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Weak Coupling of the Symmetric Galerkin BEM with FEM for Potential and
Elastostatic Problems

R. Springhetti1, G. Novati1 and M. Margonari2

Abstract: With reference to potential and elastostatic
problems, a BEM-FEM coupling procedure, based on the
symmetric Galerkin version of the BEM, is developed;
the continuity conditions at the interface of the BE and
FE subdomains are enforced in weak form; the global
linear system is characterized by a symmetric coefficient
matrix. The procedure is numerically tested with refer-
ence first to 2D potential problems and successively to
3D elastoplastic problems (with plastic strains confined
to the FE subdomain).
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1 Introduction

The finite element method (FEM) and the boundary el-
ement method (BEM) have relative benefits and limita-
tions. For instance the FEM is well suited for inhomo-
geneous and anisotropic materials as well as for nonlin-
ear constitutive behavior. Linear homogeneous problems
defined on unbounded domains and/or in the presence of
high stress concentration and possible displacement dis-
continuity loci can be analyzed more advantageously by
integral equation approaches. There are many applica-
tion contexts where a coupling between BEM and FEM
is in principle very attractive: different parts of a struc-
ture can be modelled indipendently by FEM and BEM in
order to exploit the advantages of both techniques. The
first investigations on this idea date back to 1977 with the
pioneering work of Zienkiewicz, Kelly and Bettes (1977)
based on the collocational BEM. Two issues arose imme-
diately: the difficulties related to the lack of symmetry in
the coefficient matrix of the BEM and a proper enforce-
ment of the matching conditions at the interface between
BE and FE subdomains. Since then a large number of
papers devoted to this topic have appeared: an extensive

1 Department of Mechanical and Structural Engineering, University
of Trento, Italy.

2 Structural Department, EnginSoft, Bergamo, Italy.

overview is given in Ganguly, Layton and Balakrishna
(2000). Only few contributions on the BEM-FEM cou-
pling are based on the Symmetric Galerkin BEM (the
so-called SGBEM) in view of the more involved math-
ematical aspects related to this version. Contributions on
SGBEM-FEM coupling procedures which report numer-
ical applications are quite recent, especially in 3D, since
efficient numerical tools for the evaluation of the singu-
lar double surface-integrals have been developed only in
recent times, see Bonnet, Maier and Polizzotto (1998),
Sauter and Schwab (1997), Li, Mear and Xiao (1998)
and Frangi, Novati, Springhetti and Rovizzi (2002). On
this subject it is worth mentioning the variationally based
coupling procedure between FEM and an indirect ver-
sion of the Galerkin BEM in Polizzotto and Zito (1994),
the SGBEM macro elements to be coupled with FEM in
Ganguly, Layton and Balakrishna (2000) and the FEM
macro elements to be weakly coupled with SGBEM in
Ganguly, Layton and Balakrishna (2004), both for 2D
elasticity, the mixed-dimensional coupling of shell finite
elements and 3D SGBEM domains in Haas and Kuhn
(2003) and the applications to 3D fracture mechanics in
Han and Atluri (2002) and Frangi and Novati (2003). In
many papers the SGBEM subdomains, see for instance
Haas and Kuhn (2003) and Ganguly, Layton and Bal-
akrishna (2000), or the FEM subdomains, e.g. Ganguly,
Layton and Balakrishna (2004), are handled as equiva-
lent finite or boundary macro-elements respectively. On
the contrary, the SGBEM-FEM alternating method pro-
posed by Han and Atluri (2002) as well as the direct
SGBEM-FEM procedure in Frangi and Novati (2003)
involve all the unknowns from both FE and BE subdo-
mains, thus allowing to preserve the nature of both FEM
and SGBEM (i.e. these procedures are neither BE-based
nor FE-based in the sense explained above).

A crucial aspect for coupled approaches is represented by
the enforcement of the matching conditions (i.e. conti-
nuity of displacements and tractions) at the interface be-
tween the subdomains. When displacement continuity
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is enforced in strong form, the BEs lying on the inter-
face and the sides of the FEs adjacent to the interface
should coincide, together with their nodes, as in Frangi
and Novati (2003). On the other hand, if the kinematic
continuity condition is enforced in weak form, the match-
ing of the two discretizations at the interface is no longer
necessary, with an evident flexibility gain in the meshing
process. This approach permits the integration of inde-
pendently discretized models possibly coming from dif-
ferent sources. Specific relaxation algorithms have been
used by some authors to achieve this goal (see e.g. Ellei-
thy and Tanaka (2003) for BEM-FEM coupling); a non-
matching node coupling of SGBEM and FEM is devel-
oped in Ganguly, Layton and Balakrishna (2004) in the
context of a BE-based approach. In the fracture mechan-
ics context a coupling approach which preserves the in-
dependence of the FE and BE meshes is the so-called hy-
brid surface-integral-finite-element technique, see Keat,
Annigeri and Cleary (1988), Han and Atluri (2002) and
Forth and Staroselsky (2005).

The present contribution addresses a SGBEM-FEM cou-
pling procedure characterized by a weak enforcement
of the displacement matching conditions on the inter-
face. The proposed procedure which was simply out-
lined (but not numerically tested) in Frangi and Novati
(2003), leads to a final equation system with symmetric
matrix and allows the adoption of completely indepen-
dent discretizations for the BE and the FE subdomains.
The paper is organized as follows. Sections 2 and 4 illus-
trate the coupling procedure for the 2D potential problem
and 3D elasticity, respectively. While a non-regularized
version of the SGBEM is considered in Section 2 (with
double integrations performed analitically for straight
BEs), the regularized approach is adopted in Section 4
and the relevant weakly-singular double surface-integrals
are evaluated numerically as described in Frangi, Novati,
Springhetti and Rovizzi (2002). Section 3 provides a nu-
merical verification of the coupling procedure with ref-
erence to 2D potential problems. Section 5 describes
a variational basis for the proposed coupling procedure
with reference to elasticity. Finally section 6 illustrates
some numerical tests for elastoplastic problems charac-
terized by a limited spread of plastic strains (within the
FE subdomain).

