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Structural Shape and Topology Optimization Using an Implicit Free Boundary
Parametrization Method

S.Y. Wang1,2 and M.Y. Wang3

Abstract: In this paper, an implicit free boundary
parametrization method is presented as an effective ap-
proach for simultaneous shape and topology optimiza-
tion of structures. The moving free boundary of a struc-
ture is embedded as a zero level set of a higher dimen-
sional implicit level set function. The radial basis func-
tions (RBFs) are introduced to parametrize the implicit
function with a high level of accuracy and smoothness.
The motion of the free boundary is thus governed by
a mathematically more convenient ordinary differential
equation (ODE). Eigenvalue stability can be guaranteed
due to the use of inverse multiquadric RBF splines. To
perform both shape and topology optimization, the steep-
est gradient method is used to determine a velocity func-
tion. To guarantee that the optimal solution be in the
feasible domain, a bi-sectioning algorithm is proposed
to obtain the Lagrange multiplier. The velocity function
is extended in a physically meaningful way and its dis-
continuity at the free boundary is eliminated by using a
smoothing filter. The usual periodic reinitialization pro-
cess is avoided to allow for the nucleation of new holes.
It is shown that simultaneous shape and topology opti-
mization can be obtained and a mass-conservative stable
evolution guaranteed due to the present extension veloc-
ities. The proposed method is implemented in the frame-
work of classical minimum compliance design and its ef-
ficiency and accuracy over the existing methods are high-
lighted. Numerical examples can demonstrate its excel-
lence in accuracy, convergence speed and insensitivity to
initial designs in structural shape and topology optimiza-
tion of two dimensional (2D) problems.

keyword: Topology optimization, shape optimization,
level set method, radial basis functions, gradient method.

1 Corresponding author, Email: smaws@nus.edu.sg.
2 Centre for Singapore-MIT Alliance, National University of Singa-
pore, E4-04-10, 4 Engineering Drive 3, Singapore 117576.
3 Department of Automation and Computer-Aided Engineering,
The Chinese University of Hong Kong, Shatin, NT, Hong Kong.

1 Introduction

Structural shape and topology optimization has become
an effective design tool for obtaining more efficient and
lighter structures. A structural optimum topology can
be arrived at by the optimal modifications of holes and
connectivities of the structural design domain, which is
actually implemented by redistributing material in an it-
erative and systematic manner [Akin and Arjona-Baez
(2001); Bendsøe and Kikuchi (1988); Wang and Tai
(2004)]. The topology optimization as a conceptual de-
sign tool has the highest importance in the developing
process of all structural optimization methods because
of its ability in achieving greatest savings [Rozvany
(2001); Bendsøe and Kikuchi (1988); Xie and Steven
(1993); Wang, Tai, and Wang (2006); Wang and Wang
(2005c)]. Topology optimization is even regarded as
the best method for solving the structural optimal de-
sign problem and for producing the best overall structure
[Tanskanen (2002)]. The shape optimization changes the
surface geometry in a manner that a homogenous stress
distribution is achieved. Usually, further improvements
due to the shape optimization is only possible with a great
effort with respect to time and costs. Structural shape and
topology optimization has been identified as one of the
most challenging task in structural design [Bendsøe and
Sigmund (2003)].

Recently, the level set methods, first introduced by Osher
and Sethian in [Osher and Sethian (1988)], have been ap-
plied to structural shape and topology optimization prob-
lems as an emerging and promising family of methods
based on the moving free boundaries [Sethian and Wieg-
mann (2000); Allaire, Jouve, and Toader (2004); Wang,
Wang, and Guo (2003); Wang and Wang (2004a)]. The
level set method itself is a simple and versatile method
for computing and analyzing the motion of an inter-
face in two or three dimensions and following the evo-
lution of interfaces [Sethian (1999); Osher and Fedkiw
(2002)]. Since these interfaces may easily develop sharp
corners, break apart, merge together and even disappear
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in a robust and stable manner, both shape and topological
changes in the structural design domain can be obtained
by taking the voids as a phase and the free boundary
as the dynamic interface and thus the level set method
can also be used in structural shape and topology opti-
mization as a free boundary-based alternative approach
to the conventional element-based structural optimiza-
tion methods such as the homogeneous approach first
proposed by Bendsøe and Kikuchi [Bendsøe and Kikuchi
(1988)] or its alternative the SIMP (Solid Isotropic Mi-
crostructure with Penalization) method [Bendsøe (1989);
Rozvany, Zhou, and Birker (1992)].

Sethian and Wiegmann [Sethian and Wiegmann (2000)]
are among the first researchers to extend the level set
method of Osher and Sethian [Osher and Sethian (1988)]
to capture the free boundary of a structure on a fixed Eu-
lerian mesh. The Von Mises equivalent stress, rather than
the more appropriate shape sensitivity, was employed to
improve the structural rigidity within the context of 2D
linear elasticity using the immersed interface method.
Osher and Santosa [Osher and Santosa (2001)] investi-
gated a two-phase optimization of a membrane modeled
by a linear scalar partial differential equation. The free
boundary was defined as the dynamic interface between
two constituents occupying a given design domain. The
level set method was combined with the shape sensitiv-
ity analysis framework, but without the context of lin-
ear or nonlinear elasticity. Wang, Wang and Guo [Wang,
Wang, and Guo (2003)] constructed the level set speed
(or velocity) function in terms of the shape of the bound-
ary and the variational sensitivity as a physically mean-
ingful link between the general structural topology opti-
mization process and the powerful level set methods. It
was also suggested that using the level set methods for
structural topology optimization has the promising po-
tentials in flexibility of handling topological changes, fi-
delity of boundary representation and degree of automa-
tion. The level set methods were further developed as
a natural setting to combine the rigorous shape varia-
tions into the conventional structural topology optimiza-
tion process in [Wang and Wang (2004a)]. Allaire, Jouve
and Toader [Allaire, Jouve, and Toader (2004)] also pro-
posed an implementation of the level-set methods for
structural topology optimization where the front veloc-
ity during the optimization process was derived from the
classical shape sensitivity analysis by using an adjoint
method and the front propagation was performed by solv-

ing the Hamilton-Jacobi equation. Furthermore, it was
shown that the final solution may strongly depend on
the initial design, though drastic topology changes dur-
ing the structural optimization process were allowed for.
In a multi-material design domain, the conventional level
set methods have been further developed in [Wang and
Wang (2004b)] as a “color level set” method to address
the problem of structural shape and topology optimiza-
tion. An implicit function vector was used to represent
different material phases more efficiently to avoid the
problem of overlap between material phases of a con-
ventional partitioning approach. In [Wang and Wang
(2005b)], the conventional level set methods were fur-
ther extended to a level set-based variational approach
for the optimal shape and topology design of heteroge-
neous objects using the multi-phase level set model in
[Vese and Chan (2002)] for digital image processing, in
which the promising features such as strong regularity in
the problem formulation and inherent capabilities of ge-
ometric and materials modeling have been obtained and
illustrated. In the conventional level set methods, the
governing Hamilton-Jacobi partial differential equation
(PDE) was often solved by a finite difference method us-
ing the upwind schemes [Sethian (1999); Osher and Fed-
kiw (2001); Osher and Fedkiw (2002); Wang, Wang, and
Guo (2003); Allaire, Jouve, and Toader (2004); Wang
and Wang (2004b)], however, the time step size may be
greatly constrained by a Courant-Friedrichs-Lewy (CFL)
condition [Sethian (1999); Osher and Fedkiw (2002)]
due to the explicit time integration schemes. To over-
come this drawback, a semi-Lagrangian method was de-
veloped in [Xia, Wang, Wang, and Chen (2005)]. The
level set Hamilton-Jacobi PDE was solved by an uncon-
ditionally stable semi-Lagrange scheme and it was re-
ported that a much larger time step size could be used
to save the computational time. More recently, Wang
and Wang [Wang and Wang (2005d)] explored the use
of RBFs for the level set-based structural topology opti-
mization. The implicit level set function was defined by
the multiquadric (MQ) RBF splines and the optimal front
propagation can be obtained by solving a nonlinear cou-
pled ODE. However, only some preliminary results were
illustrated and the more challenging issues such as appro-
priate choice of RBF splines and initial designs, control
of time step size in the time integration scheme, calcu-
lation of the Lagrange multiplier and determination of
extension velocities were not fully addressed.
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The distinct advantages of the level set methods based on
embedding the interface as the zero-level set of a higher-
dimensional function are well known. Generally, the
level set methods provide a smooth geometrical descrip-
tion of the interface and require a relatively simple imple-
mentation and their extension to three-dimensional (3D)
problems is straightforward [Peng, Merriman, Osher,
Zhao, and Kang (1999); Gómez, Hernández, and López
(2005)]. However, in applying a level set method for
structural shape and topology optimization, the numer-
ically complicated PDE solving procedures are usually
necessary since the implementation of the conventional
discrete level set methods requires appropriate choice
of the upwind schemes, extension velocity methods and
reinitialization algorithms, each of which may involve a
PDE to be solved [Sethian (1999); Osher and Fedkiw
(2001); Osher and Fedkiw (2002); Wang, Wang, and
Guo (2003); Allaire, Jouve, and Toader (2004); Wang
and Wang (2004b)]. In general, it is well known that
the PDEs are rarely easy to implement [Mitchell (2004)],
though some robust and accurate upwind schemes [Os-
her and Sethian (1988); Osher and Shu (1991); Jiang and
Peng (2000)], fast marching methods [Sethian (1999)]
and fast local level set methods [Peng, Merriman, Os-
her, Zhao, and Kang (1999); Gómez, Hernández, and
López (2005)] have been presented in the literature. Fur-
thermore, there is no nucleation mechanism to create
new hole in the conventional level set methods, since the
Hamilton-Jacobi equation is solved under a strict condi-
tion for numerical stability and reinitialization is applied
to the level set function to ensure its regularity [Sethian
(1999); Tsai and Osher (2003); Allaire, Gournay, Jouve,
and Toader (2004); Burger, Hackl, and Ring (2004);
Wang and Wang (2005d)]. Although some attempts have
been made to incorporate both the topological derivatives
and the shape derivatives into the level set methods to re-
solve this problem [Burger, Hackl, and Ring (2004); Al-
laire, Gournay, Jouve, and Toader (2004)], it is shown
to be difficult to switch between the topological deriva-
tives and the shape derivatives [Allaire, Gournay, Jouve,
and Toader (2004); Wang, Mei, and Wang (2004)] and to
handle surface functions [Burger (2004)]. Hence, the dis-
tinct advantages of the level set methods may be severely
limited due to the numerical considerations of discrete
computation for structural shape and topology optimiza-
tion.

