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Evaluation of T-stress for An Interface Crack between Dissimilar Anisotropic
Materials Using the Boundary Element Method

P.D. Shah1, C.L. Tan1,2, X. Wang1

Abstract: In this paper, the path independent mutual or
M-integral for the computation of the T -stress for inter-
face cracks between dissimilar anisotropic, linear elastic
solids, is developed. The required auxiliary field solu-
tion is derived from the solution of the problem of an
anisotropic composite wedge subjected to a point force at
its apex. The Boundary Element Method (BEM) is em-
ployed for the numerical stress analysis in which special
crack-tip elements with the proper oscillatory traction
singularity are used. The successful implementation of
the procedure for evaluating the T -stress in a bi-material
interface crack and its application are demonstrated by
numerical examples.

keyword: T -stress, Mutual M-integral, Interface
crack, Anisotropic elasticity, Boundary element method
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1 Introduction

The study of cracks along the interface between dissim-
ilar materials has become increasingly important due to
structural integrity and reliability issues in modern en-
gineered materials such as composites, thin film coat-
ings, bi-crystals and other multiphase material systems.
At the crack-tip, the stress singularity is oscillatory in
nature and it has been a subject of extensive study and
discussion over the years [e.g. Williams (1959), Erdo-
gan, (1963), Comninou (1977, 1990), Rice (1988), Ting
(1990), Suo (1990)]. The stress intensity factors that
characterize this near-tip stress field, KI and KII , are cou-
pled and they are often written in complex form as K =
KI + iKII , where i =

√
(-1); schemes for the numerical

evaluation of these parameters have also been developed
over the years [see, e.g., Wang and Yuan (1983), Matos et
al. (1989), Yuuki and Cho (1989) , Tan, Gao and Afagh
(1992), Mizayaki, et al. (1993), Chow and Atluri (1995),
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Chow et al. (1995), Beom and Atluri (1996), Banks-Sills
(1997), Sladek et al. (2004)] .

In fracture mechanics analysis of cracked bodies, the so-
called T -stress is also increasingly being recognized as
an important second parameter to characterize the near
crack-tip field. It corresponds to the leading non-singular
term of the Williams’ (1957) eigenfunction series expan-
sion for the elastic stress distribution in the vicinity of a
crack-tip and represents the stress acting parallel to the
plane of the crack. Numerous studies over the years have
found its use in, for example, offering better prediction
of the shape and extent of plastic zones, crack path sta-
bility as well as fracture toughness of elastic solids un-
der different levels stress constraint around the crack-
tip [see, e.g. Larsson and Carlsson (1973), Rice (1974),
Cotterell and Rice (1980), Betegon and Hancock (1991),
Tvergaard and Hutchinson (1994), Smith, Ayatollahi and
Pavier (2001)]. Its consideration as an additional param-
eter to the traditional parameter, namely, the stress inten-
sity factor or the J-integral, in fracture assessment proce-
dures in engineering design codes (see, e.g., Ainsworth et
al., 2000) has further reinforced its practical significance.

The means to obtain the T -stress for homogenous,
isotropic materials has been quite extensively investi-
gated over the years and several numerical approaches
for its evaluation exist in the literature. Works on the
evaluation of the T -stress in orthotropic, functionally-
graded and anisotropic homogenous materials are, on
the other hand, still relatively scarce and more recent.
They include those of Ma, et al. (1997), Yang and Yuan
(2000), Kim and Paulino (2004), Song (2004), and, Shah,
Tan and Wang (2006). Among the various schemes con-
sidered is the path independent mutual- or M-integral
method which was first devised by Kfouri (1986) based
on Eshelby’s (1975) work, to obtain the T -stress in ho-
mogenous isotropic cracked bodies. This approach has
been found to be perhaps the most reliable. Unlike many
of the other schemes which are based directly on the
asymptotic eigenfunction series expansion of the field
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solutions, this method involves field values along the
path of a contour sufficiently remote from the crack tip,
thereby, averting the effects of the stress singularity near
the crack tip.