2 Weak coupling for potential problems in 2D

The SGBEM-FEM coupling procedure will be first il-
lustrated for the simple context of the Laplace equation
on 2D domains. Let Ω denote a body of boundary Γ
with prescribed potential u on the boundary portion Γu

and assigned flux q on the complementary portion Γq

(Γ = Γu ∪Γq) (see Fig. 1).
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Figure 1 : Notation

The domain Ω is subdivided into two subdomains ΩB and
ΩF . The approximate solution is sought adopting the in-
tegral equations of the symmetric approach over ΩB (pri-
mary variables being the boundary potential u and flux q)
and the FE equations over ΩF (primary variables being
the potential uF ). The matching conditions at the inter-
face between ΩB and ΩF , denoted by ΓI , are expressed
in strong form as:

uF = u and ∇uF ·nI +q = 0 on ΓI . (1)

Here nI denotes the unit vector normal to ΓI directed
outward from ΩB, while in what follows n will refer
to the outward unit vector normal to the boundary Γ.
With the same notation introduced above, we denote as
ΓBu and ΓBq the portions of the exterior boundary ΓB

of ΩB (ΓB = ΓBu ∪ ΓBq) where potential and flux are
prescribed: u = u on ΓBu and q = q on ΓBq. Analo-
gously ΓFu and ΓFq denote the corresponding portions
of the exterior boundary ΓF of ΩF (ΓF = ΓFu ∪ ΓFq):
uF = u on ΓFu and ∇uF · n = q on ΓFq. Obviously
Γu = ΓFu ∪ΓBu and Γq = ΓFq ∪ΓBq.

On the boundary ΓB = ΓB ∪ΓI of domain ΩB the follow-
ing integral equations are enforced (see Sirtori, Maier,
Novati and Miccoli (1992)), in which the primary vari-
ables are both the potential u and the flux q:
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• potential equation for x̃ ∈ Γ̃I

Z

Γ̃I

f̃ (x̃)
Z

ΓB

[Guu(x̃,x)q(x)−Guq(x̃,x)u(x)] dΓdΓ̃=0 (2)

• potential equation for x̃ ∈ Γ̃Bu

Z

Γ̃Bu

f̃ (x̃)
Z

ΓB

[Guu(x̃,x)q(x)−Guq(x̃,x)u(x)] dΓdΓ̃=0 (3)

• flux equation for x̃ ∈ Γ̃I

Z

Γ̃I

d̃(x̃)
Z

ΓB

[Gqu(x̃,x)q(x)−Gqq(x̃,x)u(x)] dΓdΓ̃=0 (4)

• flux equation for x̃ ∈ Γ̃Bq

Z

Γ̃Bq

d̃(x̃)
Z

ΓB

[Gqu(x̃,x)q(x)−Gqq(x̃,x)u(x)dΓ]dΓ̃=0. (5)

The above equations involve an auxiliary line Γ̃B run-
ning outside ΩB, whose points x̃ are in a one-to-one
correspondence with the points x on ΓB. Obviously
Γ̃B = Γ̃Bu ∪ Γ̃Bq ∪ Γ̃I , each of these line portions corre-
sponding to the analogous portion on ΓB. Functions d̃(x̃)
and f̃ (x̃) represent fictitious potential and flux discon-

tinuities across Γ̃B respectively, while symbol Gi j(x̃,x)
denotes the influence functions associated to the Laplace
equation. More specifically, Gi j(x̃,x) represents the ef-
fect j (potential if j = u or flux if j = q) at point x gen-
erated by a unit concentrated “load” which acts at x̃ and
whose nature is identified by index i through a conjuga-
tion rule in the virtual work sense (i.e. i = u and i = q
denote a concentrated domain-source and a concentrated
potential discontinuity, respectively). Note that the po-
tential and the flux equations contain strongly-singular
and hyper-singular contributions respectively; as an al-
ternative, a strongly-singular version of the flux equation
is available in literature, see Han and Atluri (2003).

Concomitantly, the Laplace equation is enforced in weak
form on subdomain ΩF , introducing a test function ũF :
Z

ΩF

∇ũF(x) ·∇uF(x)dΩ =
Z

ΓFq

ũF(x)q(x)dΓ

+
Z

ΓI

ũF(x)∇uF(x) ·nI(x)dΓ, (6)

where uF and ũF are assumed to satisfy the actual and the
homogeneous boundary conditions on ΓFu respectively.

