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Meshless Local Petrov-Galerkin (MLPG) Method for Shear Deformable Shells
Analysis

J. Sladek1, V. Sladek1, P. H. Wen2, M.H. Aliabadi3

Abstract: A meshless local Petrov-Galerkin (MLPG)
method is applied to solve bending problems of shear de-
formable shallow shells described by the Reissner theory.
Both static and dynamic loads are considered. For tran-
sient elastodynamic case the Laplace-transform is used
to eliminate the time dependence of the field variables.
A weak formulation with a unit test function transforms
the set of governing equations into local integral equa-
tions on local subdomains in the mean surface of the
shell. Nodal points are randomly spread on that sur-
face and each node is surrounded by a circular sub-
domain to which local integral equations are applied.
The meshless approximation based on the Moving Least-
Squares (MLS) method is employed for the implementa-
tion. Unknown Laplace-transformed quantities are com-
puted from the local boundary integral equations. The
time-dependent values are obtained by the Stehfest’s in-
version technique.

keyword: Reissner theory, local boundary integral
equations, Laplace-transform, Stehfest’s inversion, MLS
approximation, static and impact loads

1 Introduction

In recent years the demand for construction of huge and
lightweight shell and spatial structures has been increas-
ing. Generally, numerical methods are required to solve
such analysis with complex loading and geometry, as
analytical solution is not possible. For the last three
decades, some numerical methods such as Finite Differ-
ence Method (FDM) and Finite Element Method (FEM)
have been successfully developed to solve the problems.
Boundary Element Method (BEM) has been emerged
as an alternative numerical method to solve plate and

1 Institute of Construction and Architecture, Slovak Academy of
Sciences, 84503 Bratislava, Slovakia

2 Department of Engineering, Queen Mary University of London,
Mile End, London E14 NS, U.K.
3 Department of Aeronautics, Imperial College London, Prince
Consort Road, London SW7 2BY, U.K.

shell problems. A review article devoted to early ap-
plications of BEM to shells is given by Beskos (1991).
The first application of BEM to shells is given by New-
ton and Tottenham (1968, 1979), where they presented
a method based on the decomposition of the fourth-
order governing equation into a set of the second-order
ones. Antes (1981) derived a BEM formulation for cir-
cular spherical shells. Tosaka and Miyake (1983) devel-
oped a direct BEM formulation for shallow shells. Lu
and Huang (1992) derived a direct BEM formulation for
shallow shells involving shear deformation. Wang and
Schweizerhof (1996a) applied boundary integral equa-
tion method for moderately thick laminated orthotropic
shallow shells. For elastodynamic shell problems it is ap-
propriate to use the weighted residual method with static
fundamental solution as a test function [Zhang and Atluri
(1986), Wang and Schweizerhof (1996b,c); Providakis
and Beskos (1991)]. Dirgantara and Aliabadi (1999) ap-
plied the domain-boundary element method for shear de-
formable shells under a static load. They used a test func-
tion corresponding to thick plate bending problem. Ling
and Long (1996) used this method for geometrically non-
linear analysis of shallow shells.

In spite of the great success of the FEM and the BEM as
accurate and effective numerical tools for the solution of
boundary value problems with complex domains, there
is still a growing interest in developing new advanced
numerical methods. In recent years, meshfree or mesh-
less formulations are becoming to be popular due to their
high adaptivity and low costs to prepare input data for
numerical analyses. A variety of meshless methods has
been proposed so far [Belytschko et al. (1994); Atluri
and Shen (2002); Atluri (2004)]. Many of them are de-
rived from a weak-form formulation on global domain
[Belytschko et al. (1994)] or a set of local subdomains
[Atluri et al. (2000, 2003); Han and Atluri (2004a,b),
Mikhailov (2002); Sellountos and Polyzos (2003); Sel-
lountos et al. (2005)]. In the global formulation back-
ground cells are required for the integration of the weak-
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form. In methods based on local weak-form formulation
no cells are required and therefore they are often referred
to as truly meshless methods. If a simple form is chosen
for the geometry of the subdomains, numerical integra-
tions can be easily carried out over them. The meshless
local Petrov-Galerkin (MLPG) method is a fundamental
base for the derivation of many meshless formulations,
since trial and test functions can be chosen from different
functional spaces. The method has been successfully ap-
plied also to plate problems [Sladek et al. (2002, 2003);
Long and Atluri (2002); Soric et al. (2004)].

The first application of meshless method to for plate/shell
problems was given by Krysl and Belytschko (1985,
1996), where they applied element-free Galerkin method.
The moving least-square approximation yieldsC1 conti-
nuity which satisfies the Kirchhoff hypothesis. Their re-
sults showed excellent convergence, however, their for-
mulation is not applicable to shear deformable plate/shell
problems. Recently, Noguchi et al. (2000) used a map-
ping technique to transform the curved surface into flat
two-dimensional space. Then, the element-free Galerkin
method can be applied also to thick plates or shells in-
cluding the shear deformation effects.