In comparison with homogenous cracked bodies, stud-
ies dealing with the determination of T -stress for a bi-
material interface crack are very scarce indeed. For the
two-dimensional (2D) interface crack between isotropic
materials, Sladek and Sladek (1997) extended their ear-
lier work for cracks in homogeneous materials [Sladek,
Sladek and Fedelinski (1997)] in which they derived
the M-integral method using Betti-Rayleigh’s reciprocal
work theorem and adopted an auxiliary field which has
an order of singularity higher than that used by Kfouri
(1986). Their development is more suitable for imple-
mentation with the Boundary Element Method (BEM).
Moon and Earmme (1998) have also investigated, in an
analytical approach, the T -stress under in-plane and anti-
plane loading for an interface crack between dissimilar
isotropic, infinite, bi-materials strips using the M-integral
method. Recently, Fett and Rizzi (2004) have obtained
the T -stress for isotropic bimaterial interface cracks us-
ing the weight function method in conjunction with Fi-
nite Element Method (FEM).

Kim, Moon and Earmme (2001) extended the analytical
work of Moon and Earmme (1998) mentioned above, to
an interface crack between anisotropic bodies of infinite
and semi-infinite extents using the M-integral method;
no numerical solutions were reported, however. In a re-
cent contribution, Song (2005) has presented a relatively
new, semi-analytical boundary element method based on
finite elements, called the scaled-boundary finite element
method, to obtain T -stress values for cracks at isotropic
and non-isotropic bimaterial interfaces. Again, no nu-
merical solution for a generally anisotropic bi-material
interface crack problem was presented in the work, even
though it can be obtained by the technique. There is in-
deed paucity of numerical T -stress solutions for the inter-
face crack problem in generally anisotropic bi-materials,
and to the authors’ knowledge, the use of the BEM to
this end has hitherto also not been reported in the open
literature.

In the following sections, the M-integral approach imple-
mented by Sladek and Sladek (1997) for obtaining the T -
stress for isotropic bimaterial interface cracks in conjunc-
tion with BEM is extended to the generally anisotropic
case. A relatively simpler approach to obtain the terms

required to evaluate the M-integral and thence, the T -
stress, will be discussed. The veracity and application of
this approach will be illustrated by numerical examples.

2 Bimaterial Interface Crack in 2D Anisotropy

For two-dimensional anisotropic elasticity, the constitu-
tive equation is given by Eq. (1) below:⎧⎨
⎩

ε11

ε22

2ε12

⎫⎬
⎭ =

⎡
⎣ a11 a12 a16

a12 a22 a26

a16 a26 a66

⎤
⎦

⎧⎨
⎩

σ11

σ22

σ12

⎫⎬
⎭ (1)

where, εi j , σi j are the strains and stresses, respectively,
and ai j are the compliances. The above relation holds
true for plane stress problems. For plane strain condi-
tions, ai j is replaced with bi j as follows,

bi j = ai j −ai3a j3/a33 (2)

Under plane stress or plane strain condition, the elastic
field in an anisotropic material can be expressed in terms
of complex functions f1(z1) and f2(z2) where zi is a gen-
eralized complex variable in terms of a complex param-
eter µi, as follows: zi = x1+µix2 (i = 1,2). Here, µi are
the roots for the characteristic equation, Eq. (3), for the
plane anisotropic body in stable equilibrium [Lekhnitskii
(1968)].

a11µ4−2a16µ3 +(2a12 +a66)µ2 −2a26µ+a22 = 0 (3)

The stresses and displacements can then be expressed in
terms of the complex functions and material properties as
follows,

σ1i = −2Re

[
2

∑
j=1

Bi jµ j f ′j (z j)

]
(4a)

σ2i = 2Re

[
2

∑
j=1

Bi j f ′j (z j)

]
(4b)

ui = 2Re

[
2

∑
j=1

Ai j f j (z j)

]
( j = 1,2) (5)

where Re[..] denotes the real part of the complex quanti-
ties within the parentheses, B and A are complex matrices
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the elements of which are dependent upon material prop-
erties, given by

B =
[ −µ1 −µ2

1 1

]
(6)

A1 j = a11µ2
j +a12 −a16µ j (7a)

A2 j = a21µ j +a22/µ j −a26 (7b)

The stress field near a crack tip can be generally written
as

σ(m)
i j = f (K, r,γ,θ)+C(m)δi1 j1T +O(rα) (8)

where r, θ are polar coordinates with origins at crack tip,
γ is the bimaterial constant, m is 1 for material 1 or 2
for material 2 and αg 0. The focus here is on the second
term of Eq. (8) which contains the T -stress. The material
specific coefficient C(m) may be obtained by the steps as
follows.

