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Meshfree Solution of Q-tensor Equations of Nematostatics Using the MLPG
Method

Radek Pecher1, Steve Elston, and Peter Raynes

Abstract: Meshfree techniques for solving partial dif-
ferential equations in physics and engineering are a pow-
erful new alternative to the traditional mesh-based tech-
niques, such as the finite difference method or the finite
element method. The elimination of the domain mesh
enables, among other benefits, more efficient solutions
of nonlinear and multi-scale problems. One particular
example of these kinds of problems is a Q-tensor based
model of nematic liquid crystals involving topological
defects.
This paper presents the first application of the meshless
local Petrov-Galerkin method to solving the Q-tensor
equations of nematostatics. The theoretical part intro-
duces the Landau – de Gennes free-energy functional and
its meshfree minimisation subject to the given boundary
constraints. The theory is followed by two example mod-
els with simple distortion profiles, including a twisted
chiral nematic. The resulting profiles exhibit large local
gradients and a high degree of continuity even for few
semi-regularly distributed nodes, indicating the high ac-
curacy of the meshfree approach used.

keyword: Nematic liquid crystals, Meshfree mod-
elling, Tensor order parameter, Topological defects,
Meshless local Petrov-Galerkin method, MLPG

1 Introduction

Numerical modelling of physical processes is respon-
sible for many advances in science and technology.
Continuum-based partial differential equations (PDEs),
describing physical processes at the macroscopic scale,
have been numerically solved over the last half-century
almost exclusively by using some type of mesh-based
method: finite difference method (FDM), control volume
method (CVM), finite element method (FEM), bound-
ary element method (BEM), etc. In general, all of these

1 Department of Engineering Science, University of Oxford,
Parks Road, Oxford, OX1,3PJ, U.K. tel: +44 (0)1865 273044,
fax: +44 (0)1865 273905,email:radek.pecher@eng.ox.ac.uk

methods (including BEM) require that the spatial domain
of interest be divided into a number of small cells with
strict relations between the solution nodes. Since the
cell sizes and shapes directly control the discretisation
error, the mesh density and topology should closely con-
form to the variation in the solution quantity. This is en-
sured by adaptively refining the mesh and therefore cop-
ing with the inter-nodal constraints, which is both tricky
and costly, especially in a three-dimensional space.

A strong contender to complement the mesh-based meth-
ods is a newly emerging family of so-called meshless or
meshfree methods for solving PDEs. In particular, the
meshless local Petrov-Galerkin (MLPG) method, intro-
duced by Atluri and Zhu [Atluri and Zhu (1998)], is
a very promising new alternative to the FEM and may
soon appear in commercial codes. As a truly meshless
technique, the MLPG is formulated by means of a set of
nodes arbitrarily distributed throughout the domain of in-
terest. The nodes are all independent of each other and
can be conveniently added or removed according to the
solution requirements. In addition to the straightforward
h-refinement, the p-refinement is also more easily ap-
plied in MLPG than in FEM. Nevertheless, the MLPG
solution is smooth even with a linear polynomial basis,
unlike the solution of linear finite elements. For these and
other reasons, the MLPG is thought to be more accurate
than the FEM, and comparisons of results from the two
methods confirm this opinion (see e.g. [Atluri and Shen
(2002)] p.209, [Liu (2003)] p.236). The other obvious
practical benefit of eliminating the domain mesh is the
savings in manpower and software needed for designing
high-quality meshes.

The problems particularly suited for a meshfree solution
approach are those posing major difficulties to the mesh-
based methods: for example, problems involving large
local gradients and singularities, multi-scale problems,
strongly nonlinear problems, moving boundary prob-
lems, etc. The modelling of liquid crystal (LC) devices
combines several categories of such “difficult problems”,
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mainly due to the occurrence of topological defects that
can play an important role in the switching of some de-
vices.

