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The Lie-Group Shooting Method for Nonlinear Two-Point Boundary Value
Problems Exhibiting Multiple Solutions

Chein-Shan Liu1

Abstract: The present paper provides a Lie-group
shooting method for the numerical solutions of second
order nonlinear boundary value problems exhibiting mul-
tiple solutions. It aims to find all solutions as easy as pos-
sible. The boundary conditions considered are classified
into four types, namely the Dirichlet, the first Robin, the
second Robin and the Neumann. The two Robin type
problems are transformed into a canonical one by us-
ing the technique of symmetric extension of the govern-
ing equations. The Lie-group shooting method is very
effective to search unknown initial condition through a
weighting factor r ∈ (0,1). Furthermore, the closed-
form solutions are derived to calculate the unknown ini-
tial condition in terms of r in a more refined range iden-
tified. Numerical examples were examined to show that
the new approach is highly efficient and accurate. The
number of solutions can be identified in advance, and all
possible solutions can be integrated readily through the
obtained initial conditions by selecting suitable r.

keyword: Lie-group shooting method, Nonlinear
boundary value problem, Unknown initial condition,
Multiple solutions.

1 Introduction

In this paper we propose new method for the computa-
tions of the following second-order nonlinear boundary
value problems (BVPs):

u′′ = F(x,u,u′), a < x < b, (1)

where we consider four type boundary conditions with α
and β given constants:

u(a) = α, u(b) = β, (2)

u′(a) = α, u(b) = β, (3)
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u(a) = α, u′(b) = β, (4)

u′(a) = α, u′(b) = β. (5)

Eq. (1) together with Eq. (2) is called the Dirichlet type
BVP, Eq. (1) together with Eq. (3) is called the first Robin
type BVP, and Eq. (1) together with Eq. (4) is called
the second Robin type BVP, while Eq. (1) together with
Eq. (5) is called the Neumann type BVP. The last prob-
lem will be discussed until Section 8.

The BVPs require information at a left-end point x = a
and at a right-end point x = b. For this reason the BVPs
are also called the two-point boundary value problems
(TPBVPs), which are often encountered in physical and
engineering problems. A number of methods exist for
solving these problems including shooting, collocation
and finite difference methods. Among these methods the
shooting method is the simplest one to solve TPBVPs.
However, it is known that the shooting method may fail
to converge for problems whose solutions are sensitive to
initial guesses, or may be even unstable leading to large
solution components that the solution does not extend un-
til to the desired interval due to error in the initial guess.
For this type problem finite difference and collocation
methods can provide a solution that satisfies the bound-
ary conditions and is close to the actual solution; how-
ever, the finite difference and collocation methods are
much harder to set up than the shooting method. This led
to the development of multiple shooting method as de-
rived by Morrison, Riley and Zancanaro (1962), which
is a compromise between the shooting method and the
finite difference method. Keller (1992) refers to the mul-
tiple shooting method as parallel shooting.

The usual stepping scheme requires a complete informa-
tion at the starting point x = a. Some effort is then re-
quired to reconcile the stepping scheme for the integra-
tions of BVPs.

The shooting method is to assume some unknown initial
conditions and to convert the BVP into initial value prob-
lem (IVP). Solve the IVP and compare the solution at the
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boundary to the known boundary conditions. In general,
the solution will not immediately satisfy the boundary
conditions, and, it requires many iterations to feedback
the information of mismatch on the target defined by the
boundary conditions to adjust the initial guess through it-
erative techniques. Thus the solution will converge to the
desired boundary conditions by gradually varying the ini-
tial conditions. This iterative approach is called shooting
method. How to choose a suitable initial condition may
become difficult when the guesses are carried out in an
uncertain range. The shooting method is a trial-and-error
method and is often very sensitive to the initial guess. All
that makes the computation expensive.

Especially, nonlinear BVPs often exhibit more than one
solution for a given set of parameters. Because of this,
by using the program with shooting method for solving
nonlinear BVPs one requires to provide a guess for the
solution desired. Along this way it is a difficult task to
establish all possible solutions if more than one is ex-
pected. If the solutions are very close to each other, the
shooting method fails to calculate the relevant profiles
because of oscillation of a particular iteration procedure
between both solutions.

Our approach of nonlinear BVPs is based on the group
preserving scheme (GPS) developed by Liu (2001) for
the integrations of IVPs. The GPS method is very effec-
tive to deal with ODEs with special structures as shown
by Liu (2005, 2006a) for stiff equations and ODEs with
constraints.

In this paper we will propose the Lie-group shooting
method, which provides an analytical method to deter-
mine the unknown information at the starting point. It
aims to make solving nonlinear BVPs even with multi-
ple solutions as easy as possible. It will be clear that
our method can be applied to the second order nonlin-
ear BVPs, since we are able to search the missing initial
condition with closed-form solutions through r in a com-
pact space of r ∈ (0,1), where the factor r is used in a
generalized mid-point rule for the Lie group of one-step
GPS.