In the present paper, we have developed for the first time
a meshless method based on the local Petrov-Galerkin
weak-form to solve dynamic shell problems described
by the Reissner theory. Nodal points are randomly dis-
tributed over the mean surface of the considered shell.
Each node is the center of a circle surrounding this node.
Similar approach has been successfully applied to a thin
Kirchhoff plate [Sladek et al (2002, 2003)] and recently
also to thick plates [Sladek et al (2005)]. In this pa-
per, the Laplace-transform technique is applied to the
set of governing differential equations for elastodynamic
Reissner shell bending theory. A unit test function is
used in the local weak-form of the governing equations
for transformed fields. Applying the Gauss divergence
theorem to the weak-form, the local boundary-domain
integral equations are derived. The numerical integra-
tion of the domain integrals arising from the inertial term
and the initial values on a simple domain does not give
rise to difficulties if the meshless approximation based
on the Moving Least-Squares (MLS) method is utilized.
The quasi-static boundary value problems must be solved
for several values of the Laplace-transform parameter se-
lected for each considered time instant. The Stehfest’s
inversion method [Stehfest (1970)] is employed to obtain

the time-dependent solution.

Numerical results for circular and square shallow spher-
ical shells with different boundary conditions and sub-
jected to static and impulsive loads are presented to illus-
trate the accuracy and efficiency of the proposed method.
Comparisons of the present numerical results with the
FEM results show good agreement.

2 Local integral equations for shear deformable
shells

Consider an elastic shallow shell of the constant thick-
ness h and with its mid surface being described by x3 =
f (x1,x2)in a domain Ω with the boundary contour Γ in
the base plane x1 − x2 . The shell is subjected to a tran-
sient dynamic load qi(x, t). Using the Reissner‘s linear
theory of shallow shells [Reissner (1946)], the equilib-
rium equations may be written as

Mαβ,β(x, t)−Qα(x, t) =
ρh3

12
ẅα(x, t) ,

Qα,α(x, t)−kαβNαβ(x, t)+q3(x, t) = ρhẅ3(x, t)

Nαβ,β(x, t)+qα(x, t) = ρüα(x, t) x ∈ Ω , (1)

where ρ is the mass density, w3 represent the out-of-
plane deflection, while uα and wα denote the in-plane
displacements and the rotation in the xα -direction, re-
spectively, Mαβ represent the bending moments, Nαβ are
normal stress resultants, qi are body forces, and Qα are
the shear forces. Latin indices vary from 1 to 3 and Greek
indices vary from 1 to 2. The dots indicate differentia-
tions with respect to time t. The principal curvatures of
the shell in x1 and x2 are denoted by k11 and k22, respec-
tively and k12 = k21 = 0 .

The bending momentsMαβ , normal force stressNαβ , and
the shear forces Qα are expressed in terms of the ro-
tations, the lateral displacement and in-plane displace-
ments uα as

Mαβ =
1−ν

2
D

(
wα,β +wβ,α +

2ν
1−ν

wγ,γδαβ

)
,

Qα =
D(1−ν)

2
λ2 (wα +w3,α) ,



Meshless Local Petrov-Galerkin (MLPG) Method 105

Nαβ =
1−ν

2
B

(
uα,β +uβ,α +

2ν
1−ν

uγ,γδαβ

)

+B
[
(1−ν)kαβ +νδαβkγγ

]
w3 , (2)

where D = Eh3/12(1−ν2) denotes the bending stiffness
of the shell, with E being Young’s modulus, νbeing Pois-
son’s ratio, and λ2 = 10/h2 is the shear correction factor
of the Reissner theory, B = Eh/(1− ν2) is the tension
stiffness.

To eliminate the time variable t in the equilibrium equa-
tions (1), the Laplace-transform

L [ f (x, t)] = f (x, s) =
∞Z

0

f (x, t)e−stdt (3)

is applied to this system of governing equations. Then,
one can write

Mαβ,β(x, s)−Qα(x, s) =
ρh3

12
s2wα(x, s)−Rα(x, s) (4)

Qα,α(x, s)−kαβNαβ(x, s) = ρhs2w3(x, s)−R3(x, s), (5)

Nαβ,β(x, s) = ρs2uα(x, s)−R′α(x, s) , (6)

where s is the Laplace-transform parameter, Rα ,R3

andR
′
α are given by

Rα(x, s) =
ρh3

12
[swα(x)+ ẇα(x)] ,

R3(x, s) = q3(x, s)+ρhsw3(x)+ρhẇ3(x) ,

R
′
α(x, s) = qα(x, s)+ρsuα(x)+ρu̇α(x) ,

with wk(x), uα(x) and ẇk(x), u̇α(x) being the initial val-
ues and the initial velocities of the considered quantities.