This paper is divided into six sections including this in-
troduction. Section 2 presents a brief overview of ne-
matic liquid crystals, their mathematical description and
the equations of static equilibrium in an LC-device. Sec-
tion 3 explains the conversion of the governing PDE of
Section 2 into its approximate integral form known as the
discrete local weak form (DLWF). The DLWF formula-
tion is the first step of the MLPG solution procedure fur-
ther described in Section 4. The theory is followed by
the results of two solved example problems summarised
in Section 5. Finally, Section 6 reviews the main findings
of Section 5 and suggests future extensions of the current
work.

2 Equations of Nematostatics

Nematic liquid crystals are liquid compounds that exhibit
an increased orientational order among their molecules
as compared to isotropic liquids. The quantity describ-
ing the amount of orientational order at any given point
in space and time is called the scalar order parame-
ter (SOP), S(x, t). The preferred average direction of a
group of elongated molecules at {x, t} is represented by
a unit vector n̂(x, t) called the director. If θm is the an-
gle between the director and the long axis of each of the
molecules, see Figure 1, then the scalar order parameter
may be expressed [de Gennes and Prost (1993)] as the
spatial – temporal continuum average

Figure 1 : Group of molecules of nematic LC compound
5CB.
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based on quadrupolar interactions between the
molecules.

A more general and compact description of an LC-state,
rather than the pair {S, n̂}, is in terms of the tensor order
parameter (TOP), Q(x, t), also known as the Q-tensor:

Q = S1 (n̂⊗ n̂)+S2 (m̂⊗m̂)− 1
3 (S1 +S2)I

=

⎛
⎜⎜⎝

q1 q2 q3

q2 q4 q5

q3 q5 −q1 −q4

⎞
⎟⎟⎠ . (2)

Q is a symmetric traceless tensor with five independent
components qi in the 3D-space. It allows for biaxiality
of the LC-system by including two SOP – director pairs,
namely {S1, n̂} and {S2,m̂}.

Any change of the director distortion is associated with
an increase of energy, and therefore the lowest energy
state normally corresponds to the uniform director field.
This is not the case, however, for the so-called chiral ne-
matic or cholesteric liquid crystals which spontaneously
twist around an axis normal to their director field, see
Figure 2. The resulting helical structure is mathemati-

Figure 2 : Helical structure of chiral nematic LCs.

cally described in terms of the wave-vector q0 also known
as the permanent twist. If q0 is zero, the liquid crystals
are called achiral nematic or simply nematic.

The excess free-energy density (FED) corresponding to
the spatial variation of the scalar director field may be
expressed [Oseen (1933), Frank (1958)] as

Fe =
k11

2
(∇· n̂)2 +

k22

2
(n̂ ·∇× n̂−q0)

2

+
k33

2
(n̂×∇× n̂)2

+
k22 +k24

2

[
tr
(
(∇n̂)2

)
− (∇· n̂)2

]
(3)

and is called the elastic FED. The material constants k11,
k22, k33 and k24 relate to the splay, twist, bend and saddle
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splay, respectively. This purely n̂-based form of Fe, also
referred to as Frank-Oseen elastic energy density, does
not take into account biaxiality and variation of the order
parameter.

The more general, Q-based form of the elastic FED,
which does allow for biaxiality and SOP-variation, and
therefore more rigorously characterises topological de-
fects, is the following sum [Berreman and Meiboom
(1984), Mori, Gartland, Kelly, and Bos (1999)] of six
terms:
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1
2 Li Gi,
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where Seq is the bulk equilibrium uniaxial scalar order pa-
rameter at the temperature of k-constants’ measurement,
here simply referred to as the equilibrium SOP. The elas-
tic constants Li are more-or-less temperature indepen-
dent, whereas the temperature dependence of k-constants
is dictated by that of the order parameter.

Equation (4) differs from [Mori, Gartland, Kelly, and Bos
(1999)] by the extra term L5 G5 which has been added in
order to properly model chiral nematics in terms of Q. It
is important to notice that the formulation of Eq. (4) is a
version of the Q-based Fe that exactly simplifies to the
n̂-based Fe of Eq. (3) for S1 = Seq and S2 = 0.