The objective of this study is to develop a more ef-

ficient implicit free boundary parametrization method
as an effective level set-based alternative approach for
both structural shape and topology optimization. Inverse
multiquadric RBF splines are used to represent the im-
plicit level set function with a high level of accuracy
and smoothness. The original Hamilton-Jacobi PDE is
converted into a mathematically more convenient ODE
and the original time dependent initial value problem is
changed to a time dependent interpolation problem for
the initial values of the generalized expansion coeffi-
cients. In order to solve these coefficients, a collocation
formulation of the method of lines is presented to gen-
erate a set of coupled non-linear ODEs, which can be
readily solved by the existing ODE solvers. The periodic
reinitialization process is eliminated to allow for the nu-
cleation of new holes. The normal velocities at the free
boundary are chosen to perform a steepest gradient-based
shape and topology optimization. The normal velocity at
the free boundary of the structure is finally determined by
the strain energy density and a Lagrange multiplier. A bi-
sectioning algorithm based on an implicit scheme is pro-
posed to find the Lagrange multiplier to ensure that the
optimal solution is always in the feasible domain. The
extension velocities are obtained by extending the nor-
mal velocities at the free boundary to the whole design
domain and a linear smoothing filter is used to smooth
out the discontinuity at the free boundary. The present
method is implemented in the framework of topological
optimum of minimum compliance design that has been
extensively studied in topology optimization and its effi-
ciency and accuracy over the existing methods are high-
lighted. Numerical examples are chosen to illustrate the
success of the present method in accuracy, convergence
speed and insensitivity to initial designs in topology op-
timization of 2D problems.

2 Basic Formulation of the Conventional Level Set
Methods

Level set methods first devised by Osher and Sethian
(Osher and Sethian, 1988) have become popular recently
for tracking, modeling and simulating the motion of dy-
namic interfaces (moving free boundaries) in fluid me-
chanics, combustion, computer animation, material sci-
ence, crack propagation and image processing [Sethian
(1999); Osher and Fedkiw (2002)]. These interfaces,
which are usually the boundaries between different me-
dia, may develop sharp corners, break apart, merge to-
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(b) Implicit representation by Φ(x)

Figure 1 : Implicit representation of a 2×1 plate with a central hole.

gether or even disappear in an automatic way during the
course of evolution, according to their own geometries
or the laws of physics associated with the problem [Tsai
and Osher (2003)]. Level set methods are developed to
handle these topological changes by solving a particu-
lar class of PDEs–a hyperbolic PDE with first order time
derivatives, also called a Hamilton-Jacobi PDE.

Usually, a level set method includes an implicit data rep-
resentation of a dynamic interface, a set of Hamilton-
Jacobi PDEs that govern the motion of the interface, and
the corresponding implementations of numerical meth-
ods [Tsai and Osher (2003)]. The interface (front) that is
represented is generally called hypersurface or surface.
It is closed, nonintersecting and Lipschitz-continuous.
The surface is represented implicitly through a Lipschitz-
continuous level set function Φ(x), and the surface itself
is the zero isosurface or zero level set {x∈R

d |Φ(x)= 0}
(d = 2 or 3). The embedding Φ(x) of (d +1) dimen-
sion can be specified in any specific form, for example,
as a regular sampling on a rectilinear grid. Furthermore,
Φ (x) can be used to define the inside and outside regions
of the surface as follows:

Φ(x) = 0 ∀x ∈ ∂Ω∩D
Φ(x) < 0 ∀x ∈ Ω\∂Ω
Φ(x) > 0 ∀x ∈ (D\Ω)

(1)

where D ⊂ R
d is a fixed design domain in which all ad-

missible shapes Ω (a smooth bounded open set) are in-
cluded, i.e. Ω ⊂ D. Figure 1 illustrates this implicit rep-

resentation of the shape of a 2× 1 plate with a central
hole, in which the boundary of the central hole is repre-
sented by Φ(x) = 0. The local unit normal to the surface
n can be given by

n =
∇Φ
|∇Φ| , |∇Φ| =

√
∇Φ ·∇Φ (2)

In the level set methods, it is convenient to use the Heav-
iside step function H and the Dirac delta function δ de-
fined [Wang, Wang, and Guo (2003); Burger (2004)] as

H (Φ) =
{

1, Φ ≥ 0
0, Φ < 0

, δ(Φ) = H ′ (Φ) (3)

Then, the interior and the boundary Γ of a shape can be
described in terms of the level set function Φ(x) respec-
tively as

Ω = {x : H (−Φ (x)) = 1} , Γ = {x : δ(Φ (x)) > 0}
(4)

Furthermore, in the level set formulation, the volume in-
tegral of a function F(x) is defined as
Z

D
F(x)H(−Φ)dΩ

If F(x)≡ 1, this integral yields the volume V(Φ) as fol-
lows:

V(Φ) =
Z

D
H(−Φ)dΩ (5)
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To let the level set function dynamically change in time,
a continuous velocity field v, which is a function of posi-
tion x and some other geometrical or physical quantities,
is introduced and the evolution can be described as the
following Cauchy problem [Tsai and Osher (2003)]:

∂Φ
∂t

+v ·∇Φ = 0, Φ(x,0) = Φ0(x) (6)

where Φ0(x) embeds the initial position of the surface
and t the artificial time. According to Eq. (2), Eq. (6) can
be re-written using the normal velocity vn as

∂Φ
∂t

+vn|∇Φ|= 0, Φ(x,0) = Φ0(x) (7)

where

vn = v · ∇Φ
|∇Φ| (8)

It should be noted that Eqs. (6) and (7) are the usually
fully non-linear first order Hamilton-Jacobi or second or-
der degenerate parabolic equations, and with suitable re-
strictions, the theory of viscosity solutions can be applied
to guarantee the well-posedness of the Cauchy problem
[Crandall and Lions (1984); Sethian (1999); Osher and
Fedkiw (2002); Tsai and Osher (2003)]. To time ad-
vance the solutions, a common numerical practice is to
use a fixed grid to capture the surface. In this Eulerian
type approach the normal velocity vn defined at the sur-
face or front must be extended to the grid points either in
the whole design domain D [Allaire, Jouve, and Toader
(2004)] or a narrow band [Osher and Fedkiw (2002)].
The extension velocities are often obtained by a PDE
solving procedure such as the fast marching methods
[Sethian (1999)] in the conventional level set methods.
The choice of extension velocities can directly influence
the overall efficiency [Richards, Bloomfield, Sen, and
Calea (2001)].

In many situations, the level set function will develop
steep and/or flat gradients leading to problems in numer-
ical approximations [Peng, Merriman, Osher, Zhao, and
Kang (1999); Tsai and Osher (2003)]. It is thus needed
to reinitialize the level set function to resurrect the be-
havior of Φ(x) in the neighborhood of the front, while
keeping the zero location unchanged. Reinitialization is
usually applied as an auxiliary step, but it can be very im-
portant to guarantee a good approximation of the normal
or the curvature of the free boundary. For most appli-
cations, it is important to use a high order discretization

method in the reinitialization algorithms [Tsai and Osher
(2003)] since the location of the original interface may
be perturbed apparently by the numerical diffusion. Fur-
thermore, global reinitialization in the computational do-
main will prevent new holes from appearing. Thus, spe-
cial treatment must be taken if emergence of new holes
is of interest [Tsai and Osher (2003); Burger, Hackl, and
Ring (2004)].