A rather simple case can be presented by steady-state har-
monic oscillations, when the time-dependence of all the
physical quantities is known a priori, since

A(x, t) = A∗(x,ω)e−iωt ,

where A∗(x,ω) is the amplitude of the corresponding
physical quantities and ω is the circular frequency of the
oscillations. Then, the governing equations (4) - (6) be-
come

M∗
αβ,β(x,ω)−Q∗

α(x,ω) = −ρh3

12
ω2w∗

α(x,ω) ,

Q∗
α,α(x,ω)−kαβN∗

αβ(x,ω)+q∗3(x,ω) = −ρhω2w∗
3(x,ω) ,

N∗
αβ,β(x,ω)+q∗α(x,ω) = −ρω2u∗α(x,ω). (7)

Comparing eqs. (7) with eqs. (4), (5) and (6), it is seen
that they are formally the same for s = −iω and for van-
ishing initial conditions. Therefore, the harmonic case is
not analysed separately in this paper.

Figure 1 : Local boundaries for weak formulation, the
domain Ωx for MLS approximation of the trial function,
and support area of weight function around node xi

Instead of writing the global weak-form for the above
governing equations, the MLPG methods construct the
weak-form over local subdomains such as Ωs , which is a
small region taken for each node inside the global domain
[Atluri (2004)]. The local subdomains overlap each other
and cover the whole global domain Ω (Fig. 1). The local
subdomains could be of any geometrical shape and size.
In the current paper, the local subdomains are taken to be
of circular shape. The local weak-form of the governing
equations (4), (5) and (6) for xi ∈ Ωi

s can be written as

Z

Ωi
s

[
Mαβ,β(x, s)−Qα(x, s)

−ρh3

12
s2wα(x, s)+Rα(x, s)

]
w∗

αγ(x)dΩ = 0 , (8)

Z

Ωi
s

[
Qα,α(x, s)−kαβNαβ(x, s)

−ρhs2w3(x, s)+R3(x, s)
]

w∗(x)dΩ = 0 , (9)
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Z

Ωi
s

[
Nαβ,β(x, s)−ρs2uα(x, s)+R′α(x, s)

]
u∗αγ(x)dΩ = 0,

(10)

wherew∗
αβ(x) , u∗αβ(x)andw∗(x)are weight (test) func-

tions.

Applying the Gauss divergence theorem to eqs. (8) - (10)
one obtains
Z

∂Ωi
s

Mα(x, s)w∗
αγ(x)dΓ

−
Z

Ωi
s

[
Mαβ(x, s)w∗

αγ,β(x)+Qα(x, s)w∗
αγ(x)

]
dΩ

−
Z

Ωi
s

(
ρh3

12
s2wα(x, s)−Rα(x, s)

)
w∗

αγ(x)dΩ = 0, (11)

Z

∂Ωi
s

Qα(x, s)nα(x)w∗(x)dΓ

−
Z

Ωi
s

[
Qα(x, s)w∗

,α(x)+kαβ(x)Nαβ(x, s)w∗(x)
]

dΩ

−
Z

Ωi
s

(
ρhs2w3(x, s)−R3(x, s)

)
w∗(x)dΩ = 0 , (12)

Z

∂Ωi
s

Pα(x, s)u∗αγ(x)dΓ

−
Z

Ωi
s

[
Nαβ(x, s)u∗αγ,β(x)

+
(

ρs2uα(x, s)−R
′
α(x, s)

)
u∗αγ(x)

]
dΩ = 0, (13)

where ∂Ωi
s is the boundary of the local subdomain and

Mα(x, s) = Mαβ(x, s)nβ(x),

Pα(x, s) = Nαβ(x, s)nβ(x)

are the Laplace-transforms of the normal bending mo-
ments and traction vector, and nα is the outward unit nor-
mal vector to the boundary. The local weak-forms (11) -
(13) are a starting point for derivation of local boundary-
domain integral equations with choosing appropriate test

functions. A unit step function can be used as the test
functions w∗

αβ(x) ,u∗αβ(x)andw∗(x) in each subdomain

w∗
αγ(x) = u∗αγ(x) =

⎧⎨
⎩

δαγ at x ∈ (Ωs ∪∂Ωs)

0 at x /∈ (Ωs ∪∂Ωs)
,

u∗(x) =

⎧⎨
⎩

1 at x ∈ (Ωs ∪∂Ωs)

0 at x /∈ (Ωs ∪∂Ωs)
. (14)

Then, the local weak-forms (11) - (13) are transformed
into simple local boundary-domain integral equations

Z

∂Ωi
s

Mα(x, s)dΓ−
Z

Ωi
s

Qα(x, s)dΩ

−
Z

Ωi
s

ρh3

12
s2wα(x, s)dΩ+

Z

Ωi
s

Rα(x, s)dΩ = 0 , (15)

Z

∂Ωi
s

Qα(x, s)nα(x)dΓ−
Z

Ωi
s

kαβ(x)Nαβ(x, s)dΩ

−
Z

Ωi
s

ρhs2w3(x, s)dΩ+
Z

Ωi
s

R3(x, s)dΩ = 0 , (16)

Z

∂Ωi
s

Pα(x, s)dΓ−
Z

Ωi
s

ρs2uα(x, s)dΩ+
Z

Ωi
s

R′
α(x, s)dΩ = 0.