Since the (nonconservative) scalar order parameter is al-
lowed to vary in the Q-tensor approach, its magnitude it-
self should also affect the total energy of the LC-system.
Landau [Landau and Lifshitz (1980)] introduced the cor-
responding free-energy density, called thermotropic,

Ft =
a(ΔT)

2
tr
(
Q2) +

b
3

tr
(
Q3) +

c
4

[
tr
(
Q2)]2

, (5)

which models the transition between the nematic and
isotropic states as a function of temperature difference
ΔT = T − T ∗ from the temperature T ∗ at which the
isotropic state is no longer stable. If S denotes the uni-
axial SOP S1, while S2 is assumed zero, the global min-
imiser Seq of the function Ft(S) for any non-positive value
of ΔT is obtained from the material constants a, b and c
as

Seq =
−b+

√
b2 −24ac
4c

. (6)

Figure 3 shows four Ft(S) curves for various ΔT ’s and
the following values2 of the thermotropic constants:

Figure 3 : Isothermal curves Ft(S) for various values of
ΔT .

a = 3ΔT , b = −15 , c = 25 . (7)

The particular curve corresponding to ΔT = −1, for
which Seq = 0.6, represents the isothermal characteris-
tic Ft(S) of a stable nematic state chosen for the actual
computations in Section 5.

The total free-energy density is a sum of the thermotropic
and elastic contributions,

F(Q,∇Q,x, t) = Ft +Fe , (8)

2 Throughout this paper, if not specified otherwise, all quantities are
defined as dimensionless, based on a characteristic length at the
nanometres scale.
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Figure 4 : Quartic-spline weight function in (i) 1D and (ii) 2D.

while omitting other contributions, such as those related
to externally applied fields or device surface treatments
which are not considered in this paper.

The free energy of an LC-device, also referred to as the
Landau – de Gennes free-energy functional, is the inte-
gral

F =
Z

Ω
F(Q,∇Q,x, t)dΩ (9)

where Ω is the global spatial domain of interest.

The Dirichlet-type boundary condition assumed for the
entire boundary Γ of the domain Ω is simply

Q(x) = Q(x) , x ∈ Γ . (10)

That corresponds to an infinite anchoring strength of the
liquid crystal alignment in the preferred directions at the
device walls, a case known as strong anchoring.

Static equilibrium of the LC-system under consideration
is found by minimising the functional of Eq. (9) subject
to the constraint of Eq. (10); this is equivalent to solving
the following Euler equations:

∇·gi(q j,∇q j,x) + fi(q j,∇q j,x) = 0 ,

x ∈ Ω , i = 1, . . . ,5 ,

fi =
∂F
∂qi

, gi = − ∂F
∂(∇qi)

. (11)

Functions f and g may be called the “internal-force func-
tion” and the “gradient function”, respectively. Equa-
tion (11) represents five nonlinear second-order partial
differential equations describing the LC-device problem
to be solved in terms of five unknown components qi of
the tensor order parameter Q. The associated boundary
condition, Eq. (10), is rewritten using the qi-notation as

qi(x) = qi(x) , x ∈ Γ , i = 1, . . .,5 . (12)

3 Discrete Local Weak Form of PDE

The initial step in solving the partial differential equa-
tions (11) and the boundary conditions (12) using the
meshfree procedure of MLPG is the formulation of the
corresponding approximate integral equation. In order to
find the approximate numerical solutions q̃i of the gov-
erning equations, for any suitable approximation scheme
specified later, the domain integral of the weighted PDE-
residual is forced to zero, as follows3

Z
Ω

w(∇· g̃+ f̃ )dΩ = 0 . (13)

In MLPG, the weight function w, or the so-called test
function, is different from the trial function used to ap-
proximate the solution q. Such an approach is known
within the FEM community as the Petrov-Galerkin
method (giving MLPG its name) and leads to non-
symmetric solution matrices.

