

[A]5(N+L)×5(N+L) {X}5(N+L) = {F}5(N+L) (26)

where [A] is the system matrix, {X} contains the un-
knowns displacements and tractions on the boundary N,
as well as all the displacement in the domain L. The vec-
tor {F} is obtained by multiplying the related matrices of
H or G by the known values of wi, uα or pi, tα (because
the body forces where set to zero, qi = 0).

Once equation (26) has been solved, in-plane stresses
N11, N12, and N22 in the domain are calculated from equa-
tion (11). They are required to solve the shell buckling
problem.

5.2 Shell buckling problem

After discretization of the equations (10) and (14) as
explained in section 4.1, the linear system of algebraic

equations for every collocation node on the boundary can
be written similar to the linear shell solution:⎡
⎢⎢⎢⎢⎣

· · ·
· · ·
· · ·
· · ·
· · ·

c+Hp Hp Hp
w Hu Hu

Hp c+Hp Hp
w Hu Hu

Hp Hp c+Hp
w Hu Hu

0 0 Hw c+Hs Hs

0 0 Hw Hs c+Hs

· · ·
· · ·
· · ·
· · ·
· · ·

⎤
⎥⎥⎥⎥⎦

5×(5N+3L)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...
w1

w2

w3

u1

u2
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

5N+3L

=

⎡
⎢⎢⎢⎢⎣

· · ·
· · ·
· · ·
· · ·
· · ·

Gp Gp Gp 0 0
Gp Gp Gp 0 0
Gp Gp Gp 0 0
0 0 0 Gs Gs

0 0 0 Gs Gs

· · ·
· · ·
· · ·
· · ·
· · ·

⎤
⎥⎥⎥⎥⎦

5×15NE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...
p1

p2

p3

t1
t2
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

15NE

+λ

⎡
⎢⎢⎢⎢⎣

· · ·
· · ·
· · ·
· · ·
· · ·

Q1

Q2

Q3

0
0

· · ·
· · ·
· · ·
· · ·
· · ·

⎤
⎥⎥⎥⎥⎦

5×L

⎧⎪⎪⎨
⎪⎪⎩

...
w3
...

⎫⎪⎪⎬
⎪⎪⎭

L

(27)

and for every collocation node on the domain, the linear
system of algebraic equations will be given for only the
last tree equations in (27); which correspond to w3, u1

and u2 displacements. Body force terms in equation (27)
were considered zero (qi = 0), and are not shown.

In equation (27), Q is a node influence formed by the
following domain integral:

Qi =
Z

Ω
W ∗

i3(x′,X) fbw(X)dΩ(X) (28)

Equation (27) can be arranged in a similar manner as
equation (26), and give:

[B](5N+3L)×(5N+3L){Y}5N+3L = λ [K](5N+3L)×L{w3}L

(29)

In order to arrange an eigenvalue formulation, equation
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(15) can also be written in matrix form, similar to equa-
tion (29):

[I]{w3}L = [BB]L×(5N+3L) {Y}5N+3L +λ [KK]L×L {w3}L

(30)

where the matrices [B] and [BB] contain coefficient ma-
trices related to the fundamental solutions. Matrix [I]
is the identity matrix. Vector {Y} represents the un-
known boundary conditions (wi(x), uα(x) or pi(x), tα(x))
and the unknown domain displacements (uα(X),w3(X)).
Vector {w3} contains the unknown out of plane displace-
ment w3(X). Matrices [K] and [KK] are obtained by mul-
tiplication of the fundamental solutions with the prebuck-
ling in plane stresses Nαβ(X) and approximation func-
tions f (r).

As it can be seen in equation (29) the only load consid-
ered in this transformed linearized buckling equation is
the transverse body load ((Nαβw3,β),α) multiplied by the
critical load factor λ, implying that all the known val-
ues of wi,uα or pi, tα (boundary conditions), are set to
zero. For this reason, there is no vector such as {F} (from
equation (26)) in equations (29) and (30).