(17)

In the MLPG method the test and the trial functions are
not necessarily from the same functional spaces. The test
function is chosen as the unit step function with support
on the local subdomain. The trial function, on the other
hand, is chosen to be the moving least-squares (MLS)
interpolation over a number of nodes randomly spread
within the domain of influence, as described in more de-
tails in the next paragraph.

3 Numerical solution

In general, a meshless method uses a local interpolation
to represent the trial function with the values (or the ficti-
tious values) of the unknown variable at some randomly
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located nodes. The moving least-squares (MLS) approx-
imation [Lancaster and Salkauskas (1981), Nayroles et
al. (1992), Atluri (2004)] used in the present analysis
may be considered as one of such schemes. Let us con-
sider a sub-domain Ωx of the problem domainΩ in the
neighbourhood of a point x for the definition of the MLS
approximation of the trial function around x (Fig. 1). To
approximate the distribution of the Laplace-transform of
the generalized displacements (rotations and deflection)
in Ωx over a number of randomly located nodes {xa} ,
a = 1,2, ...n , the MLS approximant wh

i (x, s)of wi is de-
fined by

wh(x, s) = pT (x)ã(x, s) , ∀x ∈ Ωx (18)

where wh =
[
wh

1, wh
2,wh

3

]T
, pT (x) =[

p1(x), p2(x), ..., pm(x)
]

is a complete mono-
mial basis of the order m, and ã(x, s) =[
a1(x, s), a2(x, s), ..., am(x, s)

]T
is composed of vec-

tors a j(x, s) =
[
a j

1(x, s), a j
2(x, s), a j

3(x, s)
]T

which are

functions of the space co-ordinates x = [x1, x2, x3]
T and

the transform- parameter s. For example, for a two-
dimensional (2-d) problem

pT (x) = [1, x1, x2] , for linear basis m = 3 (19a)

pT (x) =
[
1, x1, x2, (x1)2, x1x2, (x2)2] ,

for quadratic basis m = 6 (19b)

Usually quadratic monomials are sufficient and they have
been applied also in the numerical computations pre-
sented in this paper.

The coefficient vector ã(x, s) is determined by minimiz-
ing a weighted discreteL2 -norm defined as

J(x) =
n

∑
a=1

va(x)
[
pT (xa)ã(x, s)− ŵa(s)

]2
, (20)

where va(x) > 0 is the weight function associated with
the node a and the square power is considered in the
sense of scalar product. Recall that n is the number of
nodes in Ωx for which the weight function va(x)> 0 and
ŵa(s) are the fictitious nodal values, but not the nodal
values of the unknown trial function wh(x, s) in general.
The stationarity of Jin eq. (20) with respect to ã(x, s)

∂J/∂ã = 0

leads to the following linear relation between ã(x, s) and
ŵ(s)

A(x)ã(x, s)−B(x)ŵ(s) = 0, (21)

where

ŵ(s) =
[
ŵ1(s), ŵ2(s), ..., ŵn(s)

]T

A(x) =
n

∑
a=1

va(x)p(xa)pT (xa),

B(x) =
[
v1(x)p(x1), v2(x)p(x2), ....,vn(x)p(xn)

]
. (22)

The MLS approximation is well defined only when the
matrix A in eq. (21) is non-singular. A necessary condi-
tion to satisfy this requirement is that at least m weight
functions are non-zero (i.e., n ≥ m) for each sample
point x ∈ Ω and that the nodes in Ωx are not arranged
in a special pattern such as on a straight line.

The solution of eq. (21) for a(x, s) and a subsequent
substitution into eq. (18) lead to the following relation

wh(x, s) = ΦΦΦT (x) · ŵ(s) =
n

∑
a=1

φa(x)ŵa(s) , (23)

where

ΦΦΦT (x) = pT (x)A−1(x)B(x) . (24)

Similarly, one can obtain the approximation for the in-
plane displacements

uh(x, s) = ΦΦΦT (x) · û(s) =
n

∑
a=1

φa(x)ûa(s) . (25)

In eq. (23), φa(x) is usually referred to as the shape
function of the MLS approximation corresponding to the
nodal point xa . From eqs. (22) and (24), it can be seen
that φa(x) = 0 when va(x)= 0 . In practical applications,
va(x) is often chosen in such a way that it is non-zero
within the support domain of the nodal point xi . The
support domain of the nodal point xa is usually taken to
be a circle of the radius ri centred at xa (see Fig. 1). The
radius ri is an important parameter of the MLS approx-
imation because it determines the range of the interac-
tion (coupling) between the degrees of freedom defined
at considered nodes.
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A 4th-order spline-type weight function is applied in the
present work

va(x) =

⎧⎨
⎩

1−6
(

da

ra

)2
+8

(
da

ra

)3 −3
(

da

ra

)4
0 ≤ da ≤ ra

0 da ≥ ra
,

(26)

where da = ‖x−xa‖ and ra is the radius of the circular
support domain. The C1-continuity of the weight func-
tion is ensured over the entire domain, therefore the con-
tinuity condition of the bending moments and the shear
forces is satisfied. The size of the support ra should be
large enough to cover a sufficient number of nodes in the
domain of definition to ensure the regularity of the matrix
A. The value of n is determined by the number of nodes
lying in the support domain with radius ra .