The principal role of the test function w in Eq. (13) is
to restrict the region where the PDE-residual is forced to
zero to a small section of the global domain Ω. If also the
trial function has a similar local character, the resulting
solution matrix is guaranteed to be sparse, which is a cru-
cial efficiency requirement for any PDE solution method.
From a variety of suitable candidates, bell-shaped func-
tions [Liu (2003)] provide the most “natural” and opti-
mum weighting. Our choice is the quartic-spline weight
function

w(r ≡ ‖x−xi‖) =

{
(1+3r/R)(1− r/R)3 for r < R

0 for r ≥ R

(14)

3 From this point onwards, the five equation – unknown pairs in
Eqs. (11) and (12) will be treated jointly as a single pair without
specifying its index i.
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depicted in Fig. 4.

Upon integrating the first term in Eq. (13) by parts and
taking into account the local property of the suitably cho-
sen test function w, the integral equation becomes

Z

SN(xi,Ri)

wi f̃ dω −
Z

SN(xi,Ri)

∇wi · g̃ dω = 0 for node i (15)

where wi is the weight function related to node i posi-
tioned at xi. Eq. (15) is based on the assumption that
the local domain of nonzero wi is an N-sphere, N being
the number of spatial dimensions. The surface integral
from the integration by parts vanishes because of the zero
weight wi at the N-sphere surface. Similarly, the domain
of integration reduces from the global domain Ω to the
local domain SN(xi,Ri), or the N-sphere of radius Ri cen-
tred at point xi.

Eq. (15) is the discrete local weak form of the partial dif-
ferential equation (11). “Discrete” because of the ap-
proximations based on nodes (the discrete representation
of continuous space), “local” because of the local inte-
gration domain, and “weak” because the differentiability
requirement on g̃ has been weakened by shifting the di-
vergence from g̃ to w, cf. Eqs. (13) and (15).

It should be added that certain DLWF formulations
found in the MLPG literature further contain additional
terms related to the implementation of the Dirichlet-type
boundary conditions. We prefer the more efficient and
simpler approach of [Li, Shen, Han, and Atluri (2003)]
mentioned in the following section.

4 Solution Procedure of MLPG1

The meshless local Petrov-Galerkin method solves the
governing partial differential equation, Eq. (11), in the
form of the corresponding approximate integral equa-
tion, Eq. (15), the discrete local weak form of the
PDE. The solution quantity, q in this case, is approxi-
mated by means of the so-called moving least squares
(MLS) method [Breitkopf, Rassineux, Touzot, and Vil-
lon (2000)], which is a powerful data-fitting technique
based on a set of nodes arbitrarily distributed within an
N-dimensional space. Local character and fitting smooth-
ness of the MLS are ensured by weighting the contribu-
tions from all the nodes via a suitable function, such as
the quartic spline of Eq. (14). In this paper, the same
quartic-spline weight function is used both as the test
function wi in Eq. (15) and as the MLS-weight of the trial

function Ψj of the solution approximation

q̃(x) =
M

∑
j=1

Ψj(x) q̃ j . (16)

This choice corresponds to the original version of the
MLPG, referred to as MLPG1 [Atluri and Shen (2002)].
In Eq. (16), M is the number of nodes covered by the
so-called support domain representing a nonzero MLS-
weight for any given reference point x, and q̃ j are the
nodal parameters of the MLS-based solution approxima-
tion.

The actual solution procedure consists of evaluating
Eq. (15) consecutively for all, say K, nodes inside the
global spatial domain Ω, thereby generating a system of
K nonlinear algebraic equations4 for K unknowns q̃k:

hk(q̃1, q̃2, . . ., q̃K+L) = 0 ,

xk ∈ Ω , k = 1, . . .,K . (17)

Efficient evaluation of the two integrals in Eq. (15) is
achieved by applying the specialized Gaussian cubature
formulae of [Pecher (2005)] preventing a severe loss of
accuracy associated with the mapping between radial and
Cartesian coordinates when using the standard quadra-
ture formulae.

The remaining L unknowns q̃l corresponding to all the
nodes on the global boundary Γ are obtained by directly
assigning the boundary condition (12) to the solution ap-
proximation (16) as

M

∑
j=1

Ψj(xl) q̃ j −q(xl) = 0 , xl ∈ Γ , l = 1, . . .,L .