This paper is organized as follows. In Section 2 we
put the first three type BVPs into a canonical form,
where the symmetric extension techniques are used for
the Robin type BVPs. In Section 3 we give a brief sketch
of the group preserving scheme for ODEs and explain
the construction of a one-step GPS by using the closure
property of Lie group [Liu, Chang and Chang (2006),

Liu (2006b)], and combine it with the generalized mid-
point rule (mean value theorem) to construct a single-
parameter Lie group in terms of the weighting factor r.
In Section 4 we derive a Lie-group shooting method to
solve nonlinear BVPs of the first three types, where we
can search the missing initial condition by solving an
algebraic equation in terms of r in a compact space of
r ∈ (0,1). In Section 5 we derive closed-form solutions
of the missing initial condition in a more refined inter-
val of r. In Section 6 we specify numerical procedures to
adjusting the missing initial condition by a quick and cor-
rect pick of r. In Section 7 we use numerical examples
to demonstrate the efficiency of the new method for the
first three types BVPs. In Section 8 we derive the gov-
erning equations for the Neumann type BVPs and give a
numerical example of this sort. Finally, we draw some
conclusions in Section 9.

2 Transforming the BVPs into a canonical one

2.1 The Dirichlet type BVPs

By letting

x = a+(b−a)t, (6)

y(t) = u(x)+(α−β)t +c−α, (7)

we can transform Eqs. (1) and (2) into a mathematical
equivalent system:

ÿ = f1(t,y, ẏ), (8)

y(0) = c, y(1) = c, (9)

where c > 0 is a translation constant. The superimposed
dot denotes the differential with respect to t. Here, we let

f1(t,y, ẏ) := (b−a)2F(a+(b−a)t,
y+(β−α)t +α−c, (ẏ +β−α)/(b−a)). (10)

2.2 The first Robin type BVPs

In addition Eq. (6) we use the following transformation:

y(t) = u(x)+α(b−a)(1− t)+c−β, (11)

and then Eqs. (1) and (3) can be reduced to

ÿ = F1(t,y, ẏ), (12)
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ẏ(0) = 0, y(1) = c, (13)

where

F1(t,y, ẏ) := (b−a)2F(a+(b−a)t,
y+α(a−b)(1− t)+β−c, ẏ/(b−a)+α). (14)

Through a symmetric extension into the interval of t ∈
[−1,0), we can write Eqs. (12) and (13) to be

ÿ = f2(t,y, ẏ), (15)

y(−1) = c, y(1) = c, (16)

where

f2(t,y, ẏ) =

⎧⎨
⎩

F1(t,y, ẏ) if 0 ≤ t ≤ 1,

F1(−t,y,−ẏ) if −1 ≤ t < 0.
(17)

The condition ẏ(0) = 0 will be not imposed here until we
develop the shooting method in Sections 4-6.

2.3 The second Robin type BVPs

For Eqs. (1) and (4) we consider the following transfor-
mations:

x = b+(b−a)t, (18)

y(t) = u(x)−β(b−a)(1+ t)+c−α, (19)

such that

ÿ = F2(t,y, ẏ), (20)

y(−1) = c, ẏ(0) = 0, (21)

where

F2(t,y, ẏ) := (b−a)2F(b+(b−a)t,
y+β(b−a)(1+ t)+α−c, ẏ/(b−a)+β). (22)

Through a symmetric extension into the interval of t ∈
(0,1], we can write Eqs. (20) and (21) to be

ÿ = f3(t,y, ẏ), (23)

y(−1) = c, y(1) = c, (24)

where

f3(t,y, ẏ) =

⎧⎨
⎩

F2(−t,y,−ẏ) if 0 < t ≤ 1,

F2(t,y, ẏ) if −1 ≤ t ≤ 0.

(25)

2.4 The canonical form

The first three type BVPs are all transformed into the
same type BVP:

ÿ = f (t,y, ẏ), (26)

y(t0) = c, y(1) = c, (27)

but with different f and t0. The case with t0 = 0 and f =
f1 corresponds to the Dirichlet type BVP, and t0 = −1
and f = f2 to the first Robin type BVP, while t0 =−1 and
f = f3 to the second Robin type BVP. No matter which
type BVP is considered, we can treat these equations in
a unified manner by starting from Eqs. (26) and (27).

For the latter two types BVPs the integration must match
the condition ẏ(0) = 0. Then, the solution of the origi-
nal first Robin type BVP is obtained by taking the right-
branch of the solution of Eqs. (26) and (27) with f re-
placed by f2. Similarly, the solution of the original sec-
ond Robin type BVP is obtained by taking the left-branch
of the solution of Eqs. (26) and (27) with f replaced by
f3. In the later it would be appreciated the advantage by
transforming the original BVPs to the standard type BVP
in Eqs. (26) and (27) by enforcing the two boundary val-
ues identical.

The stepping techniques developed for IVPs require the
initial conditions of both y1 = y and y2 = ẏ for the
second-order ODEs. If the initial value of y2, denoted as
y2(t0) = A, is available, which together with the known
initial value of y1(t0) = c, then we can numerically inte-
grate the following IVP step-by-step in a forward direc-
tion from t = t0 to t = 1:

ẏ1 = y2, (28)

ẏ2 = f (t,y1,y2), (29)

y1(t0) = c, (30)

y2(t0) = A. (31)

Here, we call Eqs. (28)-(31) the (y, t)-IVP, where y(t) =
(y1(t),y2(t)) denotes the system variables in the t-
domain. We are going to develop a Lie-group shooting
method to solve A. If y in terms of t is available, then the
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solution of u in the x-domain can be obtained through
Eqs. (6) and (7) for the Dirichlet problem, Eqs. (6) and
(11) for the first Robin problem, and Eqs. (18) and (19)
for the second Robin problem.