In the present approach, the matching conditions at the
interface ΓI , eqs. (1), are enforced in weak form using as
weight functions the auxiliary fields f̃ and ũF previously
introduced:
Z

ΓI

f̃ (x)[uF(x)−u(x)]dΓ = 0 (7)

Z

ΓI

ũF(x)[∇uF(x) ·nI(x)+q(x)]dΓ = 0. (8)

Let us now discretize along the lines ΓB and Γ̃B the pri-
mary fields involved in the integral equations:

u(x) =
[
Nu(x)

]tU, d̃(x̃) =
[
Nu(x̃)

]tD̃, (9)

q(x) =
[
Nq(x)

]tQ, f̃ (x̃) =
[
Nq(x̃)

]t F̃ (10)

where Ni (i = u,q) denote vectors of shape functions,
while U, Q, D̃ and F̃ collect the nodal values of the
modelled fields. In the spirit of a Galerkin approach,
the shape functions are chosen to be the same for ac-
tual and auxiliary fields of the same nature. Note that
the modelled potential has to be continuous, while there
are no requirements on the modeling of the flux. The dis-
cretization of subdomain ΩF into finite elements is also
introduced, with the potential uF and the auxiliary field
ũF modelled as follows through the shape functions col-
lected in vector NF

u :

uF(x) =
[
NF

u (x)
]tUF ũF(x) =

[
NF

u (x)
]tŨF . (11)

The limiting versions of eqs. (2)-(5) represent the bound-
ary integral equations of the SGBEM. In the case of
straight elements and simple shape functions (here linear
interpolations have been adopted) the double integrals
emerging after the discretization of eqs. (2)-(5) can be
evaluated analytically for Γ̃B distinct from ΓB, together
with their limiting values for Γ̃B → ΓB, as shown in Sir-
tori, Maier, Novati and Miccoli (1992). The SGBEM dis-
cretized equations read:[
F̃I]t(Guu

II QI +Guu
Iu Qu −Guq

II UI −Guq
Iq Uq

−Guq
Iu U+Guu

Iq Q
)

= 0, ∀ F̃I (12)
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[
F̃u]t(Guu

uI QI +Guu
uuQu −Guq

uI UI −Guq
uqUq

−Guq
uuU+Guu

uqQ
)

= 0, ∀ F̃u (13)

[
D̃I]t(Gqu

II QI +Gqu
Iu Qu −Gqq

II UI −Gqq
Iq Uq

−Gqq
Iu U+Gqu

Iq Q
)

= 0, ∀ D̃I (14)

[
D̃q

]t(Gqu
qI QI +Gqu

quQu −Gqq
qI UI −Gqq

qqUq

−Gqq
quU+Gqu

qqQ
)

= 0, ∀ D̃q. (15)

The definition of matrices Gi j
hk is straightforward; super-

scripts i and j (i, j = u,q) play the same role as in the
kernels; subscripts h and k (h,k = u,q, I) denote, respec-
tively, the boundary portions where the fictitious sources
are located and where their effects are integrated, e.g.

Guq
II =

Z

ΓI

Z

ΓI

Nq(x̃)Guq(x̃,x)
[
Nu(x)

]t
dΓdΓ. (16)

Vectors UI, QI , Uq, Qu represent the unknown nodal val-
ues of u and q on the portions ΓI , ΓBq and ΓBu respec-
tively, while U and Q are the known nodal values along
ΓBu and ΓBq respectively.

In view of the reciprocity properties enjoyed by the ker-
nels Gi j and of the choice of the shape functions in
the Galerkin fashion, the following reciprocity proper-
ties hold for matrices Gi j

hk, see Sirtori, Maier, Novati and
Miccoli (1992):

Gi j
hk =

[
G ji

kh

]t
if i = j or if i �= j and h �= k (17)

Guq
II =

[
Gqu

II

]t+
Z

ΓI

Nq(x)
[
Nu(x)

]t dΓ (18)

With the aim of generating a symmetric overall equation
system, the following steps are taken. Equation (12) is
transformed by expressing Guq

II through eq. (18) and us-
ing the weak form of the potential continuity condition,
eq. (7), in discretized form. Hence the final version of
eq. (12) reads:

[
F̃I]t(−[

JuI
] t UF +Guu

II QI +Guu
Iu Qu −[

Gqu
II

]t UI

−Guq
Iq Uq −Guq

Iu U+Guu
Iq Q

)
= 0, ∀ F̃I. (19)

Matrix JuI involves the BE shape functions for the flux
and the FE shape functions for the potential (see Fig. 2)
and reads:

JuI =
Z

ΓI

NF
u (x)

[
Nq(x)

]t
dΓ. (20)

N
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Figure 2 : Shape functions involved in the evaluation of
matrix JuI

As for the FE equations, the flux continuity condition,
eq. (8), is now plugged into eq. (6), which takes the form:
Z

ΩF

∇ũF (x) ·∇uF(x)dΩ+
Z

ΓI

ũF(x)q(x)dΓ

=
Z

ΓFq

ũF(x)q(x)dΓ. (21)

Upon discretization, eq. (21) can be rewritten as follows,
taking into account the BE modeling of the flux q on ΓI :[
ŨF]t(KUF +JuI QI −Q

F)
= 0, ∀ŨF . (22)

Here K represents the stiffness matrix, while Q
F

are the
equivalent nodal loads.

Collecting eqs. (22), (19), (13)-(15) and enforcing them
∀ŨF , F̃I, D̃I , F̃u, D̃q, the global equation system is fi-
nally generated, i.e. in matrix notation:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

K JuI 0 0 0[
JuI

] t −Guu
II −Guu

Iu

[
Gqu

II

]t Guq
Iq

0 −Guu
uI −Guu

uu Guq
uI Guq

uq

0 Gqu
II Gqu

Iu −Gqq
II −Gqq

Iq

0 Gqu
qI Gqu

qu −Gqq
qI −Gqq

qq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UF

QI

Qu

UI

Uq

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= P

(23)
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with data vector P:

P =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q
F

−Guq
Iu U+Guu

Iq Q
−Guq

uuU+Guu
uqQ

Gqq
Iu U−Gqu

Iq Q
Gqq

quU−Gqu
qqQ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (24)

The symmetry of the coefficient matrix is evident.