(18)

This generalised assignment easily overcomes the prob-
lem with non-interpolating nature of the MLS: Ψj(xl) 
=
δ jl .

The direct assignment of the Dirichlet-type boundary
condition through all L nodes on Γ, see Eq. (18), sim-
plifies and improves the DLWF formulation to that of
Eq. (15) for all K nodes inside Ω under one strict condi-
tion: The global boundary Γ must not intersect the local

4 Although generally dependent on all unknowns q̃i, including those
of the L boundary nodes, the system of equations has a sparse Jaco-
bian matrix due to the local character of the involved test and trial
functions.
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Table 1 : Optimum numbers of support nodes, M in
Eq. (16), in N spatial dimensions and for order O of the
MLS polynomial basis

N = 2 N = 3

O = 1 O = 2 O = 1 O = 2

7 14 13 32

integration domain of any internal node k:

Γ ∩
K[

k=1

SN(xk,Rk) = /0 . (19)

This can be easily ensured [Li, Shen, Han, and Atluri
(2003)] by reducing the domain radius Rk accordingly.
Such a strategy is justified even for nodes very close to
the boundary due to the following reason:

Statement 1 Both the density of the nodes’ distribution
and the size of the local integration domain should pro-
portionally correspond to the variation of the solution
quantity.

Our computer implementation of Eqs. (17) and (18) sets
the radius Rk of the N-sphere SN(xk,Rk) to the average
distance between xk and its N +1 closest nodes. This
is followed by a possible adjustment of Rk for points xk

close to the global boundary in order to satisfy Eq. (19).

In a somewhat similar spirit, the size of the MLS sup-
port domain of a reference point x, namely the radius R
in Eq. (14), is coded in our software LCQuest1 as the dis-
tance to the (M+1)th node closest to x. The parameter
M in Eq. (16) is thus fixed for all points x, while the sup-
port domain radius R, implicitly defining the trial func-
tions Ψj [Pecher (2005)], varies according to the local
density of the nodes’ distribution. The optimum value
of M has been found by a thorough analysis of sym-
metries in various regular distributions of nodes in both
2D and 3D and for both linear and quadratic polynomial
bases of the MLS, as listed in Table 1. It is perhaps no
coincidence that these values correspond to the expres-
sion N

(
N+O

N

)
+O, since

(
N+O

N

)
represents the number of

monomials up to order O in N-D.

1 More details about the software can be found at
http://www.LCQuest.org/.

The primary advantage of the fixed-M approach is an in-
creased code efficiency due to eliminating all overhead
instructions associated with variable-size arrays. To-
day’s highly optimising compilers can unroll fixed-count
loops, heavily inline code and perform other optimisa-
tions based on the predetermined size of arrays. An
even higher level of code performance and flexibility
can be further achieved by employing recent advances
in the object-oriented numerics, especially the so-called
expression templates parameterised in terms of M.

5 Solved Example Problems

This section summarises the main results of two solved
example problems. Both problems represent a nematic
liquid crystal device with a unit-square domain in 2D
(i.e., assuming no variations along the z-axis normal to
the domain). A full-3D Q-tensor field, Eq. (2), is ob-
tained by solving Eqs. (17) and (18) using the procedure
described in Section 4 with the following specifications:
K + L = 576, M = 14 (i.e., N = 2, O = 2), Gaussian cu-
bature points: 4 (or m = 2, see [Pecher (2005)]), rela-
tive tolerance of the Newton-Krylov solver: 10−8. The
distribution of nodes was set up by randomly perturbing
a 24×24 point-lattice in both directions by 10% of the
inter-nodal distance. The total number of Newton steps
taken by the solver was five in both cases and the entire
computation of each problem took less than a minute on a
single Intel R© Xeon 3GHz processor PC running Linux
9 and GNU gcc 3.4.

The thermotropic constants of the (fictitious) liquid crys-
tal material considered in Example 2 are those given by
Eq. (7) with ΔT =−1, see also Fig. 3. Similar values,
only multiplied by 100, are assigned to Example 1 in or-
der to reduce the size of the resulting topological defect
and hence make the problem numerically more demand-
ing.