Equation (29) can be rearranged in term of the unknown
vector {Y}5N+3L,

{Y}5N+3L = λ [B]−1
(5N+3L)×(5N+3L) [K](5N+3L)×L{w3}L

(31)

where matrix [B]−1 is the inverse of matrix [B].
The substitution of equation (31) into equation (30)
yields:

[I]L×L {w3}L = λ [BB]L×(5N+3L) [B]−1
(5N+3L)×(5N+3L)×

[K](5N+3L)×L{w3}L +λ [KK]L×L {w3}L (32)

Equation (32) can be written as a standard eigenvalue
problem equation as follows:

([ψ]− 1
λ

[I]){w3}L = 0 (33)

Buckling analysis of shear deformable shallow shell has
been presented as a standard eigenvalue problem; buck-
ling modes {w3} and buckling load factors λ can be ob-
tained by solving equation (33). This standard eigen-
value problem was solved with LAPACK Anderson,
Bai, Bischof, Blackford, Demmel, Dongarra, Du Croz,
Greenbaum, Hammarling, McKenney, and Sorensen
(1999) which is freely available on the internet.

6 Numerical examples

The proposed technique is applied to several benchmark
problems to assess its accuracy and efficiency. Rect-
angular cylindrical shallow shells with different curva-
ture parameters, aspect ratios (a/b) and boundary condi-
tions will be presented. Analytical solutions for buckling
of cylindrical shells under the action of uniform axial
compression have been given by Timoshenko and Gere
(1961) or Flugge (1964) which are base on a set of three
equilibrium equations or Donnell (1933) who gives a sin-
gle eighth order partial differential equation in the radial
displacement.

For axial compression of curved sheet panels (see figure
2), the same method as in the case of a circular cylindri-
cal tube axially compressed has been used for calculat-
ing the critical stresses. The analytical solutions for any
of the buckling equations given so far in the literature,
are based on the substitution of trigonometric functions
which satisfy some specific boundary conditions and as-
sumed buckling mode. On the other hand, they are based
on classical shell theory, where shear deformable effects
are not considered. Therefore, it seems more convenient
to compare our results with finite element solutions.

Middle surface

h/2
h/2

R

a

b

Nc

Nc

Figure 2 : Cylindrical shallow shell subjected to uniform
axial compression.

The buckling coefficients (K) and the curvature parame-
ters (Z) for curved plate structures are defined as follows:

K =
Ncr ·12(1−v2) ·b2

π2 ·E ·h2
(34)
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and,

Z =
b2 ·√1−v2

R ·h (35)

where Ncr represent the critical in plane stress, obtained
from the multiplication of the buckling factors λ with
the actual applied stress, and b denotes the length of the
curved side of the shell.

In the present work, two different sets of boundary condi-
tions will be considered. The simply supported condition
refers to zero out of plane displacement (w3 = 0) while
the clamped condition is based on zero out of plane dis-
placement and zero rotations (wi = 0). The in plane dis-
placements in both cases were set free (uα �= 0). These
boundary conditions are the same through all the bound-
ary.

6.1 Convergency study

First of all, a convergency study was performed for the
simple supported case of a shallow shell subjected to uni-
form axial compression, as shown in figure 2. The shell
considered has an aspect ratio a/b = 2 and width b = 2in,
thickness h = 0.03in, Young’s modulus E = 1.05 ·107psi
and Poisson ratio v = 0.3. The radius of the shell is
R = 6.5in that correspond for a curvature parameter of
Z = 19.568.

Table 1 : Buckling coefficients for different meshes.
No. Boundary Mesh Domain Mesh K K/Ko

1 12 elements 2X4 cells 7.212 0.942
2 18 elements 3X6 cells 7.614 0.995
3 24 elements 4X8 cells 7.640 0.998
4 30 elements 5X10 cells 7.653 1.000

As is shown in table I, four different meshes were con-
sidered. Ko is given by the buckling coefficient of the
most refined mesh (5x10 cells). In figure 3, the normal-
ized buckling coefficients for the four meshes are shown,
and it is clear that good convergency is achieved with a
mesh of just 18 boundary elements and 18 domain cells,
less than 1% difference compared with the most refined
mesh.

The boundary domain meshes used, are shown in fig-
ure 4. In this figure can also easily be seen the par-
tially discontinuous domain cells and the semi discontin-
uous boundary elements. As it was explained in section

Figure 3 : Normalized buckling coeficients for different
meshes.