Along the bonded interface between the materials, dis-
placement u

(m)
i being continuous yields,

u(1)
i,1 = u(2)

i,1 (9)

which implies,

u(1)
1,1 = u(2)

1,1 (10)

Along the interface,

u(m)
1,1 ⇒ ε(m)

11 = a
′(m)
11 σ(m)

11 (11)

where a
′(m)
11 is a(m)

11 transformed in the direction parallel
to the crack plane.

From Eqs. (10) and (11)

a
′(2)
11 σ(2)

11 = a
′(1)
11 σ(1)

11 (12)

σ(1)
11 =

a
′(2)
11

a
′(1)
11

σ(2)
11 (13)

Thus,

C(2) = 1 (14)

C(1) =
a
′(2)
11

a
′(1)
11

(15)

It should be noted that, in the case of a bimaterial inter-
face crack, there are two in-plane T -stresses, depending
on which material region it is defined for; the two values
are, however, related, as is explained here. In the above
development, the T -stress is defined with respect to ma-
terial 2 (Figure 1). In order to obtain the T -stress with
respect to material 1, C(1) should be set to unity and the
value of C(2) follows. The T -stress values in material 1
and 2 can be easily shown to be related according to

T (1)a
′(1)
11 = T (2)a

′(2)
11 (16)

In what follows, the T -stress is defined along the inter-
face in material 2 and will simply be denoted as T instead
of T (2).

3 M-integral for T-stress Evaluation

The work of Sladek and Sladek (1997) for isotropic bi-
materials is extended to general anisotropy in the present
study. The path independent J-integral along contour Γ0,
shown in Figure 1 is given as

J =
Z

Γ0

(Wn1 − tiui,1)dΓ (17)

where W is the strain energy density as

W =

εi jZ

0

σi jdεi j =
1
2

σi jεi j (18)

Considering two independent equilibrium states, A and
aux, the mutual integral, also commonly referred to as
the M-integral, is expressed in terms of J−integral as fol-
lows,

M = J(A+aux)−J(A) −J(aux) (19)

where

J(A) =
Z

Γ0

[
1
2

(
σA

i jε
A
i jn1

)−σA
i jn juA

i,1

]
dΓ (20a)

J(aux) =
Z

Γ0

[
1
2

(
σaux

i j εaux
i j n1

) −σaux
i j n ju

aux
i,1

]
dΓ (20b)
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Figure 1 : Contour Γ0 around the crack tip and material
designation of bimaterial interface crack.

Thus,

M =
Z

Γ0

(
σA

i jε
aux
i j n1 −σA

i jn juaux
i,1 −σaux

i j n juA
i,1

)
dΓ (21)

The first state A corresponds to the boundary value prob-
lem being analysed. As is taken to be the case for cracked
homogeneous body, the second state aux, also called the
auxiliary field, is chosen to correspond to the solution of
a semi-infinite crack loaded by a point (line) force f ap-
plied at the crack tip in the direction parallel to the crack
plane as given in Figure 8 in the Appendix. This auxiliary
field solution, in the case of interface crack between dis-
similar anisotropic materials, can be derived from the so-
lution of the problem of an anisotropic composite wedge
subjected to a point force at its apex given by Chung and
Ting (1995). The derivation is given in the Appendix.

Since the J-integral is path independent, so will the M-
integral. It can thus be expressed in terms of an arbitrary
circular contour with radius ε shrunk to zero, thus the
M-integral takes the form

M = lim
ε→0

Z

Γe

(σA
i jε

aux
i j n1 −σA

i jn ju
aux
i,1 −σaux

i j n ju
A
i,1)dΓ (22)

The boundedness of J-integral and thus M-integral im-
plies that there is no contribution from the singular terms

in the stress and displacement fields around the crack tip.
The asymptotic stresses and displacements of state A can
be split into the singular and non-singular components as
follows:

σA
i j = σs

i j + σT
i j (23a)

uA
i j = us

i j + uT
i j (23b)

In Eq. (23), the terms with the superscript s denote those
components which are singular in nature and containing
the stress intensity factors; those terms with superscript
T are the leading non-singular terms of the asymptotic
expansion proportional to the T -stress.