Since a general analytical solution to the implicit func-
tion Φ(x, t) in the non-linear first order Hamilton-Jacobi
PDE (7) is usually unavailable, a numerical procedure
for solving the Hamilton-Jacobi PDE (7) is indispens-
able. This procedure requires appropriate choice of the
complicated PDE solving upwind schemes, reinitializa-
tion algorithms and extension velocity methods, which
may limit the utility of the level set methods as afore-
mentioned. Some of the limitations may become totally
undesirable in structural shape and topology optimiza-
tion. As above-mentioned, global reinitialization pre-
vents a level set function from creating new holes in the
interior of material regions [Sethian (1999); Tsai and Os-
her (2003); Burger, Hackl, and Ring (2004)], which will
make the final optimum severely dependent of the ini-
tial design [Allaire, Jouve, and Toader (2004)]. Another
major limitation lies in the discrete representation due to
the Eulerian approach used in the conventional level set
methods [Sethian and Wiegmann (2000); Osher and Fed-
kiw (2002); Allaire, Jouve, and Toader (2004); Wang,
Wang, and Guo (2003)]. Since the grid of the finite dif-
ference method in the Eulerian approach is fixed in space,
the geometry (or topology) can only be described by the
nodal values of Φ(x) and shape functions to ensure that
the space of achievable designs will be smooth enough
in shape [Belytschko, Xiao, and Parimi (2003); Wang,
Wang, and Guo (2003)]. Usually, only the implicit func-
tion Φ(x), rather than its partial derivatives, can be guar-
anteed to be continuous across the meshes because of
the notorious polynomial snaking problem that polyno-
mial interpolation in high dimensions can easily lead to
singular problems and cause derivative estimates to be
very poor [Kansa (1990); Kansa, Powerb, Fasshauerc,
and Ling (2004)]. The mesh spacing must be sufficiently
fine to capture the spatial partial derivative behavior ac-
curately and to avoid numerical artifacts contaminating
the solution. This makes the computation quite time and
memory consuming. Furthermore, the widely adopted
explicit time derivative approximation schemes are sub-



124 Copyright c© 2006 Tech Science Press CMES, vol.13, no.2, pp.119-147, 2006

ject to the time step restrictions dictated by the CFL
condition to guarantee a stable convergence [Osher and
Fedkiw (2002)]. In case that a sufficiently fine mesh is
adopted, time step sizes may be not chosen to satisfy the
accuracy requirements but rather to satisfy the CFL con-
dition, which will make the time step sizes overly small
and the computational cost unnecessarily too expansive
[Enright, Losasso, and Fedkiw (2005)].

Therefore, a better method is to preserve the topolog-
ical benefits of implicit representation of a level set
method while avoiding the drawbacks of using its dis-
crete samples on a fixed grid. To this end, the level
set method using the implicit RBF modeling first pro-
posed for topology optimization by the authors [Wang
and Wang (2005d)] is further developed for simultane-
ous shape and topology optimization of structures. The
implicit level set function Φ(t,x) is to be replaced by an
implicit free boundary representation method which pro-
vides a free-form representation with parameterization.
The detailed discussion is to be given in the following
sections.

3 An Implicit Free Boundary Parameterization
Method

The implicit free boundary in the level set methods is
parameterized by the inverse multiquadric RBF splines.
Global smoothness of the implicit function can be ob-
tained and the accuracy and efficiency of a level set
model is thus improved. The original time-dependent
initial value problem is converted into a mathematically
more convenient time-dependent interpolation problem
for the initial values of the generalized expansion coef-
ficients of the RBF interpolant. The motion of the free
boundary is governed by a time dependent coupled non-
linear ODE and the eigenvalue stability of the inverse
multiquadric RBFs can guarantee a CFL-free time ad-
vancement of the free boundary. Moreover, reinitializa-
tion becomes unnecessary and is thus eliminated to al-
low for the nucleation of new holes inside the material
domain to generate initial design-insensitive optimal so-
lutions.

3.1 RBF Parameterization Method for the Implicit
Free Boundary

To model and reconstruct the entire admissible design
with an implicit level set function which is globally

continuous and differentiable, an implicit free boundary
parameterization method is presented using the RBFs,
which are popular for interpolating scattered data to pro-
duce smooth surface/boundary as the associated system
of non-linear equations is guaranteed to be invertible un-
der mild conditions on the locations of the data points
[Carr, Beatson, Cherrie, Mitchell, Fright, McCallum, and
Evans (2001)]. Radial basis functions have gained con-
siderable success for decades as basis functions for in-
terpolating scattered data in higher-dimensional spaces
[Cheng, Golberg, Kansa, and Zammito (2003)]. Their
theoretical basis and convergence properties were inten-
sively investigated and a thorough theoretical and imple-
mentation viewpoints on RBFs can be found in [Buh-
mann (2004)]. In real-world applications, radial basis
functions have become extremely useful, ranging from
pattern reconstruction, artificial intelligence [Buhmann
(2004)], to simply solving mathematical PDEs [Cheng,
Golberg, Kansa, and Zammito (2003); Cecil, Qian, and
Osher (2004)]. The positive features of RBFs such as
the unique solvability of the interpolation problem and
their excellent smoothness and convergence make them
very attractive in the level set methods [Wang and Wang
(2005d)]. In the present study, the RBF implicit mod-
eling is to be presented as an effective parameterization
method to reconstruct the moving free boundary in the
level set methods.

Radial basis functions are radially-symmetric functions
centered at a particular point [Morse, Yoo, Chen, Rhein-
gans, and Subramanian (2001)], or knot, which can be
expressed as follows:

ϕi (x) = ϕ(‖x−xi‖) , xi ∈ D (9)

where ‖·‖ denotes the Euclidean norm on R
d [Cheng,

Golberg, Kansa, and Zammito (2003)], and xi the po-
sition of the knot. Only a single fixed function form
ϕ : R

+ → R with ϕ(0) � 0 is used as the basis to form
a family of independent functions. There is a large class
of possible radial basis functions. Commonly used RBFs
include thin-plate spline, polyharmonic splines, Sobolev
splines, Gaussians, multiquadrics, inverse multiquadrics
and compactly supported RBFs [Cheng, Golberg, Kansa,
and Zammito (2003); Kansa, Powerb, Fasshauerc, and
Ling (2004)]. Among these common functions, the
multiquadric (MQ) spline suggested by Hardy [Hardy
(1990)] has been well accepted by some researchers
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Figure 2 : Two infinitely smooth RBF splines with a free shape parameter of c = 1.

[Franke (1982); Cheng, Golberg, Kansa, and Zammito
(2003); Kansa, Powerb, Fasshauerc, and Ling (2004);
Wang and Wang (2005d)], which can be written as

ϕi (x) =
√

(x−xi)
2 +c2

i (10)

where ci is the free shape parameter which is commonly
assumed to be a constant for all i in most applications
[Cheng, Golberg, Kansa, and Zammito (2003)]. This
RBF spline was ranked the best in interpolation for scat-
tered data by Franke [Franke (1982)]. However, the MQ
is only conditionally positive definite [Cheng, Golberg,
Kansa, and Zammito (2003)] and has to be augmented
by a leading constant term in the series and higher-order
MQs require more terms in the polynomial [Schaback
and Wendland (2001)]. On the other hand, the inverse
multiquadric (IMQ), which can be expressed as

ϕi (x) =
1√

(x−xi)
2 +c2

i

(11)

is positive definite [Cheng, Golberg, Kansa, and Zam-
mito (2003)] and can be used without augmentation. Fig-
ure 2 displays a multiquadric spline and an inverse multi-
quadric spline with a free shape parameter of c = 1. Since
a free shape parameter is included in these splines, they
are all infinitely smooth, different from those parameter-
free splines such as cubic splines and thin plate splines,
which are piecewise smooth only (Platte and Driscoll,
2005).

In the present study, for the purpose of numerical conve-
nience, the IMQ shown in Eq. (11), rather than the more
widely used MQ shown in Eq. (10), is used to interpolate
the scalar implicit level set function Φ (x) with N knots
by using N IMQs centered at these knots. The resulting
RBF interpolant of the implicit function can be written as

Φ (x) =
N

∑
i=1

αi ϕi (x) (12)

where αi is the weight, or expansion coefficient, of the
IMQ positioned at the i-th knot. Hence, the implicit level
set function is parameterized by the infinitely smooth
IMQ radial basis functions. Since the free boundary is
embedded in the implicit level set function as the zero
level set, it is thus parameterized implicitly. It should be
noted that different from the work in [Wang and Wang
(2005d)] using the MQs, the augmentation terms are not
included in the present study due to the use of IMQs. Fur-
thermore, according to [Cheng, Golberg, Kansa, and Za-
mmito (2003)], using the inverse multiquadrics as the ba-
sis function, an appealing exponential convergence rate
O(λ

√
c/h), where h is the mesh size and 0 < λ < 1, in

the numerical solutions can be obtained. Therefore, the
present parameterization method using the IMQ RBFs
can achieve a high level of accuracy and smoothness of
the implicit level set function. If the interpolation data
values f1, . . ., fN ∈R at knot locations x1, . . . , xN ∈ D ⊂
R

d are given, the RBF interpolant of Φ (x) in Eq. (12)
can be obtained by solving the system of N linear equa-
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tions for N unknown generalized expansion coefficients
as follows:

Φ (xi) = fi, i = 1, . . .,N (13)

which can be given in matrix form as

Hααα = f (14)

where

H =

⎡⎢⎣ϕ1(x1) · · · ϕN(x1)
...

. . .
...

ϕ1(xN) · · · ϕN(xN)

⎤⎥⎦ ∈ R
N×N (15)

ααα =
[
α1 · · · αN

]T ∈ R
N (16)

f =
[

f1 · · · fN
]T ∈ R

N (17)

Since the IMQ collocation matrix H is theoretically in-
vertible due to the positive definiteness of the IMQs
[Buhmann (2004); Kansa, Powerb, Fasshauerc, and Ling
(2004)], the generalized expansion coefficients ααα can be
simply given by

ααα = H−1f (18)

After obtaining the generalized expansion coefficients ααα,
the resulting RBF interpolant of the implicit function in
Eq. (12) can be re-written compactly as

Φ (x) = φφφT (x)ααα (19)

where

φφφ(x) =
[
ϕ1(x) · · · ϕN(x)

]T ∈ R
N (20)

However, with the increase of the matrix dimension, the
time required to compute the inverse of H may become
unacceptable because the IMQ collocation matrix H is
a symmetric full matrix only. To solve Eq. (14) for rel-
atively simple and small-size problems effectively, it is
possible to use the LU factorization (an O ((N + 4)3) al-
gorithm) or iterative means in O ((N +4)2) [Morse, Yoo,
Chen, Rheingans, and Subramanian (2001)]. Neverthe-
less, these methods may become computationally too ex-
pensive and even impractical [Carr, Beatson, Cherrie,
Mitchell, Fright, McCallum, and Evans (2001)] when ap-
plied to large-scale and/or 3D problems. Hence, the fast
evaluation methods [Carr, Beatson, Cherrie, Mitchell,
Fright, McCallum, and Evans (2001)] based on the

Fast Multipole Method (FMM) [Greengard and Rokhlin
(1987)], which can greatly reduce the storage and com-
putational cost of using RBFs, should be adopted. It
should also be noted that the distribution of the RBF sam-
pling knots in RBF implicit modeling is relatively free.
Hence, different from the conventional level set method
using a fixed regular uniform grid only, both uniform
and non-uniform grids can be used in the present RBF
implicit modeling. This may become a definite advan-
tage when a non-uniform or unstructured mesh becomes
necessary for the accurate and efficient analysis of the
physics associated with the problem.