4.2, due to the order of the singularities in the domain
O(1/r2), the functional domain mesh is slightly moved
inwards, away from the boundary Γ; in this way singu-
larity problems can be avoided during the domain and
boundary integration. Semi discontinuous boundary el-
ements are used next to the corners, in order to avoid
difficulties with discontinuity of the tractions.

Figure 4 : Boundary domain meshes used for the con-
vergency study.

6.2 Cylindrical shallow shells with different curvature

The BEM results were obtained with a model of 18
boundary elements and 18 domain cells (91 internal
nodes and 36 boundary nodes) while for the FEM mesh
72 quadratic elements were used (253 nodes). In figure
5 the buckling coefficients for different radius of a cylin-
drical shallow shells under compressive loads are given.
The aspect ratio is a/b = 2, width b = 2in, thickness
h = 0.03in, Young’s modulus E = 1.05 ·107psi and Pois-
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son ratio v = 0.3. As expected, an increase in the cur-
vature also increase the buckling coefficients, while the
decrease of the curvature converge to the flat plate solu-
tions.

Figure 5 : Buckling coefficients for simple supported
and clamped cylindrical shallow shell.

Results shown in figure 5, are also given in table II. It
can be seen that the differences between boundary el-
ement results and finite element results are very small,
less than 1%, except for the smallest radius of the simple
supported case, where the difference reaches 1.315%.

Buckling modes for a radius of R = 6.5in are shown in
figure 6. The 2 and 3 half waves in the simple supported
and clamped buckling modes agree with the expected
number of half waves that are found on the buckling of a
rectangular curved plate with aspect ratio a/b = 2.

Simple Supported

Clamped

Figure 6 : Buckling modes for simple supported and
clamped shallow cylindrical shells.

6.3 Cylindrical shallow shells with different aspect ra-
tios (a/b)

In this last example, different aspects ratios a/b are con-
sidered. The material properties (E,v), width b and thick-
ness h used in the previous examples are also used here.
A constant curvature parameter of Z = 12.719 (R = 10in)
is considered. As it can be seen from figure 7, boundary
and finite element solutions agree very well, with differ-
ences less than 2% for the clamped boundary condition
and less than 1% for the simply supported case.

K

a/b
Figure 7 : Buckling coeficients for differents aspects
ratios and boundary conditions for cylindrical shallow
shells under axial uniform compression.

7 Conclusions

In this work, a boundary domain element formulation
for the solution of the linear elastic buckling problem
of shear deformable shallow cylindrical shells under uni-
form compressive load was developed. Buckling equa-
tions were obtained by introducing multiplication factors
of transverse loads (due to the large deflection of the out
of plane displacement) into the governing linear integral
equations. Membrane stresses (Nαβ) are obtained from
the prebuckling state, resulting in a set of linear buckling
equations in terms of the buckling deflection (w3 = 0) and
the buckling factors (λ). Buckling equations were pre-
sented as a standard eigenvalue problem, making possi-
ble to obtaining critical load factors and buckling modes
in a single procedure.

From the examples it is clear that the present boundary
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Table 2 : Buckling coefficients for different curvatures and boundary conditions.

Simple Supported Clamped

Radius (in) Z BEM FEM %Diff. BEM FEM %Diff.

3.0 42.397 12.968 13.141 1.315 30.082 30.129 0.157
4.5 28.265 9.420 9.405 -0.161 19.946 19.966 0.104
6.5 19.568 7.614 7.591 -0.302 13.887 13.920 0.234
10.0 12.719 5.642 5.621 -0.372 10.402 10.453 0.494
15.0 8.479 4.734 4.716 -0.399 8.985 9.048 0.694
23.0 5.530 4.291 4.274 -0.398 8.334 8.403 0.817
35.0 3.634 4.100 4.084 -0.394 8.060 8.131 0.876
55.0 2.313 4.012 3.997 -0.391 7.936 8.009 0.904

126.0 1.009 3.964 3.948 -0.390 7.868 7.943 0.942
Plate 0.000 3.952 3.937 -0.388 7.852 7.925 0.924

domain integral equations requires fewer number of de-
grees of freedom compare with FEM solutions in order
to achieved a good level of accuracy. This observation
agrees well with the pioneer results presented by Zhang
and Atluri (1988). Finally, although it is also well known
that fully populated and non symmetric matrices are ob-
tained with the present formulation, from the authors
experience during the durations of this work, computer
times are slightly shorter for the present method.