3 Numerical validation for 2D potential problems

The procedure illustrated above has been implemented
into a computer code. Straight BEs are adopted with lin-
ear modeling for the potential and the flux, the latter be-
ing discontinuous across elements. Bilinear four-noded
FEs are employed. Two test problems, denoted by A
and B, have been considered; both are governed by the
Laplace equation and refer to the simple geometry and to
the boundary condition types depicted in Fig. 3. FE and
BE modeling are used in the two subdomains ΩF and ΩB

respectively.

q1

q3

x

y

u �
�

q2

�
�

�F

11 1

1

Figure 3 : Test problem

In Problem A the boundary conditions are the following:
u = 0, q1 = q3 = 0, q2 = 1; hence the exact solution is
u = y. In Problem B the boundary conditions are chosen
as the boundary potential and flux subordinated to the
following harmonic potential

u(x,y) = x3 +3x2y−3xy2 −y3 −5,

hence representing the exact solution to Problem B.

Problem A is solved using the simple mesh of Fig. 4,
consisting of 4 identical FEs and 6 BEs. Note that in
this problem there is no modeling error (since the shape
functions adopted allow to capture the exact solution)
and no approximation in the evaluation of the SGBEM

Figure 4 : Discretization for Problem A

double integrals (computed analytically); besides, in this
case, the weak form enforcement of the interface condi-
tions imply the satisfaction of their strong form version.
Therefore only round-off errors are expected in the nu-
merical solution. This turns out to be confirmed by the
numerical test carried out, which thus represents a first
validation of the proposed procedure.

Problem B is solved using two different meshes:

• mesh 1: 16 equal FEs in ΩF and 12 equal BEs (3
along each side of ΓB);

• mesh 2: 64 equal FEs in ΩF and 24 equal BEs (6
along each side of ΓB).

The numerical results are summarized in Tab. 1 in terms
of percentage errors in the computed nodal values for the
potential and the flux. The table lists also the residuals
of the discretized version of eq. (7), which quantify the
degree of fulfilment of the potential continuity equation
along ΓI . Such residuals have been compared to those
relevant to the potential boundary integral eqs. (13) en-
forced on ΓB, taking into account the boundary solution
determined on ΓB (note that the potential equations are
not used in the SGBEM-FEM procedure for the problem
at hand since ΓBu = /0). As shown in Tab. 1, the resid-
uals on ΓI and ΓBu turn out to be comparable and this
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corroborates the validity of the proposed approach.

mesh 1 mesh 2

% error in the max 2.5 0.8
potentials on ΓB aver. 1.1 0.3
% error in the max 7.0 2.2
fluxes on ΓB aver. 3.7 0.1

% error in the max 0.9 0.2
potentials on ΩF aver. 0.3 0.1

residuals of max 8.0 ·10−3 10−3

eq. (7) on ΓI aver. 4.0 ·10−3 3.0 ·10−4

residuals of max 1.2 ·10−2 1.4 ·10−3

eq. (13) on ΓB aver. 5.0 ·10−3 3.9 ·10−4

Table 1: Errors in the numerical solution for Problem B

4 Weak coupling for elasticity in 3D

The same notation already introduced for the potential
problem is adopted here, but reference is now to 3D elas-
tic problems. The boundary Γ of the body Ω is con-
strained along its portion Γu and loaded upon Γq. The
subdomains ΩB and ΩF are introduced, where the model-
ing consists of BEs and displacement-based FEs respec-
tively. The boundary conditions for the displacements u
and the tractions q on ΓB, as well as for the displacements
uF and the tractions on ΓF , read:

u = u on ΓBu and q = q on ΓBq

uF = u on ΓFu and σFn = q on ΓFq.

Here σF = E : ∇uF represents the stress tensor associated
to uF , E being the conventional linear elastic tensor.

The continuity and equilibrium conditions between ΩB

and ΩF along ΓI read (strong form):

uF = u and σF nI +q = 0 on ΓI . (25)

The boundary integral equations on ΓB, which in princi-
ple involve hypersingular, strongly singular and weakly
singular integrals, are written here in a regularized form,
see Bonnet, Maier and Polizzotto (1998), with at most
weakly singular integrals.

• displacement equation for x̃ ∈ ΓI

1
2

Z

ΓI

f̃(x) ·u(x)dΓ =
Z

ΓI

Z

ΓB

f̃(x̃) ·
[
Guu(x̃,x)q(x)

+
∇r ·n(x)

4πr2
u(x)+Guϕ(x̃,x) :R[u](x)

]
dΓdΓ (26)

• displacement equation for x̃ ∈ ΓBu

1
2

Z

ΓBu

f̃(x) ·u(x)dΓ =
Z

ΓBu

Z

ΓB

f̃(x̃) ·
[
Guu(x̃,x)q(x)

+
∇r ·n(x)

4πr2 u(x)+Guϕ(x̃,x) :R[u](x)
]

dΓdΓ (27)

• traction equation for x̃ ∈ ΓI

1
2

Z

ΓI

d̃(x) ·q(x)dΓ = −
Z

ΓI

Z

ΓB

{∇̃r · ñ(x̃)
4πr2 d̃(x̃) ·q(x)

+ R̃[d̃](x̃) :
[
Gϕu(x̃,x)q(x)

+Gϕϕ(x̃,x) :R[u](x)
]}

dΓdΓ (28)

• traction equation for x̃ ∈ ΓBq

1
2

Z

ΓBq

d̃(x) ·q(x)dΓ = −
Z

ΓBq

Z

ΓB

{∇̃r · ñ(x̃)
4πr2

d̃(x̃) ·q(x)