3 One-step GPS

3.1 The GPS

Let us write Eqs. (28) and (29) in the vector form:

ẏ = f(t,y), (32)

where

y :=
[

y1

y2

]
, f :=

[
y2

f (t,y1,y2)

]
. (33)

Liu (2001) has embedded Eq. (32) into an augmented
system:

Ẋ :=
d
dt

[
y

‖y‖
]

=

⎡
⎣ 02×2

f(t,y)
‖y‖

fT(t,y)
‖y‖ 0

⎤
⎦[ y

‖y‖
]

:= AX,

(34)

where A is an element of the Lie algebra so(2,1) satisfy-
ing

ATg+gA = 0 (35)

with

g =
[

I2 02×1

01×2 −1

]
(36)

a Minkowski metric. Here, I2 is the identity matrix, and
the superscript T stands for the transpose.

The augmented variable X satisfies the cone condition:

XTgX = y ·y−‖y‖2 = 0. (37)

Accordingly, Liu (2001) has developed a group-
preserving scheme (GPS) to guarantee that each Xk is
located on the cone:

Xk+1 = G(k)Xk, (38)

where Xk denotes the numerical value of X at the discrete
tk, and G(k) ∈ SOo(2,1) satisfies

GTgG = g, (39)

det G = 1, (40)

G0
0 > 0, (41)

where G0
0 is the 00th component of G. In Section 6.1 we

will write the GPS explicitly.

3.2 Generalized mid-point rule

Applying scheme (38) to Eq. (34) with a specified ini-
tial condition X(t0) = X0 we can compute the solution
X(t) by GPS. Assuming that the stepsize used in GPS is
h = (1− t0)/K, and starting from an initial augmented
condition X0 = X(t0) = (yT

0 ,‖y0‖)T we will calculate the
value X(1) = (yT(1),‖y(1)‖)T at t = 1.

By applying Eq. (38) step-by-step we can obtain

X f = GK(h) · · ·G1(h)X0, (42)

where X f approximates the exact X(1) with a certain ac-
curacy depending on h. However, let us recall that each
Gi, i = 1, . . .,K, is an element of the Lie group SOo(2,1),
and by the closure property of Lie group, GK(h) · · ·G1(h)
is also a Lie group denoted by G. Hence, we have

X f = GX0. (43)

This is a one-step transformation from X0 to X f .

We can calculate G by a generalized mid-point rule,
which is obtained from an exponential mapping of A
by taking the values of the argument variables of A at
a generalized mid-point. The Lie group generated from
A ∈ so(2,1) by an exponential admits a closed-form rep-
resentation as follows:

G =

⎡
⎢⎣ I2 + (a−1)

‖f̂‖2 f̂f̂T bf̂
‖f̂‖

bf̂T

‖f̂‖ a

⎤
⎥⎦ , (44)

where

ŷ = ry0 +(1− r)y f , (45)

f̂ = f(t̂, ŷ), (46)

a = cosh

(
(1− t0)

‖f̂‖
‖ŷ‖

)
, (47)
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b = sinh

(
(1− t0)

‖f̂‖
‖ŷ‖

)
. (48)

Here, we use the initial y0 = (y1(t0),y2(t0)) and the final
y f = (y1(1),y2(1)) through a suitable weighting factor r
to calculate G, where r ∈ (0,1) is a parameter and t̂ =
t0 + r(1− t0).

The approach of Eq. (44) can be realized alternatively by
using

Ġ = A(t,y)G. (49)

Integrating the above equation and using the mean-value
theorem we obtain

G = exp

[Z 1

t0
A(t,y)dt

]
= exp[(1− t0)A(t̂, ŷ)]. (50)

Inserting Eq. (34) for A and calculating the exponential
we can derive Eq. (44) again.

The above methods applied a generalized mid-point rule
or the mean value theorem on the calculations of G, and
the resultant is a single-parameter Lie group element de-
noted by G(r).

3.3 A Lie group mapping between two points on the
cone

Let us define a new vector

F :=
f̂

‖ŷ‖ , (51)

such that Eqs. (44), (47) and (48) can also be expressed
as

G =

⎡
⎣ I2 + a−1

‖F‖2 FFT bF
‖F‖

bFT
‖F‖ a

⎤
⎦ , (52)

a = cosh[(1− t0)‖F‖], (53)

b = sinh[(1− t0)‖F‖]. (54)

From Eqs. (43) and (52) it follows that

y f = y0 +ηF, (55)

‖y f‖ = a‖y0‖+b
F ·y0

‖F‖ , (56)

where

η :=
(a−1)F ·y0 +b‖y0‖‖F‖

‖F‖2 . (57)

Substituting

F =
1
η

(y f −y0) (58)

obtained from Eq. (55), into Eq. (56) we obtain

‖y f‖
‖y0‖ = a+b

(y f −y0) ·y0

‖y f −y0‖‖y0‖ , (59)

where

a = cosh

(
(1− t0)‖y f −y0‖

η

)
, (60)

b = sinh

(
(1− t0)‖y f −y0‖

η

)
(61)

are obtained by inserting Eq. (58) for F into Eqs. (53) and
(54).