3.2 Governing Equation of Motion of the Implicit
Free Boundary

The presented RBF implicit modeling for the level set
function Φ(x) is used to transform the Hamilton-Jacobi
time dependent PDE into a system of time dependent
ordinary differential equations (ODEs) over the entire
domain D to achieve a significant mathematical conve-
nience. As aforementioned, in the conventional level set
methods, moving the free boundary is equivalent to trans-
porting the scalar implicit function Φ(x) by solving the
Hamilton-Jacobi PDE (7) and thus the motion of the free
boundary (zero level sets) is governed by the Hamilton-
Jacobi PDE. Since the Hamilton-Jacobi PDE (7) is time
dependent, in the present RBF implicit modeling for the
level set function Φ(x), it is further assumed that all the
knots are fixed in space and the space and time are sep-
arable and the time dependence of the implicit function
Φ is due to the generalized expansion coefficients ααα of
the RBF interpolant in Eq. (16). With these assumptions,
the RBF interpolant of the implicit function in Eq. (19)
becomes time dependent as

Φ = Φ (x, t) = φφφT (x)ααα(t) (21)

Substituting Eq. (21) into the Hamilton-Jacobi PDE de-
fined in (7) yields

φφφT dααα
dt

+vn|(∇φφφ)T ααα| = 0 (22)

where

|(∇φφφ)Tααα|=
[(

∂φφφT

∂x
ααα

)2

+
(

∂φφφT

∂y
ααα

)2

+
(

∂φφφT

∂z
ααα

)2
]1/2

(23)
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In Eq. (22), the RBF expansion coefficients are explic-
itly time dependent and all the time dependence is due
to the expansion coefficients. At the initial time, all the
time dependent variables should be specified over the
entire domain. This initial value problem can be con-
sidered equivalent to an interpolation problem since the
expansion coefficients at the initial time are found as a
solution of the interpolation problem, as shown in Eq.
(14). Hence, the preliminary starting point of the use of
RBFs to solve PDEs is the interpolation problem that is
equivalent to solving the initial value problem. The orig-
inal time-dependent initial value problem defined by the
Hamilton-Jacobi PDE (7) in the conventional level set
methods is thus converted into a time-dependent interpo-
lation problem for the initial values of the generalized ex-
pansion coefficients ααα and the motion of the free bound-
ary, or the propagation of the front, is now governed by
the time dependent coupled ODE (22).

To time advance the initial values ααα in the governing
equation of motion (22), a collocation formulation of the
method of lines is presented because of its inherent sim-
plicity. The governing equation of motion of the implicit
free boundary Eq. (22) is extended to the whole design
domain D and the normal velocities vn at the implicit free
boundary are thus replaced by the extension velocities ve

n
in D. Based on the principle of collocation method, all
nodes of the spatial discretization of the extended ODE
(22) are located sequentially at the fixed knots of the
RBF interpolation for the implicit function Φ(x). Fur-
thermore, in the present implementation, for the purpose
of simplicity, all the nodes of a fixed mesh for structural
analysis are taken as the fixed knots of RBF interpolation,
though not necessary. By using this collocation method,
a set of ODEs can be compactly written as follows:

H
dααα
d t

+B(ααα) = 0 (24)

where

B(ααα) =
[
ve

n(x1) |(∇φφφT (x1))ααα| · · ·
ve

n(xN) |(∇φφφT (xN))ααα|]T
(25)

It should be noted that Eq. (24) can be regarded as a
collocation formulation of the general method of lines
[Madsen (1975)], in which a time dependent PDE prob-
lem is reduced to a simpler time dependent ODE problem
by discretization, though only a time dependent coupled
ODE is involved in the present problem and thus using

finite difference relationships for the spatial derivatives
is not needed. The method of lines has a solid mathemat-
ical foundation and the convergence of the solution of
the converted ODE problem to the solution of the orig-
inal PDE problem has been rigorously proven [Madsen
(1975)].

The set of coupled non-linear ODEs of Eq. (24) can be
solved by several well-established ODE solvers such as
the first-order forward Euler’s method and higher-order
Runge-Kutta, Runge-Kutta-Fehlberg, Adams-Bashforth,
or Adams-Moulton methods [Greenberg (1998)]. In the
present study, only the first-order forward Euler’s method
is used since it is the simplest solution algorithm for ODE
initial condition problems and often used for comparison
with more accurate algorithms, which are more complex
and tedious to implement. Using Euler’s method, an ap-
proximate solution to Eq. (24) can be given by

ααα(tn+1) = ααα(tn)−τH−1B(ααα(tn)) (26)

where τ is the step size. Because of the fixed location
of the RBF knots, the IMQ collocation matrix H is time
independent. Hence, only storing the initial value of its
inverse matrix will greatly save the computational time.
In the conventional level set methods, the time step size
should be sufficiently small to achieve the numerical sta-
bility due to the CFL condition that the CFL number must
be less than or equal to one for stability in the von Neu-
mann sense [Osher and Fedkiw (2002)] and to reduce
the truncation error due to the spatial discretization. In
the present method, since the IMQs are positive definite
RBFs [Schaback and Wendland (2001)] and boundary-
condition free (radially unbounded), according to a re-
cent result in [Platte and Driscoll (2005)], the present
implementation of the method of lines is time-stable for
all knot distributions and thus CFL-free. Hence, the
timestep constraint resulting from the CFL condition can
be significantly relaxed, which may become quite attrac-
tive in high-speed and fine-grid calculations.

Because of the necessary use of upwind differencing at
each step, the conventional level set methods have a ten-
dency to lose surface in under-resolved regions [Lagen-
este and Pitsch (2002)] or unwanted dissipation of the
front [Sussman and Fatemi (1999)]. A reinitialization
procedure is thus needed to resurrect the behavior of the
level set function Φ(x) in the neighborhood of the front
to guarantee a good approximation of the normal or the
curvature of the front. However, reinitialization error is
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likely to accumulate as the number of time steps grows.
The quite common iterative reinitialization scheme based
on a signed distance function has a potential disadvan-
tage in the relative crudeness of the switch function based
on checking the sign of the level set equation, which may
cause the front to move [Sethian (1999)]. In the existing
level set-based topology optimization methods in the lit-
erature [Allaire, Jouve, and Toader (2004); Wang, Wang,
and Guo (2003)], reinitialization produces a severe prob-
lem that new holes cannot be created within a material re-
gion [Burger, Hackl, and Ring (2004); Allaire, Gournay,
Jouve, and Toader (2004)]. Furthermore, the reinitializa-
tion procedure is usually time-consuming [Ye, Bresler,
and Moulin (2002)]. Hence, reinitialization should be
avoided as much as possible. In practice, whether reini-
tialization is appropriate should depend on whether the
underlying problem is interested in only the zero level
set of function, or the entire level set function Φ(x).

In the present level set method, moving the free bound-
ary is equivalent to transporting the scalar implicit func-
tion Φ(x) by solving the system of coupled non-linear
time dependent ODEs of Eq. (24). The upwind differ-
ence methods [Osher and Sethian (1988); Jiang and Peng
(2000); Osher and Shu (1991)] popular in the conven-
tional level set methods are not employed to advance
the front in the present study since spatial derivatives of
the level set function can be obtained analytically and
a good behavior of the normal or curvature of the front
can be maintained due to the infinite and global smooth-
ness of the IMQ splines [Cheng, Golberg, Kansa, and
Zammito (2003)]. Therefore, reinitialization is not per-
formed in the present level set application for classical
shape and topology optimization and the entire level set
function Φ(x) is taken into account. Thus, the present
level set model is capable of hole nucleation and elim-
ination of the dependency of the final optimal solution
on the design initiation in shape and topology optimiza-
tion. As suggested by Sethian [Sethian (1999)], possi-
ble problems with loss of mass or movement of the zero
level set without reinitialization can be avoided if an ap-
propriate extension velocity method is adopted. In the
present study, a straightforward and efficient mass con-
servative extension velocity method is proposed for both
structural shape and topology optimization, which will
be discussed in detail as follows.

4 Simultaneous Shape and Topology Optimization
Using the Level Set Method

The proposed shape and topology optimization process
operates on the implicit scalar level set function Φ(x) de-
fined in Eq. (1) and represented by the IMQ RBF implicit
modeling in (19) and uses a steepest gradient method to
find the decent direction of the normal velocity for the
minimization of an objective function J(Φ). The nor-
mal velocity at the implicit free boundary is naturally and
smoothly extended to the whole design domain D with-
out using any additional PDE solving procedure to keep
the mass conservative during the evolution.