The circular contour integral from θ = -π to +π of the an-
gular functions of the singular terms of the auxiliary field
in Eq (22) cancel out; this leaves only the non-vanishing
contribution from the T -stress. Thus, the M-integral in
Eq. (22) reduces to

M = lim
ε→0

Z

Γε

(σT
i jε

aux
i j δ1 j −σT

i ju
aux
i,1 −σaux

i j uT
i,1)n jdΓ (24)

where

σT
i j =

a
′(2)
11

a
′(1)
11

T δi1δ j1, for 0 ≤ θ ≤ π (25a)

σT
i j = T δi1δ j1, for −π ≤ θ ≤ 0 (25b)

In Eq. (24), the first and the second terms collectively
vanish as shown below,

σT
i j

(
εaux

i j δ1 j −uaux
i,1

)
n j

=
(
σT

i jε
aux
i1 −σT

i ju
aux
i,1

)
n j

=
(

C(a)T δi1δ j1εaux
i1 −C(a)T δi1δ j1uaux

i,1

)
n j

= C(a)(T δ j1εaux
11 −T δ j1uaux

1,1

)
n j

= C(a)(T δ j1uaux
1,1 −T δ j1uaux

1,1

)
n j = 0 (26)
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Equation (24) then becomes

M = − lim
ε→0

Z

Γε

[
σaux

i j uT
i,1

]
n jdΓ

= − lim
ε→0

Z

Γε

[
σaux

i j n jεT
11δi1

]
dΓ

= − lim
ε→0

Z

Γε

[
σaux

1 j n jεT
11

]
dΓ

= − lim
ε→0

πZ

0

[
σaux

1 j n ja
′(1)
11 σT

11

]
εdθ

− lim
ε→0

0Z

−π

[
σaux

1 j n ja
′(2)
11 σT

11

]
εdθ

= − lim
ε→0

πZ

0

[
σaux

1 j n ja
′(1)
11

a
′(2)
11

a
′(1)
11

T

]
εdθ

− lim
ε→0

0Z

−π

[
σaux

1 j n ja
′(2)
11 T

]
εdθ

= T

⎧⎨
⎩−a

′(2)
11 lim

ε→0

πZ

0

[
σaux

1 j n j
]

εdθ

−a
′(2)
11 lim

ε→0

0Z

−π

[
σaux

1 j n j
]

εdθ

⎫⎬
⎭

= −Ta
′(2)
11

⎧⎨
⎩lim

ε→0

πZ

0

[
σaux

1 j n j
]

εdθ

+ lim
ε→0

0Z

−π

[
σaux

1 j n j
]

εdθ

⎫⎬
⎭

= −Ta
′(2)
11

⎧⎨
⎩lim

ε→0

Z

Γε

[
σaux

1 j n j
]

dΓ

⎫⎬
⎭

= −Ta
′(2)
11 {− f }

= Ta
′(2)
11 f (27)

Thus, the T -stress can be expressed in terms of M-
integral as follows,

T =
M

a
′(2)
11 f

(28)

In order to evaluate the M-integral in the above relation,
Eq. (21) is used. To evaluate T -stress values in plane

strain condition, a11 should be replaced by b11 as in Eq.
(2). Note that the terms in Eqs. (21) to (28) are in the
local coordinates system X’i as shown in Figure 1. In the
present implementation, the M-integral is first obtained
in global coordinates and later transformed into the lo-
cal coordinates. The coordinate transformation of the
M-integral follows similarly that of the J-integral [Kishi-
moto, Aoki and Sakata (1980)] as follows,

M(Local) = M1(Global)cosω+M2(Global) sinω (29)

where

Mk(Global) =
Z

Γ0

(σA
i jε

aux
i j nk −σA

i jn ju
aux
i,k −σaux

i j n ju
A
i,k)dΓ

(30)

and ω is the angle of inclination of the crack with global
coordinates Xi.

4 Results and discussion

The M-integral formulations to obtain the T -stress for a
crack at an interface between dissimilar anisotropic ma-
terials as presented in the sections above have been im-
plemented into the BEM code, based on the quadratic
isoparametric element formulation, as used in Tan and
Gao (1992) and Shiah and Tan (1999). For the fracture
mechanics analysis, special crack-tip elements which
represent the proper oscillatory stress singularity for the
bi-material interface crack are employed [Tan and Gao
(1992)]. The self-regularized Somigliana’s identities
for interior point solutions which are required for the
M-integral contour integrations have also been imple-
mented, as described in Shah, Tan and Wang (2006). In
this study, at least two contours with different radii were
considered to verify the path independence of the cal-
culated M-integral to obtain T -stress. The contour radii
were varied between 0.4 to 0.6 times the modeled crack
length and the discrepancies between the T -stress values
obtained for the different contour radii were all less than
2% for the cases treated.