Let

cosθ :=
[y f −y0] ·y0

‖y f −y0‖‖y0‖ , (62)

S := (1− t0)‖y f −y0‖, (63)

and from Eqs. (59)-(61) it follows that

‖y f‖
‖y0‖ = cosh

(
S
η

)
+cosθ sinh

(
S
η

)
. (64)

By defining

Z := exp

(
S
η

)
, (65)

we obtain a quadratic equation for Z from Eq. (64):

(1+cosθ)Z2 − 2‖y f‖
‖y0‖ Z +1−cos θ = 0. (66)

The solution is found to be

Z =

‖y f‖
‖y0‖ +

√(‖y f ‖
‖y0‖
)2 −1+cos2 θ

1+cos θ
, (67)
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and then from Eqs. (65) and (63) we obtain

η =
(1− t0)‖y f −y0‖

lnZ
. (68)

Therefore, between any two points (y0,‖y0‖) and
(y f ,‖y f‖) on the cone, there exists a Lie group element
G∈ SOo(2,1) mapping (y0,‖y0‖) onto (y f ,‖y f‖), which
is given by[

y f

‖y f‖
]

= G
[

y0

‖y0‖
]
, (69)

where G is uniquely determined by y0 and y f through the
following equations:

G(y0,y f ) =

⎡
⎣ I2 + a−1

‖F‖2 FFT bF
‖F‖

bFT
‖F‖ a

⎤
⎦ , (70)

a = cosh[(1− t0)‖F‖], (71)

b = sinh[(1− t0)‖F‖], (72)

F =
1
η

(y f −y0), (73)

in which η is still calculated by Eq. (68).

It should be stressed that the above G is very dif-
ferent from the one in Eq. (44). In order to feature
its dependence only on y0 and y f , we write it to be
G(y0,y f ), which is independent on r. Converesely, the
r-dependence G(r) is also a function of y0 and y f , but
its dependence is through the vector field f and the mean
values of ŷ. However, that two Lie group elements G(r)
and G(y0,y f ) are both indispensable in our development
of the Lie-group shooting method for nonlinear BVPs.

4 The Lie-group shooting method

From Eqs. (28)-(31) it follows that

ẏ1 = y2, (74)

ẏ2 = f (t,y1,y2), (75)

y1(t0) = c, y1(1) = c, (76)

y2(t0) = A, y2(1) = B, (77)

where A and B are two unknown constants, and c is a
given constant.

From Eqs. (55), (76) and (77) it follows that

F :=
[

F1

F2

]
=

1
η

[
0

B−A

]
. (78)

From Eqs. (68), (67) and (62) by inserting Eq. (33) for y
and noting that

y0 =
[

c
A

]
, y f =

[
c
B

]
, (79)

we obtain

η =
(1− t0)

√
(A−B)2

lnZ
, (80)

Z =

√
c2+B2√
c2+A2 +

√
c2+B2

c2+A2 −1+cos2 θ

1+cosθ
, (81)

cosθ =
A(B−A)√

(A−B)2
√

c2 +A2
. (82)

When compare Eq. (78) with Eq. (51), and with the aid
of Eqs. (45), (46) and (74)-(77) we obtain

rA+(1− r)B = 0, (83)

A−B+
η
ξ

f̂ = 0, (84)

where

f̂ (r) := f (t0 + r(1− t0),c,0), (85)

ξ :=
√

c2 +[rA+(1− r)B]2. (86)

It can be seen that f̂ is simply a function of r. This result
is due to the fact of ŷ1 = rc+(1− r)c = c and ŷ2 = rA+
(1− r)B = 0 by Eqs. (76), (77) and (83). Of course, this
is our objective to reduce the governing equation with its
most simple form, which is due to the fact that we have
transformed the BVPs into a canonical one in Eq. (26)
with the two boundary values in Eq. (27) identical.
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The above derivation of the governing equations (80)-
(86) is based on by equating the two F’s in Eqs. (51)
and (73). It also means that the two Lie group elements
defined by Eqs. (44) and (70) are equal. In this sense
we may call our shooting technique a Lie-group shooting
method.

From Eqs. (83) and (86) it follows that

ξ = c, (87)

which is a positive constant. Hence, from Eqs. (83)-(85)
and (87) we obtain a single algebraic equation for the
unknown variable A:

Ac+η0 f̂ = 0, (88)

where

Z =

√
c2 +B2 +

√
B2

√
c2 +A2 −

√
A2

, (89)

η0 =
(1− t0)

√
A2

lnZ
, (90)

and B = rA/(r−1) has a different sign with A.

Eq. (88) can be used to solve A for a given r. If A is
available, we can return to integrate Eqs. (28)-(31) by a
suitable forward IVP solver.

5 The solution of A

Remarkably, Eq. (88) can be solved exactly for A.

5.1 The case of A > 0

Here we first consider the case of A > 0. Inserting
Eq. (90) for η0 into Eq. (88) we obtain

lnZ =
−(1− t0) f̂

c
. (91)

Defining

g1 := exp

(
−(1− t0) f̂

c

)
, (92)

and substituting Eq. (89) for Z into Eq. (91) we obtain

√
c2 +B2 +

√
B2

√
c2 +A2 −

√
A2

= g1. (93)

Eq. (93) can be written as

g1A−B = g1

√
c2 +A2 −

√
c2 +B2, (94)

by using A > 0 and B < 0. Squaring the above equation
and cancelling the common terms we can rearrange it to

2g1

√
c2 +B2

√
c2 +A2 = (1+g2

1)c2 +2g1AB. (95)

Squaring again and cancelling the common term and fac-
tor we get

4g2
1(A2 +B2)−4g1(1+g2

1)AB = (1−g2
1)

2c2. (96)

Inserting B = rA/(r−1) and through some algebraic ma-
nipulations we eventually obtain

4g1

(r−1)2
[−(1−g1)2r2+(1−g1)2r+g1]A2 = (1−g2

1)
2c2.