The elastic constants and chirality of the LC-material for
both problems are chosen as follows:

k11 = k22 = k33 = 1 ,

k24 = 0 ,

q0 =

{
0 in Example 1

−π
2 in Example 2

. (20)

This corresponds to the so-called “one-constant approxi-
mation” leading to simplifications in Eqs. (3) and (4). Al-
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0.043977

0.600023

Figure 5 : Resulting profiles of S1 and n̂ obtained by solving Example 1.

Figure 6 : Diagonal cross-section profile of S1 from Example 1.
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though the software LCQuest implements the fully gen-
eral form of Eq. (4), the choice of values as in Eq. (20)
makes it easier to analyse and verify the modelling re-
sults.

The results are presented in the form of combined den-
sity – vector plots5. The density plot illustrates the scalar
order parameter, S1 or S2, whereas the vector plot de-
picts the corresponding director, i.e. n̂ or m̂. The vector
plot uses shaded ellipses in an attempt to imitate prolate
spheroids in 3D oriented along the directors (note: no
polarity is indicated due to the equivalences n̂ = −n̂ and
m̂ =−m̂). The data sampling for both plots is carried out
on a regular point-lattice of size 70×70 for the density
plot and 24×24 for the vector plot. Thus, the sampling in
the vector plot is the same as the distribution of nodes for
both examples, while disregarding the imposed random
perturbations of the latter.

The rest of this section presents the descriptions and re-
sults of the two examples.

Example 1 The first example demonstrates the occur-
rence of a topological defect or “disclination” of strength
−1

2 (see e.g. [de Gennes and Prost (1993)] p.163+) as a
result of the following boundary conditions:

S1 = Seq , S2 = 0 , n̂ = (cosφ, sinφ, 0) ,

m̂: undefined, φ = −1
2 tan−1 1−2y

1−2x
,

(x,y) ∈ ∂([0,1]× [0,1]) . (21)

Figure 5 shows the resulting profiles of the pair {S1, n̂}.
The corresponding pair {S2,m̂}, not shown here for its
redundancy, exhibits the same shape as the S1-variation,
only scaled to interval [−0.278,0], and a uniform direc-
tor field: m̂ = (0,0,1). The results clearly show a sin-
gularity in the centre of the problem domain where the
director abruptly changes and the uniaxial SOP S1 ap-
proaches a zero value, i.e. the liquid crystal “melts”.
S1 in the defect core, however, never reaches zero and,
at the same time, S2 becomes minimum there as well,
i.e. the nematic becomes highly biaxial in the centre of
a half-strength disclination, which was analytically pre-
dicted by Schopohl and Sluckin [Schopohl and Sluckin
(1987)]. The apparent fluctuations of S1 near the defect’s
core are caused by the visualisation of the large gradi-
ents. The actual solution is in fact very smooth, as is

5 Each plot is the actual PostScript output from LCQuest, and hence
more details can be viewed by zooming in.

evident from the cross-section profile in Figure 6 along
the domain diagonal x = y.

Example 2 The second example investigates the effect
of chirality, or permanent twist, of a cholesteric liquid
crystal subjected to an imposed twist along the device
boundary. The boundary conditions are formulated as
follows:

S1 = Seq , S2 = 0 , n̂ = (0, cosθ, sinθ) ,

m̂: undefined, θ = 2πxy(1−y) ,

(x,y) ∈ ∂([0,1]× [0,1]) . (22)

In words, the twist angle θ is zero everywhere except the
right-hand-side boundary (x = 1) where it quadratically
varies between 0 at the ends and π

2 in the middle. Since
the domain width Δx is 1, the twist θ/Δx along the line
y = 1

2 is π
2 , which matches the permanent twist q0 of the

chiral nematic considered, see Eq. (20). Consequently,
the elastic free-energy density is minimum along this
line, and therefore also the melting of the LC should be
the least in this region. Exactly that may be observed in
the results from this example, as illustrated in Figures 7
and 8. The largest elastic distortions and hence the great-
est S1-reduction from its equilibrium value of 0.6 appear
in the two regions close to the right-hand-side corners
of the problem domain. The more interesting outcome
from this example, however, is the computed variation
of the biaxial part of the resulting Q-tensor field, namely
S2 and m̂ shown in Figure 8. A defect-like state can be
detected near x = [ 3

4 , 1
2 ] around the point of vanishing or-

der parameter S2, effectively indicating a uniaxial state
there. Furthermore, the director field m̂ is a complicated
combination of both twist and splay/bend, even though
the corresponding field n̂ is mostly a twist/bend with the
same handedness throughout the domain.