Three examples are presented here to demonstrate the
veracity and capability of the developed formulations.
The first problem considered is a rectangular plate with
a centre, interface crack between two dissimilar isotropic
materials; numerical solutions of the T−stress for this
problem are available for comparison with the present
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approach using the algorithm for anisotropic elasticity.
The second example has the same geometry and loading
condition as the first problem, except that the two mate-
rials are treated as orthotropic. For the third example, a
bi-crystal disc with a crack at the interface is analyzed.

4.1 Example 1

Due to paucity of T -stress solutions in the literature for
the bi-material interface crack problem in the generally
anisotropic case, the first example investigated was a bi-
material interface crack problem in isotropy. The exam-
ple serves as a check of the current algorithm as being
also applicable to bi-material isotropy. It was a rectan-
gular plate comprising of dissimilar isotropic materials 1
and 2 with engineering material constants (E1, ν1) and
(E2, ν2), respectively, containing a central crack at the
interface, as shown in Figure 2. The centre cracked plate
(CCP) was subjected to uniform tensile stress σo at the
ends and plane strain conditions were assumed. With ref-
erence to this figure, the geometric cases considered were
a/W = 0.15 and 0.5 and H/W = 2; the material proper-
ties analyzed were E1/E2 = 1, 2, 5 and 10, with ν1=ν2 =
0.3. These cases have been treated by Sladek and Sladek
(1997) and Song (2005). Figure 3 shows the typical BEM
mesh used in the present study. The normalized results
of T /σo obtained in the present work are listed in Table
1 together with those obtained by the above-mentioned
authors. It should be noted, however, that the numeri-
cal values attributed to Sladek and Sladek (1997) here
are digitized quantities reported by Song (2005) of the
graphical result presented in the formers’ paper. From
Table 1, it can be seen that the present BEM results are in
excellent agreement with those obtained by Song (2005),
albeit slightly less so, with those by Sladek and Sladek
(1997). It is also worth noting that the T -stress at the
crack tips have negative values but they decrease quite
rapidly in magnitude with increasing values of the E1/E2

ratio, signifying an enhancement of stress triaxiality with
this ratio for a given crack size.

4.2 Example 2

The T -stress for an interface crack between dissimilar or-
thotropic materials was obtained for the same CCP spec-
imen under remote tension, σo,as in the previous exam-
ple, but for the following relative crack lengths a/W =
0.1, 0.2, 0.3, 0.4 and 0.5. The material properties chosen
in the analysis are given below.

Material 2

2WX 2

O
X 1

H

2a

Material 1

H

Figure 2 : A centre cracked plate (CCP) under remote
load σo.

Figure 3 : BEM mesh for Examples 1 and 2: a/W = 0.5

For material 1: E11= 1000; E22= 500, G12=100.1, ν12=
0.3.

For material 2: E11= 200, E22= 60, G12= 15.7, ν12= 0.3.

Plane stress conditions were assumed in this example.
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Table 1 : Normalised T -stress, T /σo, for a dissimilar isotropic bi-material rectangular CCP specimen with H/W=2.

a/W E1
E2

T/σo

Present Song (2005) % Diff. Sladek & Sladek (1997) % Diff.

0.15

1 -1.016 -1.015 -0.1 -1.043 2.6
2 -0.681 -0.681 0 -0.706 3.5
5 -0.348 -0.347 -0.3 -0.366 4.9
10 -0.193 -0.192 -0.5 -0.204 5.4

0.5

1 -1.257 -1.260 0.2 -1.272 1.2
2 -0.846 -0.847 0.1 -0.861 1.7
5 -0.436 -0.437 0.2 -0.450 3.1
10 -0.244 -0.244 0 -0.260 6.2

E
22

E
11

2a

r

E
22

E1
1

Figure 4 : Silicon [110] disc with dissimilar halves con-
taining a central crack along the interface, under uniform
radial tension σo.

The numerical results of the normalized t-stress, T /σo,
are shown in Table 2 for the range of crack lengths con-
sidered. As before, the numerical values of the T -stress
are negative, their magnitudes increasing gradually with
the size of the crack, signifying decreasing stress con-
straint at the crack-tip. Also shown for comparison in
Table 2 are the corresponding results when materials 1
and 2 are isotropic such that the ratio of their Young’s
moduli, E1/E2 =500/60, and their Poisson’s ratios being
equal in value of 0.3. It is evident that orthotropy of the
materials has quite a significant influence on the value of
the T -stress.