(97)

If the following condition holds

D1(r) := −(1−g1)2r2 +(1−g1)2r +g1 > 0, (98)

then A has a positive solution:

A =

√
(r−1)2(1−g2

1)2c2

4D1g1
. (99)

The discriminant function D1(r) is an open-down dis-
torted parabola of r since g1 is also a function of r. D1(r)
has the following properties:

D1(0) = D1(1) = g1, (100)

and there exist two roots of r for D1(r) = 0:

r1 =
1
2
− 1+g1

2(1−g1)
=

−g1

1−g1
, r2 =

1
2

+
1+g1

2(1−g1)
=

1
1−g1

.

(101)

The condition (98) can be used to detect the range where
r is permitted.

5.2 The case of A < 0

Next we consider the case of A < 0. Inserting Eq. (90)
for η0 into Eq. (88) we obtain:

lnZ =
(1− t0) f̂

c
. (102)
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Defining

g2 := exp

(
(1− t0) f̂

c

)
, (103)

and substituting Eq. (89) for Z into Eq. (102) we obtain
√

c2 +B2 +
√

B2
√

c2 +A2 −
√

A2
= g2. (104)

By using A < 0 and B > 0, Eq. (104) can be written as

g2A+B =
√

c2 +B2 −g2

√
c2 +A2. (105)

Squaring the above equation and cancelling the common
terms we can rearrange it to

2g2

√
c2 +B2

√
c2 +A2 = (1+g2

2)c2 −2g2AB. (106)

Squaring again and cancelling the common term and fac-
tor we get

4g2
2(A2 +B2)+4g2(1+g2

2)AB = (1−g2
2)

2c2. (107)

Inserting B = rA/(r−1) and through some algebraic ma-
nipulations we eventually obtain

4g2

(r−1)2
[(1+g2)2r2 − (1+g2)2r +g2]A2 = (1−g2

2)
2c2.

(108)

If the following condition holds

D2(r) := (1+g2)2r2− (1+g2)2r +g2 > 0, (109)

then A has a negative solution:

A = −
√

(r−1)2(1−g2
2)2c2

4D2g2
. (110)

The discriminant function D2(r) is an open-up distorted
parabola of r since g2 is also a function of r. By inspec-
tion, D2(r) has the following properties:

D2(0) = D2(1) = g2, (111)

and there exist two roots of r for D2(r) = 0:

r1 =
1
2
− g2−1

2(g2 +1)
=

1
g2 +1

,

r2 =
1
2

+
g2 −1

2(g2 +1)
=

g2

g2 +1
, (112)

where 0 < r1 < 0.5 < r2 < 1. There exist solutions of A
given by Eq. (110) in the following ranges of r:

0 < r < r1, r2 < r < 1. (113)

6 Adjusting the slope A

In the previous section we have derived the closed-form
solution to calculate the slope A for each r in its admis-
sible range. If A is available, then we can apply the
GPS method given below to integrate the (y, t)-IVP in
Eqs. (28)-(31). Up to this point we should note that the
Lie-group shooting method is an exactly solving tech-
nique for the second-order nonlinear BVPs without mak-
ing any assumption or the approximation in derivations
of all required formulas. However, how to determine a
correct r and thus A requires a numerical integration of
the nonlinear ODEs.

6.1 The GPS

We have derived the closed-form solutions to calculate
the slope A for each r in its admissible range, and thus
we can integrate the (y, t)-IVP in Eqs. (28)-(31) by the
following GPS method:

yn+1 = yn +
4‖yn‖2 +2hfn ·yn

4‖yn‖2−h2‖fn‖2 hfn, (114)

where

fn = f(tn,yn). (115)

The numerical scheme (114) was first derived by Liu
(2001).

6.2 Adjusting A for the Dirichlet type BVPs

For a trial r in the admissible range, we can calculate A
and then numerically integrate Eqs. (28)-(31) from t = 0
to t = 1, and compare the end value of yr

1(1) with the ex-
act one y1(1) = c. If |yr

1(1)− c| is smaller than a given
error tolerance ε, then the process of finding solution is
finished. Otherwise, we need to calculate the end val-
ues of y1(1) corresponding to different r1 < r and r2 > r,
which are denoted by yr1

1 (1) and yr2
1 (1), respectively. If

[yr1
1 (1)− c][yr

1(1)− c] < 0, then there exists one root be-
tween r1 and r; otherwise, the root is located between
(r, r2). Then, we apply the half-interval method to find a
suitable r, which requires us to calculate Eqs. (28)-(31)
at each of the calculation of yr

1(1)−c, until |yr
1(1)−c| is

small enough to satisfy the criterion of |yr
1(1)−c| ≤ ε.

6.3 Adjusting A for the Robin type BVPs

For the first and second Robin type BVPs, we have em-
ployed the symmetric extension techniques to construct
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the canonical equations. Therefore the target used to ad-
just the slope A is ẏ(0) = 0.