+ R̃[d̃](x̃) :
[
Gϕu(x̃,x)q(x)

+Gϕϕ(x̃,x) :R[u](x)
]}

dΓdΓ. (29)

The gradient operators and the surface rotors are defined
according to the notation:

[∇r]k = r,k = ∂r/∂xk, [∇̃r]k = r, k̃ = ∂r/∂x̃k,[
R[u](x)

]
i j =R j[ui](x)=ehk jnh(x)ui,k(x),

[
R̃[d̃](x̃)

]
i j = R̃ j[d̃i](x̃)=ehk jñh(x̃)d̃i,k̃(x̃),

ei jk being the Ricci permutation symbol. The symbol :
denotes a double contraction of successive indices, i.e.,
if A and B are third and second order tensors respec-
tively, [A : B]i = Ai jhB jh. The explicit expression for the
kernels are obtained by means of the regularization pro-
cedure from the fundamental solutions for 3D elasticity
and read:

Guu
i j (x̃,x) =

1
16πµ(1−ν)

1
r

[(3−4ν)δi j + r,ir, j] (30)

Guϕ
i jk(x̃,x) =

1
8π(1−ν)r

[
(1−2ν)ei jk −eihkr,hr, j

]
(31)
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Gϕu
i jk =

1
8π(1−ν)r

[
(1−2ν)ei jk −ekh jr,hr,i

]
(32)

Gϕϕ
i jhk = − µ

8π
1
r

(
δab − r,a r,b

)
eiace jbd

[ 2ν
1−ν

δchδdk

+δcdδhk +δckδhd

]
(33)

where δi j represents the Kronecker delta. The integral
contribution, which do not involve any kernel, are weakly
singular as well since, on a smooth surface, r,i ni/r2 is
O(1/r), as r → 0. All the weakly singular integrals in-
volved can be evaluated numerically as shown e.g. in
Frangi, Novati, Springhetti and Rovizzi (2002).

On subdomain ΩF the displacements uF are sought, a
priori satisfying the boundary kinematical conditions,
such that:
Z

ΩF

ε̃F(x) : σF(x)dΩ =
Z

ΓFq

ũF(x) ·q(x)dΓ

+
Z

ΓI

ũF(x) ·σF(x)n(x)dΓ. (34)

The developments already illustrated in section 2 are
now paralleled here below. First the interface conditions,
eqs. (25), are rewritten in weak form:
Z

ΓI

f̃(x) · [uF(x)−u(x)]dΓ = 0 (35)

Z

ΓI

ũF(x) · [σF(x)nI(x)+q(x)]dΓ = 0. (36)

The usual discretization is then introduced for all the
boundary fields, i.e. displacements u and tractions q on
ΓB, as well as for fictitious displacement discontinuities
d̃ and forces f̃ on Γ̃B:

u(x) = Nu(x)U, d̃(x̃) = Nu(x̃)D̃ (37)

q(x) = Nq(x)Q, f̃(x̃) = Nq(x̃)F̃ (38)

Analogously the actual and auxiliary fields are dis-
cretized on ΩF :

uF(x) = NF
u (x)UF ũF (x) = NF

u (x)ŨF. (39)

Exploiting eq. (35), the l.h.s. in eq. (26) can be given the
form:

1
2

Z

ΓI

f̃(x) ·u(x)dΓ=
Z

ΓI

f̃(x) ·uF(x)dΓ− 1
2

Z

ΓI

f̃(x) ·u(x)dΓ.

The boundary equations (26), with the l.h.s. modified as
above, as well as equations (27)-(29) are enforced in dis-
cretized form ∀F̃I , F̃u, D̃I, D̃q, so that their final versions
give rise to the last four rows of the global equation sys-
tem detailed in eq. (41).

With reference to FE subdomain, eq. (36) is introduced
into (34); the resulting equation, also involving the un-
known flux on ΓI , reads:
Z

ΩF

ε̃F(x) : σF (x)dΩ+
Z

ΓI

ũF(x) ·q(x)dΓ

=
Z

ΓFq

ũF(x) ·q(x)dΓ. (40)

The discretized version of eq. (40), enforced ∀ŨF , rep-
resents the first row of the global equation system (41),
which gathers all the BE and the FE equations:

M

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UF

QI

Qu

UI

Uq

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q
F

Ĝuϕ
Iu U+Guu

Iq Q

−
(

1
2 I t

uI − Ĝuϕ
uu

)
U+Guu

uqQ

Gϕϕ
Iu U+ Ĝϕu

Iq Q

Gϕϕ
qu U+

(
1
2 IuI + Ĝϕu

qq

)
Q

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(41)

with M given by:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

K JuI 0 0 0

J t
uI −Guu

II −Guu
Iu −1

2 I t
uI − Ĝuϕ

II −Ĝuϕ
Iq

0 −Guu
uI −Guu

uu −Ĝuϕ
uI −Ĝuϕ

uq

0 −1
2IuI − Ĝϕu

II −Ĝϕu
Iu −Gϕϕ

II −Gϕϕ
Iq

0 −Ĝϕu
qI −Ĝϕu

qu −Gϕϕ
qI −Gϕϕ

qq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that K and Q
F

represent the FE stiffness matrix and
the equivalent nodal loads; matrices Gi j

hk are defined anal-
ogously to the corresponding ones for the potential prob-
lem, for instance:

Guϕ
II =

Z

ΓI

Z

ΓI

[
Nq(x̃)

]t Guϕ(x̃,x) : R[Nu(x)]dΓdΓ; (42)
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besides:

Ĝuϕ
hk = Guϕ

hk +
Z

ΓBh

Z

ΓBk

∇r ·n(x)
4πr2

[
Nq(x̃)

]t Nu(x)dΓdΓ̃ (43)

Ĝϕu
hk = Gϕu

hk +
Z

ΓBh

Z

ΓBk

∇̃r · ñ(x̃)
4πr2

[
Nu(x̃)

]t Nq(x)dΓdΓ̃ (44)

JuI =
Z

ΓI

[
NF

u (x)
]t Nq(x)dΓ (45)

IuI =
Z

ΓI

[
Nu(x)

]t Nq(x)dΓ. (46)

Again, the symmetry of the coefficient matrix in the final
equation system is ensured.