Table 2 : The normalized T -stress, T /σo, for differ-
ent relative crack lengths, a/W , at the interface crack
in an orthotropic bi-material rectangular CCP speci-
men, H/W=2; corresponding isotropic bi-material re-
sults shown for comparison.

a/W
T/σo

Orthotropic Isotropic
0.1 -0.522 -0.222
0.2 -0.534 -0.227
0.3 -0.556 -0.238
0.4 -0.591 -0.255
0.5 -0.651 -0.283

4.3 Example 3

     Crack  Tips
A                    B

Figure 5 : Boundary element mesh: Example 3, a/r= 0.5

In order to demonstrate the application of the current
work in dissimilar generally anisotropic bi-material in-
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(a)                                                                                       (b) 

Figure 6 : a) Variation of the normalised T -stress, T /σo, at crack tip A with angle ψ in centrally cracked interface
silicon [110] disc; b) Variation of the normalised T -stress, T /σo, in crack tip B with angle ψ in centrally cracked
interface silicon [110] disc.

terface crack problems, a cracked anisotropic bi-material
disc subjected to uniform radial tension σo, as shown in
Figure 4 was investigated. The material chosen was sin-
gle crystal silicon in the [110] plane. Single crystal sil-
icon is, for example, used widely in electronic devices.
The engineering constants in this plane [110] are given
below; they were calculated from the elastic compliance
constants of the material available in Simmons and Wang
(1971).

E11 = 169.1 GPa

E22 = 130.1 GPa

G12 = 79.6 GPa

ν12 = 0.362

In order to simulate dissimilar anisotropic interface ma-
terials, the angle of orientation of the material principal
axes with the global Cartesian axes, ψ, was varied from
0o to 90o, in 15o increments, for material 1; for material
2 the material principal axes was rotated in the reverse
sense, that is, –ψ, in each case by the same magnitude si-

multaneously. The relative crack lengths analyzed were
a/r = 0.1, 0.2, 0.3, 0.4 and 0.5. Plane stress conditions
were assumed for this study. For the purpose of com-
parison, the analysis was also carried out for an isotropic
elastic disc with the same geometric parameters and load-
ing condition. A typical BEM mesh used in the analysis
is shown in Figure 5.

The effect of ψ on the normalized T -stress values, T /σo,
for both crack tips are presented in Figures 6a and 6b.
Figures 7a and 7b show the corresponding variations of
normalized T -stress with a/r for the different angles of
ψ analyzed. Also shown in these figures in dotted lines
are the corresponding results for an isotropic disc. Al-
though the trends of the variations are similar between
the anisotropic and isotropic cases, it is shown here again
that the degree of anisotropy clearly has a significant ef-
fect on the value of the T -stress.
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Figure 7 : a) Variation of the normalised T -stress,T /σo, in crack tip 1 with relative crack size a/r in centrally cracked
interface silicon [110] disc; b) Variation of the normalised T -stress, T /σo, in crack tip B with relative crack size a/r
in centrally cracked interface silicon [110] disc.

5 Conclusions

In this study, an approach to obtain the T -stress for an in-
terface crack between dissimilar anisotropic elastic ma-
terials by the M-integral in conjunction with BEM stress
analysis has been presented. This approach is general
and simpler to implement than what has been developed
in the literature thus far for evaluating the T−stress in
anisotropic bi-material interface crack problems. Nu-
merical examples have been presented to demonstrate
the successful implementation and applicability of the
formulation. One of these examples involved isotropic
bi-materials where numerical solutions are available,
and agreement between the present results and those
in the literature is excellent. The numerical results
have also demonstrated the significant influence material
anisotropy has on the magnitudes of the T -stress for a
given cracked geometry.
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Appendix A:

The derivation of auxiliary fields in the M-integral, Eq.
(21) is presented here. For the sake of brevity, the super-
script aux is dropped in what follows. The auxiliary fields
are obtained with respect to the global coordinates Xi as
shown in Figure 8.