4.1 Minimum Compliance Design

In the classical shape and topology optimization prob-
lems, the minimum compliance design has been widely
investigated. With a level set model as shown in Eq. (1),
the standard notion [Bendsøe and Sigmund (2003)] of a
classical minimum compliance design problem can be re-
written as follows:

Minimize
Φ

J(u,Φ) =
Z

D
(εεε(u))T Cεεε(u)H(−Φ)dΩ

subject to :
a(u,υυυ,Φ) = L(υυυ,Φ), u|ΓD

= u0, ∀υυυ ∈U
V(Φ)/V0 = ζ

(27)

where J(u,Φ) is the objective function, u the displace-
ment field, εεε(u) the strain field, C the Hook elasticity
tensor, V(Φ) the material volume as defined in Eq. (5),
V0 the design domain volume and ζ the prescribed vol-
ume fraction. The linear elastic equilibrium equation is
written in its weak variational form in terms of the energy
bilinear form a(u,υυυ,Φ) and the load linear form L(υυυ,Φ)
[Bendsøe and Sigmund (2003)], with υυυ denoting a virtual
displacement field in the space U of kinematically admis-
sible displacement fields, and u0 the prescribed displace-
ment on the admissible Dirichlet boundary ΓD.

The Lagrange multiplier method [Osher and Santosa
(2001)] can be used to solve the present optimization
problem (27) of minimum compliance design. By set-
ting the constraint on the equilibrium state inactive, the
Lagrangian L (u,Φ, �) with a positive Lagrange multi-
plier � can be given by

L (u,Φ, �) = J(u,Φ)+�G(Φ) (28)
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where the constraint function G(Φ) can be expressed as

G(Φ) = V (Φ)−ζV0 = 0 (29)

It should be noted that the displacement field u is also
a function of Φ, i.e. u = u(Φ) since the mechanical re-
sponse will change with the geometry. According to the
Kuhn-Tucker condition of the optimization [Osher and
Santosa (2001)], the necessary condition for a minimizer
is

DΦL (u(Φ),Φ, �)= 0 (30)

where DΦL (u(Φ),Φ, �) is the gradient of the La-
grangian with respect to Φ. Hence, both Φ and � can
be found by solving Eqs. (29) and (30).

4.2 Shape Derivatives

The gradient of the Lagrangian DΦL (u(Φ),Φ, �) may
be obtained in a number of different ways following the
well-known approach of Murat and Simon of shape dif-
feomorphism [Sokolowski and Zolesio (1992)]. In the
present study, the shape sensitivity analysis presented
by Allaire et al. [Allaire, Jouve, and Toader (2004)] is
adopted to derive the shape derivatives.

Usually, the boundary ∂D of the whole structural shape
and topology design domain D can be decomposed [Al-
laire, Jouve, and Toader (2004)] as

∂D = ∂DD ∪∂DN ∪∂DH (31)

where ∂DD is the Dirichlet boundary, ∂DN the non-
homogeneous Neumann boundary, and ∂DH the homo-
geneous Neumann boundary (traction free). To derive
the shape derivatives from the classical shape sensitivity
analysis [Sokolowski and Zolesio (1992)], it is assumed
that the shape boundary ∂Ω of an admissible design Ω
can satisfy the following conditions:

∂Ω = ΓD ∪ΓN , ΓD ⊂ ∂DD, ΓN = ∂DN ∪ΓH (32)

where ΓD is the admissible Dirichlet boundary, ΓN the
Neumann boundary, and ΓH the homogeneous Neumann
boundary. Furthermore, it is assumed that the surface
loads are design independent and applied only on a fixed
subset of the boundary ΓN and the Dirichlet boundary ΓD

is with zero displacements. The whole traction free ho-
mogeneous Neumann boundary ΓH may be represented
by the zero level set function. However, in the initial

designs the strain energy density can be too high at the
traction free boundary near the loading points at the non-
homogeneous Neumann boundary or near the Dirichlet
boundary due to the stress concentration, which may
generate an undesirable maximum normal velocity in
the early evolution as later discussed. Therefore, in the
present shape and topology optimization, only part of the
traction free homogeneous Neumann boundary ΓM ⊂ ΓH

is initially chosen to be optimized as the moving free
boundary, which is represented by the dynamic interface
Φ(x) = 0 in the present level set model. It should also
be noted that this handling will not prevent the whole
boundary from being optimized due to the optimal time
propagation of the moving free boundary.

Based on local perturbations of the moving free bound-
ary of an admissible design Ω [Allaire, Jouve, and Toader
(2004)] (continuous perturbations with respect to the
Hausdorff distance [Burger, Hackl, and Ring (2004)]),
the resulting shape derivative of the Lagrangian can be
written as
dL

dt
=

Z
D

(
�−εεεT Cεεε

)
δ(Φ)|∇Φ|vn dΩ (33)

which can be further simplified [Burger (2004)] as

dL

d t
=

Z
ΓM

(
�−εεεT Cεεε

)
vn ds (34)

where t is the artificial time, and vn the artificial normal
velocity at the moving free boundary ΓM. Furthermore,
the resulting shape derivative of the volume constraint
function G(Φ) (29) can be expressed as

dG
dt

=
Z

ΓM

vn ds (35)

Hence, these shape derivatives can be obtained from a
surface integration. In a level set model, only the nor-
mal velocity field vn, rather than these shape derivatives,
is needed and thus it is unnecessary to perform an ex-
plicit surface integration. In the present shape and topol-
ogy optimization, choosing the normal velocity field vn is
equivalent to choosing a descent direction for the objec-
tive function, which can be easily implemented by using
a steepest gradient method [Osher and Santosa (2001);
Wang, Wang, and Guo (2003); Allaire, Jouve, and Toader
(2004)].

4.3 Normal Velocity Function

According to the shape derivative in Eq. (34), a descent
direction of the normal velocity vn for the Lagrangian can
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be obtained by simply identifying the normal velocity vn

as

vn = εεεT Cεεε−� (36)

in which the normal velocity vn at the moving free bound-
ary ΓM can be determined by the strain energy density
and a Lagrange multiplier. Hence, the normal velocity
field is linked with the objective function of the present
minimum compliance design problem and physics of the
present problem is incorporated due to the flexibility of a
level set model in choosing the velocity function. With-
out remeshing, the strain energy density field can be ac-
curately and efficiently obtained numerically by using the
“ersatz material” approach [Allaire, Jouve, and Toader
(2004)], the geometry projection method [Norato, Haber,
Tortorelli, and Bendsøe (2004)], the true meshless lo-
cal Petrov-Galerkin method [Atluri and Shen (2002)], or
some extended finite element methods [Belytschko and
Black (1999); Strouboulis, Copps, and Babuska (2001);
Wang and Wang (2005c)], though the standard finite ele-
ment method without remeshing is not applicable due to
the movement of the free boundary across the elements.
However, the calculation of the Lagrange multiplier � is
not so straightforward.

To find the variable Lagrange multiplier �, only sev-
eral methods are available in the open literature, which
appear to be less effective. In the work of [Allaire,
Jouve, and Toader (2004)], as well as of [Wang and Wang
(2005d)], a fixed � was used during the evolution of the
free boundary and thus the volume constraint cannot be
satisfied and only an unconstrained optimization can be
performed. The possible applications may become quite
limited since the real-world optimization problems are
usually constrained. In the work of [Wang, Wang, and
Guo (2003)], the variable Lagrange multiplier was de-
rived from an assumption that the material volume keeps
constant during the evolution such that its shape deriva-
tive defined in (35) vanishes. However, this handling may
become even conceptually problematic since the conven-
tional level set methods cannot conserve the mass in the
sense that no mass is lost or gained [Sethian (1999); Os-
her and Fedkiw (2002)] and thus the material volume will
not be constant during the evolution. In fact, significant
fluctuations of the material volume can be observed in
their numerical results [Wang, Wang, and Guo (2003)].
In the work of Osher and Santosa [Osher and Santosa
(2001)], the Lagrange multiplier was obtained based on

a similar assumption that the total material volume can
be conserved, but the possible drift of the volume dur-
ing the iteration was noticed and a Newton’s method was
used to put the iteration back to the feasible set. In the
work of Wang and Wang [Wang and Wang (2005c)], the
material volume was also assumed to be conservative to
find the Lagrange multiplier, but a higher or lower mul-
tiplier was used to push the volume back to satisfy the
volume constraint during the evolution. All these meth-
ods cannot guarantee that the volume constraint function
converge and thus the final solutions may become even
infeasible.

Hence, a better way to calculate the Lagrange multiplier
is that the Lagrange multiplier is chosen to make the
volume constraint exactly satisfied at each iteration. In
the present study, based on such a methodology, a bi-
sectioning algorithm is proposed to find the Lagrange
multiplier � to guarantee that the volume constraint be
exactly satisfied during the iteration.