For a trial r in the admissible range, we can calculate
A and then numerically integrate Eqs. (28)-(31) from
t = −1 to t = 0, and compare the end value of yr

2(0) with
the exact one y2(0) = ẏ(0) = 0. If |yr

2(0)| is smaller than
ε, then the process of finding solution is finished. Other-
wise, we need to calculate the end values of y2(0) corre-
sponding to different r1 < r and r2 > r, which are denoted
by yr1

2 (0) and yr2
2 (0), respectively. If yr1

2 (0)yr
2(0) < 0,

then there exists one root between r1 and r; otherwise,
the root is located between (r, r2). Then, we apply the
half-interval method to find a suitable r, which requires
us to calculate Eqs. (28)-(31) at each of the calculation of
yr

2(0), until |yr
2(0)| is small enough to satisfy the criterion

of |yr
2(0)| ≤ ε.

In principle, we can increase the accuracy by imposing a
smaller ε on the shooting error, which however requires
more iterations. Since the numerical method is very sta-
ble we can quickly pick up the correct value of r through
some trials and modifications. Therefore, in the follow-
ing calculations of numerical examples we do not use the
above half-interval method to pick up the weighting fac-
tor r.

7 Numerical examples

7.1 Example 1

Let us consider the following BVP (Ha and Lee, 2001):

u′′ =
3
2

u2, (116)

u(0) = 4, u(1) = 1. (117)

The exact solution is

u(x) =
4

(1+x)2 . (118)

It needs to stress that the solution of Eq. (116) is not
unique. In addition the above one, there exists another
solution:

u(x) = c2
1

(
1−cn(c1x−c2,k2)
1+cn(c1x−c2,k2)

− 1√
3

)
, (119)

where cn(ξ,k) is the modulus k Jacobi elliptic func-
tion. In the above case we have c1 = 4.30310990, c2 =
2.3346196, and k =

√
2+

√
3/2.

In this problem the vector field F = 3u2/2 cannot satisfy
the unique conditions of BVP, since ∂F/∂u = 3u may
be negative, for example the solution in Eq. (119). On
the other hand, since F may be zero when u passes the
zero axis, we consider a translation of u in Eq. (116) by
Eq. (7), such that one has

ÿ =
3
2
[y−3t +4−c]2, (120)

y(0) = c, y(1) = c. (121)

Then we apply the method in Sections 4-6 on the above
equation, and then obtain u by u = y−3t +4−c.
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Figure 1 : For Example 1 we plot A with respect to r
in (a), and y1(1)− c with respect to r in (b), where the
intersection points locate the roots of r.

For each given r we use Eq. (110) to calculate A, and then
numerically integrate the IVP by the numerical scheme in
Section 6.1. We plot the curve of A with respect to r in
Fig. 1(a), and the curve of y1(1)− c with respect to r in
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Figure 2 : Comparing numerical solutions and exact so-
lutions for Example 1 in (a), and (b) the numerical error.

Fig. 1(b). In this calculation we have fixed c = 15 and
the stepsize h = 0.0001. It can be seen that there are two
roots of r, of which the target equation y1(1)− c = 0 is
satisfied as shown in Fig. 1(b) at the intersection points
of the curve with the zero line.

Then, we apply the Lie-group shooting technique to
this problem for searching the missing initial condition
y2(0) = A. In Fig. 2 we compare our solutions with the
exact solutions by taking r = 0.69334382 for smaller so-
lution and r = 0.61959981 for larger solution. They lead
to the errors of the value of y1(1) in the order of 10−7

when compared with the exact y1(1) = c. We only com-
pare our solution with the solution in Eq. (118), which is
the smaller one. It can be seen that the numerical error of
u is in the order of 10−5.

7.2 Example 2

Let us consider the following Carrier-Pearson problem
(Carrier and Pearson, 1991):

εu′′ = 1−u2, (122)

u(−1) = 0, u(1) = 0, (123)

where ε is a small parameter.

This problem is very complex when ε is small. Here we
only show two different solutions in Fig. 3 with ε = 0.1.
The solution with positive slope is obtained by taking
r = 0.88111263 and the one with negative slope is ob-
tained by taking r = 0.9583918. In these calculations
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Figure 3 : For Example 2 we plot two numerical solu-
tions one with A > 0 and another with A < 0.

the translation constant c = 20 was used, and the stepsize
used was h = 0.00001.

7.3 Example 3

Let us consider the following BVP (Kubicek and
Hlavacek, 1983):

u′′ +
1
x

u′ = −δeu, (124)

u′(0) = 0, u(1) = 0. (125)

This problem is of the first Robin type and is singular at
the zero point x = 0. This equation is simply transformed
by x = t and y = u+c into Eqs. (15) and (16) with

f2(t,y, ẏ) = −δey−c − 1
t

ẏ, −1 ≤ t ≤ 1. (126)

The closed form solution of Eq. (124) is

u(x) = ln
8ρ

δ(1+ρx2)2 , (127)

where the integration constant ρ is determined by

8ρ
δ(1+ρ)2 = 1. (128)

It can be seen that for a given δ in the range of 0 < δ < 2,
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Figure 4 : For Example 3 we plot A with respect to r in
(a), and y2(0) with respect to r in (b), where the intersec-
tion points locate the roots of r.

two distinct real roots of ρ in Eq. (128) exist:

ρ1 =
1
2

⎡
⎣8

δ
−2+

√(
8
δ
−2

)2

−4

⎤
⎦ ,

ρ2 =
1
2

⎡
⎣8

δ
−2−

√(
8
δ
−2

)2

−4

⎤
⎦ ,

and correspondingly, there are two solutions in Eq. (127).
For δ = 2, there is only one solution corresponding to
ρ = 1.