The partial derivatives of the MLS shape functions are
obtained as [Atluri (2004)]

φa
,k =

m

∑
j=1

[
p j

,k(A−1B) ja + p j(A−1B,k +A−1
,k B) ja

]
, (27)

wherein A−1
,k =

(
A−1

)
,k represents the derivative of the

inverse of A with respect to xk , which is given by

A−1
,k = −A−1A,kA−1.

The directional derivatives of w(x, s)and u(x, s)are ap-
proximated in terms of the same nodal values as the pri-
mary fields by

w,k(x, s) =
n

∑
a=1

ŵa(s)φa
,k(x), (28)

u,k(x, s) =
n

∑
a=1

ûa(s)φa
,k(x). (29)

Substituting approximation (28) into the definition for
the normal bending moments

[
M1(x, s), M2(x, s)

]T and
using Eq. (2), one obtains

M(x, s) = N1

n

∑
a=1

Ha
1(x)w∗a(s) +N2

n

∑
a=1

Ha
2(x)w∗a(s)

= Nα(x)
n

∑
a=1

Ha
α(x)w∗a(s), (30)

where the vector w∗a(s)is defined as a column vector
w∗a(s) = [ŵa

1(s), ŵa
2(s)]T , the matrices Nα(x) are related

to the normal vector n(x) on ∂Ωs by

N1(x) =
[

n1 0 n2

0 n2 n1

]
and N2(x) =

[
n1 n1

n2 n2

]
,

and the matrices Ha
α are represented by the gradients of

the shape functions as

Ha
1(x) =

1−ν
2

D

⎡
⎣ 2φa

,1
0
φa

,2

0
2φa

,2
φa

,1

⎤
⎦ ,

Ha
2(x) = νD

[
φa

,1 0
0 φa

,2

]
.

Similarly one can obtain the approximation for the shear
forces

[
Q1(x, s), Q2(x, s)

]T

Q(x, s) =
1−ν

2
Dλ2

n

∑
a=1

[φa(x)w∗a(s)+Fa(x)ŵa
3(s)],

(31)

where Fa(x) =
[
φa

,1 , φa
,2

]T
, and the traction vector[

P1(x, s), P2(x, s)
]T

P(x, s) =
B
D

Nα(x)
n

∑
a=1

Ha
α(x)u∗a(s)

+G(x)
n

∑
a=1

φa(x)ŵa
3(s), (32)

where the vector u∗a(s)is defined as a column vector
u∗a(s) = [ûa

1(s), ûa
2(s)]T , and G(x)is given by

G(x) = B

[
(k11 +νk22)n1 +(1−ν)k12n2

(k22 +νk11)n2 +(1−ν)k21n1

]
.

We need to approximate also

kαβ(x)Nαβ(x, s) =
n

∑
a=1

Ka(x)T u∗a(s)

+C(x)
n

∑
a=1

φa(x)ŵa
3(s) , (33)
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where

Ka(x) =
B
2

⎡
⎣ 2(k11 +νk22)φa

,1 +(1−ν)(k12 +k21)φa
,2

2(k22 +νk11)φa
,2 +(1−ν)(k12 +k21)φa

,1

⎤
⎦

C(x) = B
[
(1−ν)kαβ(x)kαβ(x)+νkαα(x)kγγ(x)

]
.

Furthermore, in view of the MLS-approximations (30) -
(33) for terms occurring in the local boundary-domain
integral equations (15) - (17), we obtain the following
discretized local integral equations (LIEs)

n

∑
a=1

⎡
⎢⎣

Z

Li
s+Γi

sw

Nα(x)Ha
α(x)dΓ

−
(

1−ν
2

Dλ2 +
ρh3

12
s2

)
E

Z

Ωi
s

φa(x)dΩ

⎤
⎥⎦w∗a(s)

− 1−ν
2

Dλ2
n

∑
a=1

ŵa
3(s)

Z

Ωi
s

Fa(x)dΩ

= −
Z

Γi
sM

M̃(x, s)dΓ−
Z

Ωi
s

R(x, s)dΩ, (34)

1−ν
2

Dλ2
n

∑
a=1

⎡
⎢⎣

Z

∂Ωi
s

N(x)T φa(x)dΩ

⎤
⎥⎦w∗a(s)

−
n

∑
a=1

⎡
⎢⎣

Z

Ωi
s

Ka(x)T dΩ

⎤
⎥⎦ u∗a(s)

+
n

∑
a=1

ŵa
3(s)