4.4 Bi-sectioning Algorithm

A bi-sectioning algorithm is developed to determine the
value of the Lagrange multiplier � to satisfy the volume
constraint at each time step based on the fact that the vol-
ume constraint function G(Φ) in (29) is a monotonously
decreasing function of the Lagrange multiplier �. By
using the normal velocities defined in (36), the shape
derivative of the volume constraint function G(Φ) in Eq.
(35) can be re-written as

dG
dt

=
Z

ΓM

(
εεεT Cεεε−�

)
ds (37)

from which it can be easily obtained that the G(Φ) de-
creases with a large value of � and increases with a low
value of �. Hence, the bi-sectioning algorithm can be ini-
tialized by setting a lower �1 and an upper �2 bound for
the Lagrange multiplier. In the present numerical study,
it is initially chosen that �1 = 0, which will cause a maxi-
mum volume increase, and �2 = 105, which may generate
a significant volume decrease since all of the normal ve-
locities may become negative due to the relatively small
strain energy density and the free boundary thus moves
inwardly. The interval which bounds the Lagrange mul-
tiplier is halved and the Lagrange multiplier is given by

� = (�1 +�2)/2 (38)

from which the normal velocities vn in (36) as well as the
extension velocities, which will be discussed later, can
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be determined and thus the generalized expansion coeffi-
cients ααα in (26) can be updated. Since the implicit level
set function Φ (x, t +τ) in (21) and the material volume
V(Φ) in (5) can also be determined, the value of the vol-
ume constraint function G(Φ) in (29) will be finally ob-
tained. Therefore, either the lower bound �1 or the upper
bound �2 can be updated and the interval which bounds
the Lagrange multiplier can be repeatedly halved until its
size is less than the convergence criteria. It should be
noted that the present algorithm does not assume that the
volume is constant during the iterations, but the volume
constraint can be exactly satisfied based on the geome-
try at time t + τ. As noted in [Sigmund (2001)], a bi-
sectioning algorithm is usually effective with a fast con-
vergence speed.

By using this bi-sectioning algorithm, the material vol-
ume constraint can be exactly satisfied during the itera-
tions and thus the material volume can be constant dur-
ing the evolution of the moving free boundary. Hence,
the present normal velocities may become a kind of mass
conserving velocities and the present level set method
can be regarded as mass conservative.

4.5 Shape Optimization

According to the present steepest gradient method, for
the optimal design, we have

vn = εεεT Cεεε−� = 0 (39)

which implies that the strain energy density (εεεT Cεεε) is
constant everywhere along the optimal free boundary ΓM

since the Lagrange multiplier � is time-dependent only. It
should be noted that this can also be the objective of the
classical shape optimization methods based on a shape
sensitivity analysis [(Rozvany, 1998); Sokolowski and
Zolesio (1992)]. In the classical shape optimization, a
key concept is the “speed function” Vn of the optimality
condition associated with a small variation in the bound-
ary shape in the normal direction n, similar to the present
normal velocity vn. In general, it is necessary that

Vn (x) = 0 (40)

everywhere on the design boundary of the optimal struc-
ture. Physically, this indicates that the mutual energy
form of the elastic structure reaches a constant value on
the boundary [Sokolowski and Zolesio (1992)]. Hence,
the present level set model can perform not only the free

boundary-based topology optimization but also the clas-
sical shape optimization.

In most shape optimization applications, a Lagrangian
formulation of boundary propagation was used to achieve
the optimality condition and obtain an optimal shape of
the structure [Rozvany (1998); Sokolowski and Zole-
sio (1992)]. Only an explicit boundary representation
method is used and the boundary changes can be accom-
plished only if the connectivity of the boundaries does
not change since there is a sever limitation that only a
structure of a fixed topology can be optimized. In the
present level set-based optimization model, both shape
and topology can be optimized simultaneously. The
whole design domain is implicitly represented by a level
set function Φ(x) and the moving free boundary is rep-
resented by the zero level sets, which may experience
significant topological changes such as developing sharp
corners, breaking apart, merging together or even disap-
pearing. Furthermore, topological changes in a structure
can be captured, rather than tracked [Osher and Fedkiw
(2002)]. Hence, the present level set-based optimization
method can be more powerful than the classical shape
optimization methods.

4.6 Extension Velocities

As aforementioned, the normal velocity vn defined at the
free boundary must be extended, either to the whole de-
sign domain D [Allaire, Jouve, and Toader (2004)] or
to a narrow band around the free boundary [Osher and
Fedkiw (2002)], in the Eulerian type level set methods.
The choice of an extension velocity method is crucial
since it can directly influence the overall efficiency of
the level set method [Richards, Bloomfield, Sen, and
Calea (2001); Wang and Wang (2005c); Wang and Wang
(2005d)].

In the present study, a physically meaningful extension
velocity method without the additional PDE solving pro-
cedure is presented for structural shape and topology op-
timization. According to Eq. (36), a natural extension
of the normal velocity vn at the free boundary can be
obtained if the strain field εεε(u) is extended to the en-
tire design domain D by assuming εεε(u) = 0,u ∈ (D\Ω).
Nevertheless, this extension will introduce an apparent
discontinuity in the extension velocity at the free bound-
ary since the strain field is not continuous across the
free boundary. To avoid the numerical instabilities and
to guarantee a smooth progress of the free boundary,
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this discontinuity should be eliminated. Hence, a linear
smoothing filter is introduced in the narrowband region
around the free boundary, which is defined as

Ξ =
{

x ∈ R
d | |Φ(x)|� Δ

}
(41)

where Δ is the bandwidth. The extension velocity ve
n in

the narrowband is smoothed as v̂ e
n by using a simple lin-

ear filter (radially linear ‘hat’ kernel popular in the SIMP-
based topology optimization [Sigmund (2001); Bendsøe
and Sigmund (2003)]) to achieve an excellent smooth-
ing effect [Wang and Wang (2005a); Wang and Wang
(2005c)], which can be written as

v̂ e
n(x) = k−1(x) ∑

p∈N(x)
Wc(‖p−x‖)ve

n(x) (42)

where

W(‖p−x‖) = rmin −‖p−x‖ (43)

k(x) = ∑
p∈N(x)

W(‖p−x‖) (44)

in which N(x) is the neighborhood of x ∈ Ξ in the filter
window and rmin the window size. It should be noted that
the present smoothing operation is quite similar to the
sensitivity filtering in the popular element-based SIMP
method for structural topology optimization [Bendsøe
and Sigmund (2003)], which is used to eliminate the
numerical instabilites effectively. Hence, a direct link
between the present boundary-based shape and topol-
ogy optimization method and the popular element-based
topology optimization method can be established by tak-
ing the present normal velocity as the sensitivity in the
SIMP method. It can thus be expected that the present ex-
tension velocity method can also eliminate the numerical
instabilites effectively. Different from the SIMP method,
the present method only smoothes out the velocity in the
neighborhood of the free boundary since it is a boundary-
based method.

Finally, the overall extension velocity can be obtained as

ve
n = ve

n(x) =

⎧⎨⎩
εεεT Cεεε−� x ∈ R

d | Φ(x) < −Δ
v̂ e

n(x) x ∈ Ξ
−� x ∈ R

d | Φ(x) > Δ
(45)

Using this extension velocity field ve
n, B(ααα) can be ob-

tained from Eq. (25) at each time step and thus the gen-
eralized expansion coefficients ααα in (26) can be updated.

The motion of the free boundary can be produced by us-
ing the updated implicit level set function Φ (x, t) in (21).
This procedure should be repeated until the convergence
criteria have been reached. Theoretically, when an op-
timal solution is reached, the extension velocities inside
the material domain will be

ve
n = ve

n(x) = 0, x ∈ Ω (46)

Hence, the strain energy density field, as well as the stress
distribution, is theoretically homogeneous inside the ma-
terial domain of the optimal structure, according to Eq.
(45). Therefore, in the present shape and topology opti-
mization, theoretically, an optimal structure is achieved
when the strain energy distribution inside the material
domain and along the free boundary is homogeneous.

Therefore, the resulting extension velocities are physi-
cally meaningful since both the strain energy density and
the mass-conserving Lagrange multiplier are closely as-
sociated with physics. In the present shape and topol-
ogy optimization, materials which are not used efficiently
such that the strain energy density is too small can be
indicated by the extension velocity field with multiple
valleys at the undesired locations. As illustrated in the
present numerical examples, the evolution of the level
set function with this extension velocity field may finally
lead to the creation of a new hole inside the material do-
main, similar to the evolutionary structural optimization
approach [Xie and Steven (1993)], the bubble method
[Eschenauer, Kobelev, and Schumacher (1994)], and the
topological gradient method [Burger, Hackl, and Ring
(2004)]. This can be a significant improvement over the
conventional level set methods, which only allow limited
topological changes by splitting or merging connected
components [Burger (2004)]. Furthermore, due to the
RBF implicit modeling and the linear smoothing filter-
ing, the smoothness of the implicit level set function can
be well maintained during the time advancement without
reinitialization.

5 Numerical Examples and Discussion

In this section, numerical examples in two dimensions
are presented to illustrate the performance and success
of the present method for structural shape and topology
optimization. Unless stated otherwise, all the units are
consistent and the following parameters are assumed as:
the Young’s elasticity modulus E = 1 for solid materi-
als, E = 1×10−5 for void materials, and Poisson’s ra-
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tio ν = 0.3. The implicit level set function Φ(x) is ini-
tially chosen as a signed distanced function by using the
present RBF modeling from a set of given points and no
extra efforts such as reinitialization are made to keep this
property during the optimization process.

For all examples, a fixed rectilinear mesh is specified
over the entire design domain for finite element (FE)
analysis of the structures. The FE analysis is based on
the bilinear rectangular elements and an “ersatz material”
approach, which is well-known in topology optimization
that can be rigorously justified in some cases [Allaire
(2001); Allaire, Jouve, and Toader (2004)]. In numeri-
cal practice of the “ersatz material” approach, material
density is assumed to be piecewise constant in each el-
ement and is adequately interpolated in those elements
cut by the zero level set function (the free boundary). It
is also assumed that the knots of the RBFs are coinci-
dental to the nodes of the rectilinear mesh. Furthermore,
Δ = 1 grid size for the bandwidth size, rmin = 1.2 grid
size for the filter window size. The present algorithm
is terminated when the relative difference between two
successive objective function values is less than 10−5 or
when the given maximum number of iterations has been
reached. The topologies are given in black-and-white
form based on the scalar value of the implicit function
Φ(x), as defined in Eq. (1). All the CPU time is based
on a desktop computer under the MATLAB environment
with an Intel Pentium IV processor of 3.00 GHz clock
speed.