Base on the results, the presented boundary domain
method can be used as an effective tool to solve buckling
problems of cylindrical shallow shells with different ge-
ometries and boundary conditions under axial compres-
sive loads.
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Appendix A: Appendix

The expressions for the kernels W ∗
i j and P∗

i j are given by
Vander Weeen (1982) as follows:

W ∗
αβ =

1
8πD(1−ν)

{[8B(z)− (1−ν)(2lnz−1)]δαβ

− [8A(z)+2(1−ν)]r,αr,β}
W ∗

α3 = −W ∗
3α =

1
8πD

(2lnz−1)rr,α

W ∗
33 =

1
8πD(1−ν)λ2 [(1−ν)z2(lnz−1)−8lnz] (36)
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and

P∗
γα =

−1
4πr

[(4A(z)+2zK1(z)+1−ν)(δαγr,n + r,αnγ)

+(4A(z)+1+ν)r,γnα

−2(8A(z)+2zK1(z)+1−ν)r,αr,γr,n]

P∗
γ3 =

λ2

2π
[B(z)nγ−A(z)r,γr,n]

P∗
3α =

−(1−ν)
8π

[(
2
(1+ν)
(1−ν)

lnz−1

)
nα +2r,αr,n

]

P∗
33 =

−1
2πr

r,n (37)

where

A(z) = K0(z)+
2
z

[
K1(z)− 1

z

]

B(z) = K0(z)+
1
z

[
K1(z)− 1

z

]
(38)

in which K0(z) and K1(z) are modified Bessel functions
of the second kind, z = λr, r is the absolute distance be-
tween the source and the field points, r,α = rα/r, where
rα = xα(x)− xα(x′) and r,n = r,αnα.As it can be seen,
A(z) is a smooth function, whereas, B(z) is a weakly sin-
gular O(lnr). Therefore W ∗

i j is weakly singular and P∗
i j

has a strong (Cauchy principal value) singularity O(1/r).

The expressions for the kernels U∗
θα and T ∗

θα are the
well known (Kelvin solution) for two-dimensional plane
stress problems, and are given as Dirgantara and Aliabadi
(1999) :

U∗
θα =

1
4πB(1−ν)

[
(3−ν) ln

(
1
r

)
δθα +(1+ν) r,θr,α

]
(39)

T (i)∗
θα = − 1

4πr
{r,n [(1−ν)δθα +2(1+ν) r,θr,α]

+(1−ν) [nθr,α −nαr,θ]} (40)

where U∗
θα are weakly singular kernels of order O

(
ln

1
r

)
and T ∗

θα are strongly singular of order O(1/r) .

Derivatives of the displacement fundamental solutions
with respect to the field point (X) are given as follows:

W ∗
γ3,α =

1
8πD

[
(2lnz−1)δαγ +2r,γr,α

]
(41)

W ∗
33,α =

r,α

8πD(1−ν)λ
[z(1−ν)(2lnz−1)− 8

z
] (42)

U∗
αβ,γ =

1+v
4πB(1−ν) r

×[
−(3−ν)

(1+v)
r,γδαβ +δαγr,β +δβγr,α −2r,βr,γr,α

]
(43)

The kernel W ∗
γ3,α is regular, while W ∗

33,α and U∗
αβ,γ are

weakly singular in the domain, singularity O(1/r).