⎛
⎜⎝1−ν

2
Dλ2

Z

∂Ωi
s

φa
,α(x)nα(x)dΩ

−
Z

Ωi
s

C(x)φa(x)dΩ−ρhs2
Z

Ωi
s

φa(x)dΩ

⎞
⎟⎠

= −
Z

Ωi
s

R3(x, s)dΩ, (35)

n

∑
a=1

⎡
⎢⎣ B

D

Z

Li
s+Γi

su

Nα(x)Ha
α(x)dΓ− ρs2E

Z

Ωi
s

φa(x)dΩ

⎤
⎥⎦u∗a(s)

+
n

∑
a=1

ŵa
3(s)

Z

Ωi
s

G(x)φa(x)dΩ

= −
Z

Γi
sP

P̃(x, s)dΓ−
Z

Ωi
s

R′(x, s)dΩ, (36)

in which E is the unit 2 × 2 matrix and N(x)T =
[n1(x), n2(x)]. Recall that the LIE (34)-(36) are consid-
ered on the sub-domains adjacent to the interior nodes xi

as well as to the boundary nodes on Γi
sM and Γi

sP. For
the source point xi located on the global boundary Γ the
boundary of the subdomain ∂Ωi

s is composed of the in-
terior and boundary portions Li

s and Γi
sM , respectively, or

alternatively of Li
s and Γi

sP, with the portions Γi
sM and

Γi
sPlying on the global boundary with prescribed bending

moments or stress vector, respectively, as shown in Fig.
1. The LIEs (34) and (36) are vector equations for two
components of rotations and in-plane displacements, re-
spectively. Then, set of LIEs (34)-(36) represents 5 equa-
tions in each node for five unknown components, two ro-
tations, deflection and two in-plane displacements.

It should be noted here that there are neither Lagrange-
multipliers nor penalty parameters introduced into the lo-
cal weak-forms (8) - (10) because the essential boundary
conditions on Γi

sw or Γi
sucan be imposed directly by using

the interpolation approximation (23) and (25):

n

∑
a=1

φa(x)ŵa(s) = w̃(xi, s) for xi ∈ Γi
sw, (37)

n

∑
a=1

φa(x)ûa(s) = ũ(xi, s) for xi ∈ Γi
su, (38)

where w̃(xi, s) and ũ(xi, s) are the Laplace transforms
of the generalized displacement vector prescribed on the
boundary Γi

sw and Γi
su , respectively. For a clamped plate

all three vector components (rotations and deflection)
and two components of in-plane displacements are van-
ishing at the fixed edge and only equations (37) and (38)
are used at the boundary nodes in such a case. However,
for a simply supported plate only the third component of
the generalized displacement vector (deflection) is pre-
scribed and the rotations are unknown. Then, equations
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(34) , (36) together with eq. (37) for the third vector com-
ponent are applied for a point on the global boundary. If
no geometrical boundary conditions are prescribed on the
part of the boundary, all tree local integral equations (34)
- (36) are applied.

The time-dependent values of the transformed quanti-
ties in the previous consideration can be obtained by an
inverse transform. There are many inversion methods
available for the inverse Laplace-transform. As the in-
verse Laplace-transform is an ill-posed problem, small
truncation errors can be greatly magnified in the inver-
sion process and hence lead to poor numerical results.
In the present analysis, the sophisticated Stehfest’s al-
gorithm [Stehfest (1970)] for the numerical inversion is
used. If f (s) is the Laplace-transform of f (t) , an ap-
proximate value fa of f (t) for a specific time t is given
by

fa(t) =
ln2

t

N

∑
i=1

vi f

(
ln2

t
i

)
, (39)

where

vi = (−1)N/2+i×
min(i,N/2)

∑
k=[(i+1)/2]

kN/2(2k)!
(N/2−k)!k!(k−1)!(i−k)!(2k− i)!

. (40)

In numerical analyses, we have considered N = 10 for
single precision arithmetic. It means that for each time t
it is needed to solve N boundary value problems for the
corresponding Laplace-transform parameters s = i ln2/t ,
with i = 1, 2, ..., N . If M denotes the number of the
time instants in which we are interested to know f (t) ,
the number of the Laplace- transform solutions f(s j) is
thenM×N .

4 Numerical examples

Numerical results are presented for shallow spherical
shells under static and impact loads with the Heaviside-
type time dependence. Simply supported and/or clamped
circular and square shells are analysed. In all considered
cases, the shells are subjected to a uniformly distributed
load.