5 Formulation of the weak coupling procedure on a
variational basis

The aim of this section is to show that the equations gov-
erning the coupled problem for the two subdomains ΩF

and ΩB coincide with the set of stationarity conditions of
an appropriate global functional. The approach to be fol-
lowed, here described with reference to elasticity, paral-
lels the ideas oulined in Bonnet (1995) for pure SGBEM
equations, and differs from what developed in Polizzotto
and Zito (1994) for a coupled SGBEM-FEM procedure.

With reference to the body Ω = ΩF ∪ ΩB illustrated in
the preceding section (under the assumption of no body
forces), let us start introducing the FE subdomain poten-
tial energy:

πF(uF)=
Z

ΩF

1
2

∇uF(x) :E :∇uF(x)dΩ−
Z

ΓFq

q(x)·uF(x)dΓ,

where uF satisfies the kinematical boundary conditions
on ΓFu. As for the BE subdomain, an augmented poten-
tial energy is introduced

πB(u,λ1) =
Z

ΩB

1
2

∇u(x) :E :∇u(x)dΩ

−
Z

ΓBq

q(x) ·u(x)dΓ−
Z

ΓBu

λ1(x) · [u(x)−u(x)]dΓ,

with displacements u unconstrained, in consequence of
the introduction of the Lagrange multipliers λ1 for the
kinematical boundary conditions on ΓBu. A global func-
tional is built:

π(uF,u,λ1,λ2) = πF(uF)+πB(u,λ1)

+
Z

ΓI

λ2(x) · [uF(x)−u(x)]dΓ. (47)

Here λ2 are new Lagrange multipliers allowing the relax-
ation of the interface continuity conditions (i.e. uF and u
are independent on ΓI).

For the stationarity of functional π it is required that
δπ(uF,u,λ1,λ2) = 0, i.e.:

Z

ΩF

∇uF(x) : E : ∇δuF(x)dΩ−
Z

ΓFq

q(x) ·δuF(x)dΓ

+
Z

ΓI

λ2(x) ·δuF(x)dΓ+
Z

ΩB

∇u(x) : E : ∇δu(x)dΩ

−
Z

ΓBq

q(x) ·δu(x)dΓ−
Z

ΓBu

λ1(x) ·δu(x)dΓ

−
Z

ΓI

λ2(x) ·δu(x)dΓ−
Z

ΓBu

δλ1(x) · [u(x)−u(x)]dΓ

+
Z

ΓI

δλ2(x) · [uF(x)−u(x)]dΓ = 0. (48)

Using integration by parts and the divergence theorem,
the domain integrals are transformed as follows (with the
notation ΓF = ΓF ∪ΓI ):

Z

ΩF

∇uF(x) : E : ∇δuF(x)dΩ =
Z

ΓF

δuF(x) ·σF(x)n(x)dΓ

−
Z

ΩF

δuF(x) ·div[σF (x)]dΩ

Z

ΩB

∇u(x) : E : ∇δu(x)dΩ =
Z

ΓB

δu(x) ·q(x)dΓ

−
Z

ΩB

δu(x) ·div[σ(x)]dΩ.

If the latter conditions are introduced into eq. (48), taking
into account that δuF(x) = 0 along ΓFu, in view of the
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arbitrariness of the variations the following relations are
obtained for the FE subdomain:

div[σF(x)] = 0 in ΩF ,

σF(x)n(x) = q(x) along ΓFq

and for the BE subdomain:

div[σ(x)] = 0 in ΩB,

q(x) = q(x) along ΓBq,

q(x) = λ1(x), u(x) = u(x) along ΓBu

with interface conditions:

uF(x) = u(x),

σF (x)nI(x) = −λ2(x), q(x) = λ2(x)
along ΓI .

Hence the Lagrange multipliers λ1 and λ2 coincide
with the BE tractions on ΓBu and ΓI respectively; ob-
viously the two latter conditions along ΓI imply that
σF (x)nI(x) = −q(x). Thus the stationarity of functional
π(uF,u,λ1,λ2) leads to the whole set of equations which
govern the coupled elastic problem on Ω = ΩF ∪ΩB and
the converse can also be proved easily.