5.1 Short Cantilever Beam

The minimum compliance design problem of a short can-
tilever beam is shown in Fig. 3. The whole design do-
main D is a rectangle of size 2×1 with a fixed boundary
∂D (zero displacement boundary condition) on the left
side and a unit vertical point load P = 1 applied at a fixed
non-homogeneous Neumann boundary ∂DN , the middle
point of the right side. The specified material volume
fraction is ζ = 0.5. The distribution of the RBF knots
shown in Fig. 3 is for illustrative purposes only since dif-
ferent meshes may be adopted for this example. It should
correspond to the actual nodes distribution of the under-
lying FE mesh for structural analysis.

Figure 4 displays the evolution history of an optimal
topology of the short cantilever beam with an initial de-
sign as shown in Fig. 4(a) by using the present level set
method with a 60×30 FE mesh with a time step size of

P

1

2

x

y

(     :  k not)

Figure 3 : Definition of the minimum compliance design
problem of a short cantilever beam.

τ = 0.01 and a free shape parameter of c = 0.1. It can
be seen that significant topological changes have been
achieved and the final design as shown in Fig. 4(f) is
similar to those reported in the literature [Allaire, Jouve,
and Toader (2004); Allaire, Gournay, Jouve, and Toader
(2004); Wang and Wang (2005c)] using the conventional
level set methods. Hence, optimal topologies can also
be obtained by solving the ODEs in Eq. (24) using the
present method, rather than the PDEs using the upwind
schemes in the conventional level set methods [Sethian
(1999); Osher and Fedkiw (2002)]. The evolution of the
corresponding moving free boundary ΓM is shown in Fig.
5, in which the free boundary is approximately depicted
by piecewise lines and the extension velocities at each
knot are indicated by the arrows. Using the present ex-
tension velocities, the moving free boundary can develop
sharp corners, break apart, merge together and disappear
in an automatic manner during the course of evolution.
Although the maximum velocity is located on the free
boundary in the initial design, as shown in Fig. 5(a), the
location is rapidly shifted to around the fixed boundary
∂D. Hence, in the majority of the design domain, the ex-
tension velocities will approach to zero to reach a homo-
geneous distribution of the stress distribution, as theoret-
ically predicted. In the optimal solution, as shown in Fig.
6, the scalar normal velocities at the free boundary, as
well as in most of the material domain, become almost
zero, which agrees well with the theoretical prediction
[Allaire, Jouve, and Toader (2004)] and indicates that the
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(a) Initial design (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 8 (f) Final solution

Figure 4 : Evolution of an optimal solution for the short cantilever beam.

shape and topology optimization is achieved. The high
velocity distribution around parts of the the fixed bound-
ary ∂D and the fixed non-homogeneous Neumann bound-
ary ∂DN is due to the local effects of the applied force,
according to Saint-Venant’s principal [Choi and Horgan
(1977)], and cannot be totally eliminated by performing
a shape and topology optimization. As a further demon-
stration, Figure 7 displays the evolution history of the
strain energy density field in the design domain. It can be
seen that the apparent inhomogeneous distribution of the
strain energy density of the initial design can be quickly
eliminated during the iterations by the present shape and
topology optimization and a nearly homogeneous distri-
bution can be achieved in the final solution, as theoreti-

cally predicted.

Figure 8 shows the convergence speed of the objective
function and the volume function for the short cantilever
beam. It can be seen that the compliance of the opti-
mal solution is significantly better than that of the ini-
tial design and the compliance converges rapidly due to
the present level set-based optimization method. The
optimal topology is not changed after step 8, as shown
in Fig. 4 and thus the subsequent iterations are mainly
performed to achieve an optimal shape. It can be seen
from Fig. 8(a) that the subsequent improvement in the
objective function is almost negligible compared with the
significant improvement in those iterations to perform a
topology optimization. However, making more efforts to
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(a) Initial design (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 8 (f) Final solution

Figure 5 : Evolution of the moving free boundary of the short cantilever beam.
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Figure 6 : Scalar extension velocity field (ve
n � 0) for an

optimal solution of the short cantilever beam.

perform shape optimization is worthwhile and indispens-
able. As shown in Fig. 7, shape optimization can reduce
the magnitude of the maximum strain energy density and
arrive at an almost homogeneous distributionof the stress
field at the free boundary and inside the material domain,
as aforementioned. Furthermore, it can be seen from
Fig. 8(b) that the equal volume constraint (V/V0 = 0.5)
can be exactly satisfied during the course of evolution,
though the initial design possesses a higher material vol-
ume (V/V0 = 0.578) and is thus infeasible. As aforemen-
tioned, in the present study this is achieved by choosing
an appropriate Lagrange multiplier using a bi-sectioning
algorithm, rather than based on the problematic assump-
tion that the material volume can keep unchanged during
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(f) Final solution

Figure 7 : Evolution of the strain energy density field of the short cantilever beam.

the evolution [Osher and Santosa (2001);Wang, Wang,
and Guo (2003); Wang and Wang (2005d)]. Hence, the
optimal solutions can be guaranteed to be feasible and
the present level set method may become mass conser-
vative to make the material volume constant during the
iterations. Furthermore, it can be inferred that those con-
ventional level set methods for shape and topology opti-
mization [Osher and Santosa (2001); Wang, Wang, and
Guo (2003); Allaire, Jouve, and Toader (2004); Wang
and Wang (2004b); Wang and Wang (2004a); Wang and
Wang (2005b); Wang and Wang (2005c)] may also be-
come mass conservative if the present mass-conserving
velocities are adopted.

For the purpose of comparison, this shape and topology
optimization problem is solved again by using a conven-

tional level set model in [Mitchell (2004)] and the present
mass-conserving extension velocities. In the level set
model, a second-order ENO (essentially non-oscillatory)
upwind scheme is used for the propagation of the free
boundary and a third-order reinitialization algorithm is
adopted to minimize the numerical diffusion around the
location of the original interface [Tsai and Osher (2003)],
and an aggressive CFL number of 1 is used to drive a
fast convergence. Reinitialization as an auxiliary step is
performed every 5 times of transport and the maximum
number of iterations is specified as 200. The final solu-
tions are shown in Fig. 9. It can be seen that the final
topology is similar to the optimal topology shown in Fig.
4(f), however, the optimization is not converged within
200 iterations since there is an apparent discrepancy be-
tween the free boundary shown in Fig. 9(a) and the zero
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Figure 8 : Convergence of the objective function and the volume function for the short cantilever beam.
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(b) Scalar extension velocity field (vn � 0)

Figure 9 : Final solutions for the short cantilever beam using a conventional level set method.
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Figure 10 : Convergence of the objective function and the volume for the short cantilever beam using a conventional
level set method.
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(a) Initial design (b) Step 10

(c) Step 20 (d) Step 22

(e) Step 30 (f) Final solution

Figure 11 : Evolution of an optimal solution using an initial design with a central hole.

scalar velocity curve shown in Fig. 9(b). The conver-
gence speed of the objective function and the material
volume is shown in Fig. 10. As expected, due to the use
of the present mass conserving velocities, the material
volume shown in Fig. 10(b) is nearly constant during the
iterations. Nevertheless, the objective function shown in
Fig. 10(a) using the conventional level set method de-
creases in a not quite stable way due to the use of an
aggressive CFL number, furthermore, it converges in a
significantly slower speed than using the present level set
method as shown in Fig. 8(a). This is a typical draw-
back of a CFL-dependent conventional level set model

using an explicit time integration scheme, as aforemen-
tioned. On the other hand, the present level set method
converges rapidly since it is a CFL-free method and time-
stable for all knot distributions [Schaback and Wendland
(2001)]. Hence, the present method may significantly ex-
cel the conventional CFL-dependent level set methods in
convergence speed.

Nucleation of some new holes in the material domain
can be observed in Figs. 4(b) and 4(c), which suggests
that the present level set method has the capability of
nucleation of new holes due to the absence of reinitial-
ization. To further demonstrate this capability and the
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flexibility of the present method, the shape and topol-
ogy optimization is performed again starting from a de-
sign with one single hole, as shown in Fig. 11(a). Since
its material volume fraction of 0.9649 is too higher than
the required volume fraction of 0.5, the initial design is
quite far away from the feasible domain. In this case, al-
though the present method may still be able to satisfy
the volume constraint at each iteration, it may experi-
ence significant difficulties and numerical instabilities to
handle topological changes to achieve a drastic volume
reduction within one single step. To drive the evolu-
tion of the optimal solution from the infeasible domain
to the feasible one smoothly, a minor modification to the
present mass-conserving Lagrange multiplier is here pre-
sented by combining the present method with the method
in [Allaire, Jouve, and Toader (2004); Wang and Wang
(2005d)] using a fixed Lagrange multiplier to decrease
the material volume. A neighborhood of the feasible do-
main is defined first. For this example, a volume fraction
range of [0.4,0.6] for the pre-specified volume fraction of
0.5 is used as the neighborhood. When the material vol-
ume fraction falls inside this range, the variable Lagrange
multiplier � is determined by the present bi-sectioning
algorithm as aforementioned. However, when the mate-
rial volume fraction falls outside this range, a fixed La-
grange multiplier (� = 20 for this example) is used to
drive the convergence of the material volume fraction to-
wards the neighborhood of the feasible domain in a stable
and smooth manner. With this enhancement, the present
method becomes more flexible to deal with this kind of
special problems.
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Figure 12 : Scalar extension velocity field (ve
n � 0) for

an optimal solution using an initial design with a central
hole.