4.1 Circular shallow spherical shell

In this example, shallow spherical cap as shown in Fig-
ure 2 is being analysed. The geometrical parameters of

a
R

x3

h

Figure 2 : Node distribution for numerical analyses of a
circular shallow spherical shell

the cap are as follows: thickness h = 0.1m, radius of the
circular domain a = 5m, curvatures kαβ = δαβ/R, and
we considered two analyses with respect to the radius of
the cap R = 100m and 1000m. The cap is loaded with
uniform pressure q3 = 1MPa. The following material
parameters are used in our numerical analysis: Young’s
modulus E = 105 N / m2 and Poisson’s ratio ν = 0.25 .
For the purpose of error estimation and convergence
studies the Sobolev-norm is calculated. The relative error
of the deflection is defined as

r =

∥∥wnum
3 −wbench

3

∥∥∥∥wbench
3

∥∥ , (41)

where

‖w3‖ =

⎛
⎝Z

Ω

w2
3dΩ

⎞
⎠

1/2

.
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Figure 3 : Relative errors and convergence rates for the
central deflection of circular shallow shells with simply
supported edge

As a benchmark solution, the BEM results [Dirgantara
and Aliabadi (1999)] have been used, where a fine mesh-
discretization with 16 boundary elements and 30 cells
is applied. To study the convergence of the method for
the shell with simply supported edges, three regular node
distributions with 99, 129, and 161 nodes, respectively,
are used for the MLS approximation of the quantities.
For a regular node distribution (see Fig. 2), the den-
sity of nodes can be characterized by the distance of two
neighbouring nodes s on the radius. The relative errors
and the convergence rates for deflections of two differ-
ent curved caps are given in Fig. 3. For the finest node
distribution with total 161 nodes the relative error for de-
flection is 0.39% in case of the curvature R/a = 200, and
0.9% for the curvature R/a = 20 . Variation of the de-
flection with the radius r along the radial coordinate is
given in Fig 4. The numerical results for the small curva-
ture of shell, R/a = 200, are in very good agreement with
those obtained by BEM and FEM. For FEM analysis we
have used 120 quadrilateral shell elements. For the more
curved shell, R/a = 20 (Fig. 4b), a good agreement of
the present results is observed only with BEM. The cen-
tral deflection obtained by FEM is about 9% lower than
BEM and MLPG results.

Also the clamped boundary conditions were used in nu-
merical analysis. The same geometrical and material pa-
rameters are considered here as for a simply supported
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Figure 4 : Variation of deflection with radius r for simply
supported shallow spherical shell: a) R/a = 200 b) R/a =
20

shell. The variation of the deflections along the radial
coordinate r is given in Fig. 5. A better agreement of
all 3 numerical results for both curvatures of the shell is
observed in this case than in the case of simply supported
shell. The same problem was also analysed by Zhang and
Atluri (1986).

4.2 Square shallow spherical shell

A shallow spherical shell with square contour is an-
alyzed here (Fig.6). The following geometrical and
material parameters are assumed: side length of the
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Figure 5 : Variation of the deflection along the ra-
dial coordinate for two clamped shallow spherical shells
with different curvatures R/a = 200 and R/a = 20
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Figure 6 : Geometry and boundary conditions used for
the square shallow spherical shell
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Figure 7 : Variation of the deflection along the x1-
coordinate for a clamped square shallow spherical shell
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Figure 8 : Variation of the bending moment M11 along
the x1-coordinate for a clamped square shallow spheri-
cal shell

plate a = 0.254m, thickness h = 0.0127m, mass den-
sity ρ = 7.166× 104 N / m3, modulus of elasticity E =
0.6895× 1010N / m2, and Poisson’s ratio ν = 0.3 . The
amplitude of the uniformly distributed load q0 is equal
to 2.07× 106 N / m2. For numerical analyses we have
used the regular node distribution with the total number
of 441 nodes. In the first, a clamped shallow shell un-
der a uniform static load is analysed. Variation of the
deflection along the x1-coordinate at x2 = a/2 is pre-
sented in Fig.7 for two shells with different curvatures

R/a = 5 and 10. Shell deflections are normalized to the
central deflection of the corresponding plate (R = ∞)
with wp

3(a/2) = 8.842 · 10−3m. Higher reduction of the
relative deflections is confirmed for the shell of higher
curvature (smaller radius R). The variation of the bend-
ing moment M11 along the x1-coordinate at x2 = a/2 is
presented in Fig.8. Again the bending moment is nor-
malized by the plate bending moment value at the cen-
ter of plate, Mp

11 = 3064Nm. The absolute values of
the bending moments at the shell center as well as on
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Figure 9 : Influence of the shell thickness on the central
deflection of a clamped square shallow spherical shell
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Figure 10 : Time-variation of central deflection of
clamped square shallow spherical shell with curvature
R/a = 10 and subjected to a suddenly applied uniform
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Figure 11 : Influence of the shell curvatures on the time
variation of central deflection of clamped square shal-
low spherical shell
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Figure 12 : Time-variation of central bending moment
M11 of clamped square shallow spherical shell with cur-
vature R/a = 10 subjected to a suddenly applied uni-
form load

the clamped side are slightly reduced for the shell with
higher curvature. The present MLPG results are com-
pared with those obtained by the FEM-NASTRAN com-
puter code with using 400 quadrilateral eight-node shell
elements. Good agreements for both the deflections and
bending moments are achieved, which verifies the accu-
racy of the present meshless method. It is interesting to
note the influence of the shell thickness on the deflections
computed within the Reissner theory. The variation of

the central deflection with shell thickness is presented in
Fig. 9, where the central deflection corresponding to the
Kirchhoff theory is given by wp