For each given r we use Eq. (99) to calculate A, and then
numerically integrate the IVP by the numerical scheme in
Section 6.1. For δ = 1.8 we plot the curve of A with re-
spect to r in Fig. 4(a), and the curve of y2(0) with respect
to r in Fig. 4(b). In this calculation we have fixed c = 1
and the stepsize h = 0.0001. It can be seen that there are

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

u

0.0

0.5

1.0

1.5

2.0

2.5

u
0.0 0.2 0.4 0.6 0.8 1.0

(a)

1E-8

1E-7

1E-6

1E-5

1E-4

E
rr

or
 o

f 
u

(b)

x

(c)

Exact

Numerical

t

Figure 5 : For Example 3: (a) plotting numerical solu-
tions with respect to t, (b) comparing numerical solutions
and exact solutions with respect to x, and (c) the numeri-
cal errors.

two roots of r, of which the target equation y2(0) = 0 is
satisfied as shown in Fig. 4(b) by intersecting the curve
with the zero line.

Then, we apply the Lie-group shooting technique to
this problem for searching the missing initial condition
y2(−1) = A. In Fig. 5 we compare our solutions with the
exact solutions by taking δ = 1.8 and r = 0.8127308556
for smaller solution and r = 0.55507615685 for larger so-
lution. They lead to the errors of the value of y2(0) in the
order of 10−7 when compared with the exact y2(0) = 0.
It can be seen that the numerical errors of u are both in
the order of 10−5. In Fig. 5(a) we also plotted the sym-
metric solutions of u = y−c in the range of t ∈ [−1,1]. It
can be seen that the curves are perfectly symmetric, and
u̇(0) = 0 is fulfilled exactly.

7.4 Example 4

Let us consider the following BVP (Kubicek and
Hlavacek, 1983):

u′′ = a2
0uexp

[
a1(1−u)

1+a2(1−u)

]
, (129)
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Figure 6 : For Example 4 we plot A with respect to r in
(a), and y2(0) with respect to r in (b), where the intersec-
tion points locate the roots of r.

u′(0) = 0, u(1) = 1. (130)

This problem is of the first Robin type and has three solu-
tions under a0 = 0.16, a1 = 14 and a2 = 0.7. This equa-
tion is simply transformed by x = t and y = u+c−1 into
Eqs. (15) and (16) with

f2(t,y, ẏ) = a2
0(y+1−c)exp

[
a1(c−y)

1+a2(c−y)

]
, (131)

y(−1) = c, y(1) = c. (132)

The shooting method is to match ẏ(0) = 0.

For each given r we use Eq. (110) to calculate A, and then
numerically integrate the IVP by the fourth-order Runge-
Kutta method. We plot the curve of A with respect to r
in Fig. 6(a), and the curve of y2(0) with respect to r in
Fig. 6(b). In this calculation we have fixed c = 1 and
the stepsize h = 0.0001. It can be seen that there are
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Figure 7 : Plotting three numerical solutions for Exam-
ple 4.

three roots of r, of which the target equation y2(0) = 0 is
satisfied as shown in Fig. 6(b) by intersecting the curve
with the zero line.

We display our solutions by taking r = 0.7339775983 at
point 1 for the smallest solution as shown in Fig. 7(a),
r = 0.473000077736 at point 2 for the moderate solution
and r = 0.51386987259 at point 3 for the largest solution
as shown in Fig. 7(b). The largest solution is very sensi-
tive to the disturbance of the slope and we integrate this
solution by using h = 0.00001.

8 The Neumann problems

8.1 The governing equations

In addition Eq. (6) we use the following transformation:

y(t) = u(x)+
1
2

k1t2 +k2t

= u(x)+
1
2
(β−α)(a−b)t2 +α(a−b)t, (133)
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and then, Eqs. (1) and (5) can be reduced to

ÿ = f (t,y, ẏ), (134)

ẏ(0) = 0, ẏ(1) = 0, (135)

where

f (t,y, ẏ) := (b−a)2F(a+(b−a)t,
y−k1t2/2−k2t, (ẏ−k1t −k2)/(b−a)). (136)

The equation, required to determine the unknown y(0) =
C, can be obtained by a similar argument as that in Sec-
tion 3. For this purpose let us write

ẏ1 = y2, (137)

ẏ2 = f (t,y1,y2), (138)

y1(t0) = C, y1(1) = D, (139)

y2(t0) = A, y2(1) = B. (140)

In above, t0 = 0 and A = B = 0.

From Eq. (62) and

y0 =
[

C
A

]
=
[

C
0

]
, y f =

[
D
B

]
=
[

D
0

]
(141)

it follows that

cosθ =
C(D−C)+A(B−A)√

(C−D)2 +(A−B)2
√

C2 +A2
. (142)

Because of A = B = 0, cosθ may be -1 or +1. Let us first
consider the case of cosθ = −1, of which C(D−C) < 0
is deduced. Under this condition from Eq. (66) we obtain

Z =

√
C2

√
D2

. (143)

If C < 0 then D−C > 0 and from Eqs. (63) and (65) we
have

S = D−C, (144)

η =
D−C

ln
√

C2√
D2

, (145)

due to A = B = 0.