With reference to the Stroh’s formalism for 2D
anisotropic elasticity [Ting (1996)], the displacement u
and stress function φ for wth wedge of a composite wedge
comprising of two anisotropic materials 1 and 2 and sub-
jected to a concentrated force f at the wedge apex are
[Chung and Ting (1995)]

u(w) = − lnr
π

h(w) −S(w)(θ)h(w) +H(w)(θ)g(w) +u(w)
0 (31)

φ(w) =
lnr
π

g(w) +ST(w)(θ)g(w) +L(w)(θ)h(w) (32)

where

S(θ), H(θ) and L(θ) are Barnett-Lothe tensors [Ting
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Figure 8 : A composite wedge comprising of two
anisotropic materials and point force f acting on the apex.

(1996)] given as

S(θ) =
1
π

θZ

0

N1(ω)dω (33a)

H(θ) =
1
π

θZ

0

N2(ω)dω (33b)

L(θ) = −1
π

θZ

0

N3(ω)dω (33c)

This definition of Barnett-Lothe tensors holds true for de-
generate materials. The Nis, elements of the fundamental
elasticity matrix N [Ingebrigtsen and Tonning (1969)] are
given as

N1(ω) = −T−1(ω)RT (ω), (33d)

N2(ω) = T−1(ω), (33e)

N3(ω) = R(ω)T−1(ω)RT (ω)−Q(ω) (33f)

The matrices Q, R and T are given in terms of the stiff-
ness constants and are 2x2 matrices for 2D plane problem
as follows,

Qik = Ci1k1,

Q =
[

C1111 C1121

C1121 C2121

]
=

[
C11 C16

C16 C66

]
(34a)

Rik = Ci1k2,

R =
[

C1112 C1122

C2112 C2122

]
=

[
C16 C12

C66 C26

]
(34b)

Tik = Ci2k2,

T =
[

C1212 C1222

C1222 C2222

]
=

[
C66 C26

C26 C22

]
(34c)

Ci jkl represents the reduced stiffnesses in the constitutive
equation as,

σi j = Ci jklεkl (35)

The elastic matrices in rotated coordinate system are
given as,

Q(ω) = Qcos2θ+(R +RT )sinθcosθ+Tsin2θ (36a)

R(ω) = Rcos2θ+(T −Q)sinθcosθ−RT sin2θ (36b)

T(ω) = Tcos2θ− (R +RT )sinθcosθ+Qsin2θ (36c)

For the wedge, the tractions are null along θ = θn and θ
= θ0, thus in Eq. (32)

g(w) = 0. (37)

The matrix h(w) is given as

h(w) = L−1 f (38)

where

L =
1
π

θnZ

θ0

−N3(ω)dω (39)

and f is the point force vector applied at the wedge apex,
that is,

f =
{

f1

f2

}
(40)
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Due to the displacement continuity along the interface, h
is invariant for all wedges in the composite wedge. Thus,
in following discussion, h(w) will be replaced by h.

Equations (31) and (32) then reduce to

u(w) = − lnr
π

h−S(w)(θ)h+u(w)
0 (41)

φ(w) = L(w)(θ)h (42)

The displacement derivatives with respect to coordinates
X ′

i are obtained as follows,

u(w)
i, j =

∂u(w)
i

∂r
∂r

∂Xj

+
∂u(w)

i

∂θ
∂θ
∂Xj

=
∂u(w)

i

∂r
n j(θ)+

∂u(w)
i

∂θ
1
r

m j(θ),

=
1
πr

{−hin j(θ)− (N1(θ)h)im j(θ) } (43)

where

n1(θ) = cosθ (44a)

n2(θ) = sinθ (44b)

m1(θ) = −sinθ (44c)

m2(θ) = cosθ (44d)

The stresses are obtained as follows,

σ(w)
1 j = −φ(w)

j,2

= −∂φ(w)
j

∂X2
= −

[
∂φ(w)

j

∂r
∂r

∂X2
+

∂φ(w)
j

∂θ
∂θ
∂X2

]

= −φ(w)
j

∂θ
1
r

m2(θ) =
1

πr
[N3(θ)h] jm2(θ) (45a)

and,

σ(w)
2 j = φ(w)

j,1 = − 1
πr

[N3(θ)h] jm1(θ) (45b)

In order to utilize the above expressions to obtain the aux-
iliary field values applicable to the M-integral, Eq. (21),
for an interface crack between dissimilar anisotropic ma-
terials, the integration in Eq. (39) can be carried out with
limits θ0 to θ1 = π + θ0 and θ1 to θ 2=2π + θ0 (Figure
8). The force applied at the crack tip is taken as unity for
simplicity.