6 Conclusions

Reported in this paper is a successful attempt to imple-
ment a new method of numerical modelling of nematic
liquid crystal devices with higher accuracy and com-
putational efficiency while maintaining the high degree
of complexity of the underlying mathematical model.
For the first time in LC-modelling, the domain mesh
has been abandoned in favour of a novel, mesh-free ap-
proach to solving the partial differential equations de-
scribing LCDs. The method applied here to the Q-tensor
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0.405213

0.601065

Figure 7 : Resulting profiles of S1 and n̂ obtained by solving Example 2.

equations of nematostatics is the meshless local Petrov-
Galerkin method, which has the potential to compete
with the traditional finite difference and finite element
methods.

In the theoretical part of the paper, the fundamentals of
liquid crystal modelling, such as the descriptive tensor
quantity Q and the energies governing any LC-system,
have been discussed. Total-energy minimisation leads to
a set of five nonlinear PDEs accompanied by Dirichlet-
type boundary constraints of strong LC-anchoring at the
liquid crystal surface. MLPG solution of this mathemat-
ical model is achieved by formulating the discrete lo-
cal weak form of a generalised version of the five PDEs
and performing a node-collocation process that produces
the final system of nonlinear algebraic equations. The
Newton-Krylov solution of the algebraic system is the
meshfree numerical minimiser of the total static energy
in an LC-device.

The presented solution procedure of the meshless local
Petrov-Galerkin method is not explained here in its full
extent. Various details, such as those of the MLS tech-
nique or of the specialised Gaussian cubature formulae,
are left out from this paper, but can be found elsewhere,
[Breitkopf, Rassineux, Touzot, and Villon (2000), Pecher
(2005)]. On the other hand, the procedure is described in
terms of a general form of the PDE, not necessarily lim-
ited to the particular energies in liquid crystal devices.
The procedure also deviates from other MLPG descrip-
tions in certain details, e.g. the way of setting up sizes of
the MLS support domains.

The practical demonstration of the MLPG’s potential for
solving the Q-tensor equations of nematostatics is il-
lustrated by two example problems. The first problem
involves a splay/bend-induced topological defect in an
achiral nematic LC, while the second problem repre-
sents a chiral nematic LC subjected to a twist variation
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Figure 8 : Resulting profiles of S2 and m̂ obtained by solving Example 2.

along one of the boundaries. The MLPG solution of
the two problems, based on just 576 nodes and 4 cuba-
ture points per node, takes less than a minute on a PC
and appears correct according to both trends and values
across the computational domain. Although the com-
plexity of the mathematical model prevents analytical so-
lutions for comparison purposes, the accuracy of the nu-
merical solutions may be presumed high, based on the
overall smoothness and locally large curvature of the re-
sulting profiles. Considering the arbitrarily distributed
nodes in both examples, the full power of the meshfree
approach to modelling LC-devices will almost certainly
exceed the capabilities of the present mesh-based meth-
ods when the MLPG nodes are allowed to adapt them-
selves to the solution.

Formulation of an efficient algorithm for the adaptive
nodes’ re-distribution in a multi-region domain with
curved boundaries is one of the future directions of

our research work. Another important extension of the
present model is the implementation of additional contri-
butions to the total energy, such as the dielectric, flexo-
electric and surface energies. Still another major planned
improvement is the introduction of time-dependence into
the model, and a further addition of flow effects, eventu-
ally solving the so-called Beris-Edwards [Beris and Ed-
wards (1994)] equations of nematodynamics.
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