The expressions for the kernels U∗
αβγ and T ∗

αβγ are Dirgan-
tara (2002):

U∗
αβγ =

1
4πr

[
(1−ν)

(
δγαr,β +δγβr,α −δαβr,γ

)
+2(1+ν) r,αr,βr,γ

]
(44)

T (i)∗
αβγ =

B(1−ν)
4πr2

{
2r,n

[
(1−ν)δαβr,γ

+ν
(
δγαr,β +δγβr,α

)−4(1+ν) r,αr,βr,γ
]

+2ν
(
nαr,βr,γ +nβr,αr,γ

)
+(1−ν)

(
2nγr,αr,β +nβδαγ +nαδβγ

)
−(1−3ν)nγδαβ

}
(45)

Finally, the expression for U∗
αβγ,θ is given by:

U∗
αβγ,θ =

1
4πr2

{
2(1+v)[δθαr,βr,γ +δβθr,αr,γ

+δθγr,βr,α −4r,αr,βr,γr,θ]
−2r,θ (1−ν)

[
δγαr,β +δγβr,α −δαβr,γ

]
+(1−v)[δγαδβθ +δγβδαθ −δαβδγθ]

}
(46)

Appendix B: Appendix

For the non curvature terms in equation (10), the differen-
tiation can be applied directly to the tensors related to the
fundamental solutions, whereas in the case of the curva-
ture integral, which already have been differentiated once
(U∗

θα,β), special considerations are necessary.

Let’s represent the curvature integral in equation (10) on
a more formal manner:

Vθ = lim
ε→0

Z
Ωε

U∗
θα,β(X′,X)B

[
kαβ (1−ν)+νδαβkφφ

]×
w3(X)dΩ(X) (47)

where Ωε is the domain that remains after removed a cir-
cle of radius ε centred at the point (X′) from the domain
Ω.
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The derivative of Vθ with respect to the coordinate xγ of
point (X′) can be written as:

∂Vθ

∂xγ
= lim

ε→0

{
∂

∂xγ

Z
Ωε

U∗
θα,β(X′,X)B[

kαβ (1−ν)+νδαβkφφ
]

w3(X)dΩ(X)
}

(48)

The derivative of this domain integral, must be carried
out by using the Leibnitz formula, that is given by the
following expression:

d
dα

Z ϕ2(α)

ϕ1(α)
F(x,α)dx =

Z ϕ2(α)

ϕ1(α)

F(x,α)
dα

dx

−F(ϕ(α),α)
dϕ1(α)

dα
+F(ϕ(α),α)

dϕ2(α)
dα

(49)

After the Leibnitz formula have been applied to equation
(48), one concludes that:

∂Vθ

∂xγ
=

Z
Ω
−

U∗
θα,β(X′,X)

∂xγ
B

[
kαβ (1−ν)+νδαβkφφ

]×
w3(X)dΩ(X)
−B

[
kαβ (1−ν)+νδαβkφφ

]
w3(X′)×Z

Γ′
U∗

θα,β(X′,x)r,γ dΓ′(x) (50)

where the first integral in the right hand side is in the
Cauchy principal value sense and the second one is cal-
culated for a circle of radius ε → 0 centred at point (X′).

In order to solve the integral on Γ′, the following rela-
tionships have to be considered:

r = ε; r,n = 1; dΓ′ = εdϕ

r,1 = cosϕ; r,2 = sinϕ

Now, it is possible to obtain the derivative of equation
(10):

uθ(X′)
∂γ

+
Z

Γ
− T ∗(i)

θα (X′,x)
∂γ

uα(x)dΓ(x)

+
Z

Ω
−

U∗
θα,β(X′,X)

∂xγ
B

[
kαβ (1−ν)+νδαβkφφ

]×
w3(X)dΩ(X)

− w3(X′)
8(1−v)

{[
kθγ (1−ν)+νδθγkφφ

]
(3v−5)

+
[
kθγ (v−1)+δθγkφφ

]
(1+v)

}
=

Z
Γ

U∗
θα(X′,x)

∂γ
tα(x)dΓ(x)

+
Z

Ω

U∗
θα(X′,X)

∂γ
qα(X)dΩ(X) (51)

Finally, by introducing equation (51) into equation (6),
the following expression can be obtained:

Nαβ
(
X′) =

Z
Γ

U∗
αβγ(X′,x)tγ(x)dΓ(x)

−
Z

Γ
T ∗

αβγ(X′,x)uγ(x)dΓ(x)

−
Z

Ω
− U∗

αβγ,θ(X′,X)B
[
kγθ (1−ν)+νδγθkφφ

]
w3(X)dΩ(X)