3K(a/2)= 0.00126qa4/D.
For a flat shell (plate) the deflection is slightly increas-
ing with plate thickness and the Reissner values are
larger than Kirchhoff ones within the whole thickness
interval. Recalling that only the Reissner-Mindlin the-
ory includes the effects of the shear deformations. For
a finite value of shell curvature the normalized deflec-
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Figure 13 : Influence of the shell curvatures on the time
variation of central bending moments M11 of clamped
square shallow spherical shell
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Figure 14 : Variation of deflection with x1-coordinate
for simply supported square shallow spherical shell un-
der a static uniform load
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Figure 15 : Variation of bending moment M11 with x1-
coordinate for simply supported square shallow spheri-
cal shell under a static uniform load
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Figure 16 : Time-variation of central deflections of sim-
ply supported square shallow spherical shell under a
Heaviside load

tion w3/wp
3K is growing rapidly with increasing the shell

thickness mainly for small values of thickness. However,
due to shell curvature its deflection cannot exceed the
plate deflection.

In the next example, the uniform loading with a Heavi-
side time variation is applied on the clamped square shal-
low spherical shell considered also in the previous exam-
ple. The time variation of the central deflection of the
shell with the curvature R/a = 10 is presented in Fig. 10.
The time variable is normalized by t0 = a2/4

√
ρh/D =

1.35 · 10−2s. Deflections are normalized as in the static
case by wp

3(a/2) = 8.842 · 10−3m. For the FEM analy-
sis 400 quadrilateral eight-node shell elements with 1000
time increments are used. One can observe a quite good
agreement of both the MLPG and FEM results. The in-
fluence of the shell curvature on the time variation of
central deflection is presented in Fig. 11. For a higher
curvature of the shell, the peak value of the deflection
is reached at an earlier time instant than for a more flat
shell. Similar to the static case, the maximum value
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Figure 17 : Time-variation of central bending moments
M11 of simply supported square shallow spherical shell
under a Heaviside load

of the deflection is lower for more curved shell. The
time-variation of the central bending moment M11 of the
clamped square shallow spherical shell with the curva-
ture R/a = 10 is presented in Fig. 12. Small discrepan-
cies of the present MLPG and FEM results are observed
here. However, the periodicity of the deflection oscil-
lations and the maximal values are almost the same for
both the results. The influence of the shell curvatures on
the time variation of the central bending moments M11 is
given in Fig. 13. The same conclusion can be made for
the bending moment as for the deflection.

Now, the same plate with simply supported boundary
conditions is analysed. In the first, the static uniform
load is considered like in clamped shell case. The vari-
ations of the deflections along thex1-coordinate at x2 =
a/2 are presented in Fig.14 for two shells with differ-
ent curvaturesR/a = 5 and 10. The deflections are nor-
malized by the central deflection of the corresponding
plate, wp

3 (a/2) = 28.29 · 10−3m. For comparison, both
the deflection and bending moment are computed also
by FEM. A very good agreement of the present MLPG
and FEM results is observed for static case. Variation of
the bending moment M11 along the x1-coordinate is pre-
sented in Fig. 15. The bending moment is normalized
by the plate bending moment value at the center of the
plate, Mp

11 = 6400Nm. Both the deflections and bending
moments are reduced with increasing the curvature of the
shell.

In the last numerical example, the impact load with
a Heaviside time variation is considered. The time-
variation of the central deflections of two simply sup-
ported square shallow spherical shells with curvatures
R/a = 5 and 10 are presented in Fig. 16. Similar to the
case of clamped shell, one can observe higher frequency
of the oscillations of deflections for the shell with higher
curvature. Conversely, the amplitude of the deflection is
reduced for such a shell. The same property can be ob-
served also for the bending moment in Fig. 17.

5 Conclusions

The following conclusions can be drawn from the present
study:

A meshless local Petrov-Galerkin method is applied to
solving dynamic shallow shell problems described by the
Reissner theory. Both the static and impact loads are con-
sidered. The influence of the shear deformation in the
Reissner theory on the shell deflection is analysed too.

The Laplace-transform technique is applied to eliminate
the time variable in the coupled governing differential
equations of the Reissner theory. The use of the Laplace-
transform in forced vibration analysis converts the dy-
namic problem to a set of quasi-static problems.

The analyzed domain is divided into small overlapping
circular subdomains. A unit step function is used as the
test function in the local weak-form. The derived lo-
cal boundary-domain integral equations are nonsingular.
The moving least-squares (MLS) scheme is adopted for
approximating the physical quantities.

The proposed method is an alternative to existing com-
putational methods. Its main advantage is the simplicity.
The present formulation possesses the generality of the
FEM. Therefore, the method seems to be promising to
analyze problems, which cannot be solved effectively by
the conventional BEM. Besides, the current formulation
is more flexible because it allows an adaptation of the
density of the nodal points. Hence, adaptive algorithms
can be applied.

The present method can be easily extended to orthotropic
shells. It is the subject of our further research.
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