Now we intend to show that if the independent varia-
tions are suitably selected, all the equations leading, af-
ter discretization, to system (41) can be obtained as sta-
tionarity conditions of fuctional π. Exploiting the arbi-
trariness of the variations, first all the contributions in-
volving δuF in eq. (48) are gathered (setting δuF �= 0,
δu = δλ1 = δλ2 = 0):

Z

ΩF

∇uF(x) : E : ∇δuF(x)dΩ−
Z

ΓFq

q(x) ·δuF(x)dΓ

+
Z

ΓI

λ2(x) ·δuF(x)dΓ = 0. (49)

When π is stationary, λ2(x)= q(x) along ΓI , thus eq. (49)
is recognized to be the FE subdomain equation, eq. (40),
involved by the proposed coupling procedure. Then all
the complementary terms in eq. (48) are taken into ac-

count (setting δuF = 0, δu �= 0, δλ1 �= 0, δλ2 �= 0):

Z

ΩB

∇u(x) : E : ∇δu(x)dΩ−
Z

ΓBq

q(x) ·δu(x)dΓ

−
Z

ΓBu

λ1(x) ·δu(x)dΓ−
Z

ΓI

λ2(x) ·δu(x)dΓ

−
Z

ΓBu

δλ1(x) · [u(x)−u(x)]dΓ

+
Z

ΓI

δλ2(x) · [uF(x)−u(x)]dΓ = 0. (50)

The domain integral in eq. (50) is manipulated analo-
gously as before, but integration by parts is now applied
as follows:
Z

ΩB

∇u(x) : E : ∇δu(x)dΩ =
Z

ΓB

u(x) ·δqu(x)dΓ

−
Z

ΩB

u(x) ·div[δσu(x)]dΩ.

Here the following notation has been introduced:

δqu(x) = δσu(x)n(x) = [E : ∇δu(x)]n(x),

thus δqu(x) and δσu(x) represent tractions and stresses
related via constitutive relations to δu(x) respectively.
For an elastic body in equilibrium with zero body forces
variations, div[δσu(x)] = 0, thus the domain integral in
the r.h.s. of the last equation vanishes. With the further
assumption

δλ1(x) = δqu(x) along ΓBu, (51)

eq. (50) can be written as:

Z

ΓBq

[u(x) ·δqu(x)−q(x) ·δu(x)]dΓ

+
Z

ΓBu

[u(x) ·δqu(x)−λ1(x) ·δu(x)]dΓ

+
Z

ΓI

[u(x) ·δqu(x)−λ2(x) ·δu(x)]dΓ

+
Z

ΓI

δλ2(x) · [uF(x)−u(x)]dΓ = 0. (52)
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The way to build the test function δu(x) represents a cru-
cial point: the potential theory states that any displace-
ment field such that div[δσu(x)] = 0 admits an integral
representation; following Bonnet (1995), the following
integral representation is assumed:

δu(x) =
Z

Γ̃Bq∪Γ̃I

Guq(x, x̃) d̃(x̃)dΓ̃−
Z

Γ̃Bu∪Γ̃I

Guu(x, x̃) f̃(x̃)dΓ̃. (53)

which implies the following traction representation:

δqu(x)=
Z

Γ̃Bq∪Γ̃I

Gqq(x, x̃) d̃(x̃)dΓ̃−
Z

Γ̃Bu∪Γ̃I

Gqu(x, x̃) f̃(x̃)dΓ̃. (54)

The two auxiliary functions, d̃(x̃) and f̃(x̃), appearing in
eq. (53) and eq. (54), represent variations of displacement
and traction jumps respectively across a surface Γ̃B exte-
rior to ΓB, (points belonging to these two surfaces are
in a one-to-one correspondence). The following choice
is also made: d̃(x̃) = 0 over Γ̃Bu and f̃(x̃) = 0 over Γ̃Bq.
Having selected the variations δu and δλ1 according to
eq. (53) and eq. (51), eq. (52) is enforced for any d̃ along
Γ̃Bq and Γ̃I and for any f̃ along Γ̃Bu respectively. Exploit-
ing the reciprocity properties of the fundamental solu-
tions, detailed i.e. in Sirtori, Maier, Novati and Miccoli
(1992), preliminary versions (in the sense that surfaces
Γ̃B and ΓB are still distinct) of eqs. (27)-(29) can be de-
rived: traction equations on ΓBq and on ΓI , displacement
equation on ΓBu. Setting to zero d̃ along Γ̃Bq and Γ̃I and
f̃ along Γ̃Bu, eq. (52) reduces to:

Z

Γ̃I

f̃(x̃) ·
[ Z

ΓB

[
Guu(x̃,x)q(x)−Guq(x̃,x)u(x)

]
dΓ

]
dΓ̃

+
Z

ΓI

δλ2(x) · [uF(x)−u(x)
]

dΓ = 0 (55)

where q(x) = q(x) along ΓBq, u(x) = u(x) along ΓBu and
q(x) = λ2(x) along ΓI .

Through a regularization of the singular kernels (here the
one detailed in Frangi, Novati, Springhetti and Rovizzi
(2002) has been adopted), the limit process for Γ̃B → ΓB

can be performed and eqs. (27)-(29) are obtained. Varia-
tion δλ2(x) along ΓI is chosen as follows:

δλ2(x) = − f̃(x), (56)

so that eq. (55) reads:

Z

ΓI

f̃(x) ·uF(x)dΓ− 1
2

Z

ΓI

f̃(x) ·u(x)dΓ

=
Z

ΓI

f̃(x̃) ·
Z

ΓB

[
Guu(x̃,x)q(x)+

∇r ·n(x)
4πr2 u(x)

+Guϕ(x̃,x) : R[u](x)
]

dΓdΓ. (57)

This is recognized to be the modified version of eq. (26)
involved in the coupling procedure, i.e. the equation
which, after discretization, gives rise to the second row
of the final equation system (41). Thus all the equations
used in the SGBEM-FEM coupling procedure have been
shown to stem from a variational approach based on an
augmented potential energy functional.