+
Z

Ω
U∗

αβγ(X′,X)qγ(X)dΩ(X)

+B
[
(1−ν)kαβ +νδαβkφφ

]
w3

(
X′)

+
Bw3 (X′)

8

{[
kαβ (1−ν)+νδαβkφφ

]
(−v−5)

+
[
kαβ (ν−1)+δαβkφφ

]
(1−3v)

}
(52)

Appendix C: Appendix

The quadratic continuous shape functions for the bound-
ary are defined as:

Φ1(ξ) =
1
2

ξ(ξ−1)

Φ2(ξ) = (1−ξ)(1+ξ)

Φ3(ξ) =
1
2

ξ(ξ+1) (53)

For the case of semi-discontinuous boundary elements:

Φ1
S1(ξ) =

9
10

ξ(ξ−1)

Φ1
S3(ξ) =

6
10

ξ
(

ξ− 2
3

)

Φ2
S1(ξ) = −3

2
(ξ−1)

(
ξ+

2
3

)

Φ2
S3(ξ) = −3

2
(ξ+1)

(
ξ− 2

3

)

Φ3
S1(ξ) =

6
10

ξ
(

ξ+
2
3

)

Φ3
S3(ξ) =

9
10

ξ(ξ+1) (54)

where Φm
S1 correspond to nodes placed at ξ = −2

3 ,0,+1,
while Φm

S3 is for nodes placed at ξ = −1,0,+2
3 . See fig-

ure Appendix B:. The position of the internal node in
semi-discontinuous element is chosen arbitrarily at −2

3
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Figure 8 : Types of elements used.

or +2
3 , not very close to the element end point to avoid

near singularity problems.

Jn is the Jacobian of transformation for boundary ele-
ments, and is defined as:

Jn(ξ) =

√
∂xθ(ξ)

∂ξ
∂xθ(ξ)

∂ξ
(55)

where
∂xθ(ξ)

∂ξ
is the derivative of the global coordinates

xθ with respect to the local coordinate ξ.

The quadratic quadrilateral shape functions for the do-
main cells are given as:

Ψ1(ξ,η) = ξη
(−a2 +ξ)(−a3 +η)

a4a5a1a6

Ψ2(ξ,η) = ξη
(a4 +ξ)(−a3 +η)

a2a5a1a6

Ψ3(ξ,η) = ξη
(a4 +ξ)(a1 +η)

a2a5a3a6

Ψ4(ξ,η) = ξη
(−a2 +ξ)(a1 +η)

a4a5a3a6

Ψ5(ξ,η) = η((a2−ξ)(a4 +ξ))
(−a3 +η)
a2a4a1a6

Ψ6(ξ,η) = ξ((a3−η)(a1 +η))
(a4 +ξ)
a1a3a2a5

Ψ7(ξ,η) = η((a2−ξ)(a4 +ξ))
(a1 +η)
a2a4a3a6

Ψ8(ξ,η) = ξ((a3−η)(a1 +η))
(−a2 +ξ)
a1a3a4a5

Ψ9(ξ,η) = ((a2 −ξ)(a4 +ξ))
((a3−η)(a1 +η))

a2a4a1a3
(56)

The parameters a in equation 56 are defined in figure 8.
The continuous case is obtained when, a1 = a2 = a3 =
a4 = 1.0. The discontinuous case requires values in the
range 0.0 to 1.0, to be chosen for a1,a2,a3,a4. In this
work the following parameter were chosen for the to-
tally discontinuous case: a1 = a2 = a3 = a4 = 2/3. A
whole range of transitional cells can be generated by
varying one or more of these parameters (semi discon-
tinuous cells).

The Jacobian of transformation for cell elements is de-
fined as:

Jk(ξ,η) =
√(

N2
31 +N2

32 +N2
33

)
(57)

where Ni j is a minor of⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x1(ξ,η)
∂ξ

∂x2(ξ,η)
∂ξ

∂x3(ξ,η)
∂ξ

∂x1(η)
∂η

∂x2(ξ,η)
∂η

∂x3(ξ,η)
∂η

1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(58)
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