The corresponding shape and topology optimization is
again performed and the initial design, the intermediate

results and the final solution are shown in Fig. 11. It
can be seen that drastic topological changes have been
achieved in a stable way and the final solution is quite
similar to the one shown in Fig. 4(f), in which an initial
design with more holes than those of the optimal design
is used. Furthermore, the final scalar extension veloc-
ity field shown in Fig. 12 is also quite similar to the one
shown in Fig. 6. Hence, the capability of nucleation of
new holes and the relative insensitivity of the final solu-
tions to the initial designs are clearly demonstrated. Be-
cause of this capability, the final solution is less sensitive
to the initial designs. Furthermore, Figure 13 shows that
the convergence of both the objective function and the
volume constraint function from the initial infeasible do-
main to the feasible domain are reached after step 24.
The infeasible initial design quite far away from the fea-
sible domain is driven successfully towards the feasible
domain by using the present method. It should be noted
that the compliance increases with time before reaching
the feasible domain since the initial design possesses a
much lower compliance value of 41.1345 than that of the
optimal solution (60.4013) due to its much higher initial
material volume than required. As noted by [Wang and
Wang (2005c)], using a fixed Lagrange multiplier can
only guarantee the decrease of an unconstrained objec-
tive function combining the compliance function with the
volume function. However, a relatively large Lagrange
multiplier can be used to guarantee the decrease of the
volume function due to the monotonousness of the vol-
ume function, as previously discussed. After step 24, the
optimization is performed in the feasible domain and a
variable Lagrange multiplier can be used. The capabil-
ity of nucleation of new holes inside the material domain
is further demonstrated in Fig. 14, in which an initial de-
sign without a hole evolves into an optimal topology with
a few holes, similar to the optimal solution shown in Fig.
4(f). Since the initial volume fraction of 0.5 can satisfy
the volume constraint, a further modification to the La-
grange multiplier should not be performed here. Again,
the insensitivity to the initial designs is also illustrated.

In the conventional level set methods, the nucleation of
new holes is not allowed for and thus a bubble or topolog-
ical gradient method has to be incorporated to achieve a
less initial design-dependent optimal design, as shown in
[Eschenauer, Kobelev, and Schumacher (1994); Burger,
Hackl, and Ring (2004); Allaire, Gournay, Jouve, and
Toader (2004)]. Since both the topological and shape
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Figure 13 : Convergence of the objective function and the volume for the short cantilever beam using an initial
design with a central hole.

(a) Initial design (b) Final solution

Figure 14 : Optimal solution using an initial design without a hole.
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(b) A Michell type structure

Figure 15 : Optimal design problem for Michell type structures with fixed supports.

derivatives are used in a modified level set method, it
would be quite difficult to switch between them in an
automatic way [Burger, Hackl, and Ring (2004); Al-
laire, Gournay, Jouve, and Toader (2004)]. In the present
method, the topological derivative is not used and the cre-

ation of new holes can be automatically realized by using
the shape derivatives and the present mass conserving ex-
tension velocities with the absence of reinitialization.
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(a) Initial design (b) Step 1

(c) Step 2 (d) Step 5

(e) Step 20 (f) Final solution

Figure 16 : Evolution of an optimal solution for the Michell type structure.

5.2 Michell Type Structure

The present level set method is finally applied to the
classical Michell type structure problem, in which a the-
oretical Michell’s solution is available in the literature
[Michell (1904); Hemp (1973); Xie and Steven (1993);
Wang and Tai (2005)], as shown in Fig. 15(b). The whole
design domain D is a rectangle of size L× H, the two
bottom corners have the pinned supports, and a unit ver-

tical point force P is applied at the middle point of the
bottom side. As shown in Figure 15(b), the theoretical
optimum topology consists of two 45◦ arms extending
from the supports towards an approximately 90◦ central
fan section which extends upwards from the point of ap-
plication of the force. In the present study, it is assumed
that L = 2, H = 1.2, P = 1, and a pre-specified material
volume fraction ζ = 0.3. The domain D is discretized
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with a fixed rectangular mesh of 60×36 and a time step
size of τ = 0.01 together with a free shape parameter of
c = 0.001 is adopted.

A heavily perforated structure as shown in Fig. 16(a) is
chosen as the initial design. The present level set method
without modifying the Lagrange multiplier as just sug-
gested is applied to demonstrate its efficiency and ac-
curacy in dealing with heavily perforated structures as
initial designs. The corresponding evolution history of
the shape and topology is shown in Fig. 16. Significant
topological changes due to the elimination of internal
holes have been obtained. The final topology consist-
ing of two arms and a central fan section is quite sim-
ilar to the theoretical optimum topology shown in Fig.
15(b) and therefore the effectiveness and accuracy of the
present level set method is again verified. Furthermore,
a shape optimization is also performed simultaneously in
the present method and thus an optimal boundary shape
can be obtained in the final solution, as shown in Figs.
16(f) and 17, in which the zero scalar velocity curve cor-
responds to the free boundary of the final solution almost
exactly. Hence, the present optimization method can be
more powerful than the traditional topology optimization
methods [Michell (1904); Bendsøe and Kikuchi (1988);
Bendsøe (1989); Xie and Steven (1993); Wang and Tai
(2005)]. For this problem, although the initial material
volume fraction of 0.7023 is significantly larger than the
required volume fraction of 0.3, the present method with-
out further modifying the Lagrange multiplier is thus still
applicable. For this case, using a problem-dependent
fixed Lagrange multiplier, which may cause mathemat-
ical complexity in determining its appropriate value, to
drive the material volume towards the feasible domain,
as previously suggested, is not needed. The convergence
of the objective function and the volume constraint func-
tion is shown in Fig. 18. Although the objective function
may increase in the early iterations due to the large num-
ber of bars to be broken to satisfy the volume constraint,
as shown in Fig. 16, it finally converges in a smooth and
stable way. Again, as expected, Fig. 18(b) displays that
the volume constraint can be exactly satisfied during the
course of evolution.

The effect of support type on the final design is shown
in Fig. 19. The support of this problem is changed to be
simply supported as shown in Fig. 19(a). Without chang-
ing any other parameters, the shape and topology opti-
mization is performed again using the present method
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Figure 17 : Scalar extension velocity field (ve
n � 0) for

an optimal solution of the Michell type structure.

and the final solution is shown in Fig. 19(b), in which
a less rigid pin-like connection near the supports is sug-
gested for the final truss-like structure. Comparing Fig.
16(f) with Fig. 19(b), it can be seen that the support
type can influence the optimal topology significantly.
This is consistent with the conclusions made in [Bendsøe
and Sigmund (2003)] based on the element-based SIMP
method for structural topology optimization.

6 Conclusions

A level set approach based on the implicit free bound-
ary parametrization method is successfully developed for
structural shape and topology optimization. The implicit
level set function is represented and approximated by us-
ing the RBF implicit modeling with IMQ splines. Be-
cause of the global smoothness and the exponential con-
vergence rate of the IMQs, a high level of accuracy and
smoothness of the implicit function is achieved. Further-
more, by assuming that the time dependence of the im-
plicit function is due to the generalized expansion coeffi-
cients of the RBF interpolant, the Hamilton-Jacobi PDE
is converted into a mathematically more convenient cou-
pled ODE and the original time dependent initial value
problem is changed to a relatively simple time-dependent
interpolation problem for the initial values of the gen-
eralized expansion coefficients, which can be solved by
using a collocation formulation of the method of lines.
The resulting system of non-linear coupled ODEs can be
solved by lots of existing ODE solvers. The time integra-
tion of the ODEs can be CFL-free because of the positive
definiteness of the IMQs.
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Figure 18 : Convergence of the objective function and the volume function for the Michell type structure.
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Figure 19 : Effect of the support type on the final solution.

The present extended level set method is then applied
to a classical shape and topology optimization problem.
The proposed shape and topology optimization process
operates on the implicit scalar level set function repre-
sented by the RBF implicit modeling and uses a steepest
gradient method to find the decent direction of the nor-
mal velocity for the minimization of an objective func-
tion. By using the present bi-sectioning algorithm, the
Lagrange multiplier can be accurately obtained and the
resulting normal velocity becomes mass conserving and
the present extended level set method can thus be mass
conservative. It is also found that the classical shape op-
timization can be performed during the course of evo-
lution. By using the global strain energy density field
and a linear smoothing filter, the normal velocity at the
free boundary is naturally and smoothly extended to the

whole design domain D without using an additional PDE
solving procedure. Moreover, reinitialization of the im-
plicit level set function is eliminated to allow for the nu-
cleation of new holes in the material domain.

This proposed method is implemented in the framework
of shape and topological optimum of minimum compli-
ance design and its higher efficiency and accuracy over
the conventional level set methods are illustrated. Nu-
merical examples of 2D structures are chosen to show
the success of the present method in accuracy, conver-
gence speed and insensitivity to initial designs. Com-
pared with the conventional level set methods, the present
method can generate similar optimal designs without the
numerically more complicated PDE solving procedures
and without the significant time step constraint due to
the CFL condition and exactly satisfy the volume con-



144 Copyright c© 2006 Tech Science Press CMES, vol.13, no.2, pp.119-147, 2006

straint during the iterations to guarantee that the final de-
sign be feasible and, furthermore, it can largely eliminate
the dependency on initial designs due to its capability in
the nucleation of new holes. It is also highlighted that
the efforts in shape optimization is worthwhile and in-
dispensable since an almost homogeneous strain energy
density distribution can be achieved. It is suggested that
the introduction of the radial basis functions to the con-
ventional level set methods possesses promising poten-
tials in structural shape and topology optimization.
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