6 Numerical examples: 3D elastoplasticity

The weak SGBEM-FEM coupling scheme developed in
Section 4 for elasticity has been implemented into a
step-by-step procedure for elastoplastic evolutive analy-
sis. Elastoplastic problems with limited spread of plas-
tic strains lend themselves to a coupled approach: FE
equations are adopted over the region where plasticity
is bound to develop (with enforcement of the constitu-
tive law at Gauss points), while BE equations are written
over the complementary elastic region. Here an elastic-
perfectly plastic material obeying the von Mises yield
criterion has been considered with an associated flow
rule. The global equation system (41), in incremental
form, is solved at each iteration within a load step using a
tangent FE stiffness matrix K (see e.g. Simo and Hughes
(1998) for further details on computational aspects).

Two numerical examples are presented hereafter. In view
of the adopted weak enforcement of the transmission
conditions on ΓI , the BE and the FE mesh do not need to
satisfy any matching condition at the interface. Quadratic
isoparametric FEs and BEs are used for both examples.

6.1 Thick hollow sphere under internal pressure

The pressurized thick-walled elastic-plastic spherical
shell depicted in Fig. 5 is addressed; the problem, charac-
terized by spherical symmetry, admits an explicit analytic
solution, see for instance Lubliner (1990).

The shell has inner and outer radius of 100mm and
300mm, respectively, and the material elastic moduli are
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a

c

b

plastic region

p

elastic region

Figure 5 : Pressurized thick hollow sphere: elastic-
plastic behavior

E = 206 · 103 MPa, ν = 0.3, while the yield stress is
σy = 360MPa. Two different meshes illustrated in Fig. 6

Mesh 1 FEs BEs

Mesh 2 FEs BEs

Figure 6 : Meshes 1, 2 and the model for the interface

have been used (for symmetry reasons only one eighth of
the whole sphere has been analyzed), with a piecewise
plane interface ΓI :

• mesh 1: 1235 nodes, 3462 degrees of freedom, with
48 BEs and 192 FEs;

• mesh 2: 3615 nodes, 10347 degrees of freedom,
with 108 BEs and 648 FEs.

Hexaedral FEs extend from the inner surface, r = a, to
ΓI , while quadrilateral BEs are used for the outer portion.
The internal pressure is increased from zero to 500MPa;

for this load, the elastic-plastic interface (c = 149.54mm)
lies inside ΩF . Fig. 7 and Fig. 8 show the numerical
results in terms of radial displacement and von Mises
equivalent stress (the latter through the thickness of the
FE subdomain).
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Figure 7 : Displacement along the radius shown in the
inset for p = 500MPa
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Figure 8 : von Mises equivalent stress (FE subdomain)
for p = 500MPa

6.2 Simply supported notched beam

As second example, the simply supported notched beam
of Fig. 9 is considered; the geometry of the notch is
shown in Fig. 10 (all lengths are expressed in mm).

As in the preceding example, the material is character-
ized by: E = 206 · 103MPa, ν = 0.3 and σy = 360MPa.
Since no analytic solution is available for this example, a
numerical reference solution is generated by means of a
commercial FE package (Ansys 9.0) utilizing a very fine
mesh (85844 nodes, 19540 hexaedral quadratic elements,
255528 degrees of freedom) for the discretization of one
half of the beam. It turns out that the first yielding takes
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Figure 9 : Notched beam geometry

8,76

10

r = 1

Figure 10 : Detail of the notch

place at the notch for a load of about 8MPa; as the load
grows, plasticity develops first around the notch and, for
higher load levels, also in the region below the applied
load; the limit load is around 30.5MPa. The two BE and

Mesh 1

Mesh 2

FEs BEs

FEs BEs

Figure 11 : Meshes 1, 2 and detail of the interface

FE meshes used in the analysis with the coupling proce-
dure are depicted in Fig. 11 and are characterized by:

• mesh 1: 7362 nodes and 21387 degrees of freedom,
pertaining to 122 triangular BEs and 4144 tetrahe-
dral FEs;

• mesh 2: 4775 nodes and 14211 degrees of freedom,
pertaining to 88 quadrilateral BEs and 896 hexae-
dral FEs.

In both cases the interface ΓI is a plane surface.

The overall behavior of the beam is represented by the
load-displacement curve of Fig. 12: the good agreement
between the FE reference solution and the SGBEM-FEM
solutions is evidenced. For p = 27MPa a comparison of
vertical displacement along the upper edge of the beam
is shown in Fig. 13; the percentage error in terms of the
maximum displacement is less than 2.4% and 1.6% for
mesh1 and mesh 2, respectively. For the same load level,
the von Mises equivalent stress obtained in the reference
solution and using the SGBEM-FEM technique is repre-
sented by contour maps in Fig. 14 and Figs. 15-16, re-
spectively.
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(p = 27 MPa)
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Figure 14 : Numerical reference solution: von Mises
equivalent stress (p = 27 MPa)

Figure 15 : SGBEM-FEM mesh 1: von Mises stress
(p = 27 MPa)

7 Conclusions

A procedure for a weak coupling between SGBEM and
FEM is presented, both for 2D potential problems and
3D elasticity; a fully symmetric global coefficient matrix
is directly generated. The procedure allows to adopt a
completely independent modeling of the FE and BE sub-
domains: no matching of the nodes is required on the
interface; this allows a greater flexibility in the model-
ing, which can be useful in various contexts. A computer

Figure 16 : SGBEM-FEM mesh 2: von Mises stress
(p = 27 MPa)

code has been implemented for both potential 2D prob-
lems and elastoplastic 3D problems with material non-
linearity confined to the FE subdomain. The numerical
results confirm the effectiveness of the proposed proce-
dure.
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