From Eqs. (58), (139), (140) and (51) it follows that

F :=
[

F1

F2

]
=

1
η

[
D−C
B−A

]
=

1
‖ŷ‖

[
ŷ2

f̂

]
, (146)

and that ŷ1 = rC +(1− r)D and ŷ2 = rA +(1− r)B = 0,

where ‖ŷ‖=
√

ŷ2
1 + ŷ2

2 =
√

[rC +(1− r)D]2 �= 0.

From the second equation in Eq. (146) it follows that

f̂ = f (r, ŷ1, ŷ2) = f (r, rC+(1− r)D,0) = 0, (147)

due to A = B = 0.

On the other hand, from the first equation in Eq. (146)
we have

1
η

(D−C) =
ŷ2

‖ŷ‖ = 0, (148)

because of ŷ2 = 0. Substituting Eq. (145) for η into the
above equation we obtain

ln

√
C2

√
D2

= 0. (149)

Therefore, we have D = −C, and Eq. (147) can be used
to solve C for a given r.

Now, suppose that C > 0, and then D−C < 0 follows
from the inequality C(D−C) < 0. Under this condition
from Eqs. (66), (63) and (65) we obtain

Z =

√
D2

√
C2

, (150)

S = C−D, (151)

η =
C−D

ln
√

D2√
C2

. (152)

A similar argument as that in the above also leads to D =
−C.

The case of cosθ = 1 implies that C(D −C) > 0 by
Eq. (142). However, the same argument as that in the
above leads to D = −C. This results in C(D −C) =
−2C2 < 0, which contradicts to C(D−C) > 0. It means
that there exists no such case that cosθ = 1.
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Therefore, by inserting D = −C into Eq. (147) we have
the following equation to solve C:

f (r, (2r−1)C,0) = 0, (153)

no matter C is positive or negative. If C is available,
we can return to Eqs. (137)-(140) and integrate them
by a suitable forward IVP solver with initial conditions
y1(0) = C and y2(0) = A = 0.

8.2 Example 5

Let us consider a reaction problem studied by Finlayson
(1972). It arises when modeling a tubular reactor with
axial dispersion. An isothermal situation with n-th order
irreversible reaction leads to

u′′ = Pe(u′+Run), (154)

u′(0) = Pe[C−1], u′(1) = 0, (155)

where u(0) = C is an unknown constant. In above Pe is
the axial Peclet number and R is the reaction rate group.

For this problem we have

α = Pe[C−1], β = 0.

Substituting them into Eq. (133) we obtain

y(t) = u(x)+
1
2

αt2−αt. (156)

Therefore, we obtain Eqs. (134) and (135) with the fol-
lowing

f (t,y, ẏ) = α+Pe

[
ẏ−αt +α+R

(
y− 1

2
αt2 +αt

)n]
.

(157)

Substituting Eq. (157) into Eq. (153) we obtain

f (r, (2r−1)C,0)= α

+Pe

[
−rα+α+R

(
(2r−1)C− 1

2
r2α+ rα

)n]
= 0, (158)

which for a given r can be used to solve C by inserting
α = Pe[C−1].
Then we integrate the following equations:

ẏ1 = y2, (159)

ẏ2 = α+Pe

[
y2 −αt +α+R

(
y1 − 1

2
αt2 +αt

)n]
, (160)

y1(t0) = C, (161)

y2(t0) = 0, (162)
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Figure 8 : For Example 5: (a) plotting numerical solution
of y with respect to x, and (b) plotting numerical solution
of u with respect to x.

with C given by Eq. (158). Let r = 0.4180812 we plot the
(x,y) and (x,u) in Fig. 8 under Pe = 1, R = 2 and n = 2.
For this case the α can be solved in closed-form:

α =
−B0 −

√
B2

0−4A0C0

2A0
, (163)

A0 = 2(3r−1−0.5r2)2, (164)



The Lie-Group Shooting Method 163

B0 = 4(2r−1)(3r−1−0.5r2)2 +2− r, (165)

C0 = 2(2r−1)2. (166)

These equations are integrated backward by the nu-
merical method of backward group preserving scheme
(BGPS) developed by Liu, Chang and Chang (2006) with
the conditions y(1) = D = −C = −α − 1 and y2(1) =
ẏ(1) = 0. It can be seen that the numerical solution
exactly satisfies the boundary conditions with ẏ(0) =
ẏ(1) = 0 as shown in Fig. 8(a). In our calculation we
get u(0) = 2.798782 and u(1) = 1.188085.

9 Conclusions

In this paper we have fully utilized Eqs. (55) and (56)
to construct a one-step group element G(y0,y f ), which
is the Lie group transformation between initial point and
final point on the cone in the Minkowski space. Then,
we used a mean value theorem to construct another Lie
group element G(r). In order to estimate the miss-
ing initial conditions for the two-point nonlinear bound-
ary value problems, we have employed the equation
G(y0,y f ) = G(r) to derive algebraic equations. Through
a symmetric extension technique we have transformed
the Robin type nonlinear BVPs into a canonical one,
which together with the other two type problems all can
be solved in closed-form of the unknown initial condi-
tions in terms of r in a compact space of r ∈ (0,1).

Numerical examples were examined to ensure that the
Lie-group shooting method can calculate the solutions
of second-order nonlinear BVPs even with multiple so-
lutions. The numerical solutions could match the spec-
ified boundary conditions with high accuracy. Through
this study, it can be concluded that the Lie-group shoot-
ing method is accurate, effective and stable. Its numer-
ical implementation is very simple and the computation
speed is very fast to find all possible solutions.
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