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Modelling Fruit Microstructure Using Novel Ellipse Tessellation Algorithm
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Abstract: Modeling plant microstructure is of great in-
terest to food engineers to study and explain material
properties related to mass transfer and mechanical defor-
mation. In this paper, a novel ellipse tessellation algo-
rithm to generate a 2D geometrical model of apple tissue
is presented. Ellipses were used to quantify the orien-
tation and aspect ratio of cells on a microscopic image.
The cell areas and centroids of each cell were also deter-
mined by means of a numerical procedure. These charac-
teristic quantities were then described by means of prob-
ability density functions. The model tissue geometry was
generated from the ellipses, which were truncated when
neighbouring areas overlap. As a result, a virtual mi-
crostructure consisting of truncated ellipses fills up the
entire space with the same number of cells as that of mi-
croscopic images and with similar area, orientation and
aspect ratio distribution. Statistical analysis showed that
the virtual geometry generated with this approach yields
spatially equivalent geometries to that of real fruit mi-
crostructures. Compared to the more common algorithm
of Voronoi tessellation, ellipse tesselation was superior
for generating the microstructure of fruit tissues. The ex-
tension of the algorithm to 3D is straightforward. These
representative tissues can readily be exported into a finite
element environment via interfacing codes to perform in
silico experiments for estimating gas and moisture dif-
fusivities and investigating their relation with fruit mi-
crostructure.

keyword: Multiscale model, Gas transport, Water
transport, Virtual tissue, Autocorrelation

1 Introduction

Physical, chemical and biological processes at the mi-
croscale, though very complicated, are fundamental to
understanding the behaviour and characteristics of the
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fruit tissue [Aguilera (2005)]. The ultimate task becomes
the determination of parameters in the leading trans-
port equations on the macroscale given the known struc-
ture and heterogeneity of processes at the microstruc-
ture [Lammertyn, Scheerlinck, Verlinden, Schotsmans,
and Nicolaı̈, (2001); Lammertyn, Scheerlinck, Jancsok,
Verlinden and Nicolaı̈ (2003); Veraverbeke, Verboven,
Oostveldt and Nicolaı̈ (2003)(1); Veraverbeke, Verboven,
Oostveldt, and Nicolaı̈ (2003)(2); Nguyen, Verboven,
Scheerlinck, Vandewalle and Nicolaı̈ (2004); Nguyen,
Dresselaers, Verboven, D’hallewin, Culledu, Van Hecke
and Nicolaı̈ (2005);Ho, Verlinden, Verboven, Vande-
walle, and Nicolaı̈ (2005)]. The transition from the mi-
crostructure to macrostructure is then achieved by ap-
propriate homogenization procedures. Because fruit tis-
sue is composed of a very large number of cells, its
properties depend not only on the characteristics of in-
dividual cells but also on the connectivity and interac-
tions among cellular components. Statistical descrip-
tion and modelling of microstructures are an essential
means to implement such an approach. During the past
decades, several types of Voronoi based models have
been used to represent microstructures of different ma-
terials such as aggregates of grains in polycrystals [Ny-
gards and Gudmundson (2002)], composite materials
[Ingraffea, Iesulauro, Dodhia, and Wawrzynek (2002);
Raghavan and Ghosh (2004)], ceramic microstructures
[Espinosa and Zavattieri (2000)] and fruit microstruc-
ture [Mebatsion, Verboven, Verlinden, Ho, Nguyen and
Nicolaı̈ (2006)]. The Poisson Voronoi diagrams (PVDs)
have been extensively used and studied by different au-
thors [Mattea, Urbicain and Roustien (1989); Roudot,
Duprat and Pietri (1990); Mebatsion, Verboven, Verlin-
den, Ho, Nguyen and Nicolaı̈ (2006)]. Mebatsion, Ver-
boven, Verlinden, Ho, Nguyen and Nicolaı̈ (2006) gener-
ated Poisson Voronoi diagrams having similar statistical
properties (area, orientation and aspect ratio) as that of
apple parenchyma microstructures. However, the spatial
statistics of the real cells and the representative PVDs
were not evaluated.
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Autocorrelation statistics are basic descriptive statistics
for any data ordered in a sequence (or in space) as they
provide basic information about the ordering of the data
that is not available from other statistical measures such
as mean and standard deviation of variables. Spatial au-
tocorrelation statistics detect the presence of interdepen-
dence between data at neighbouring locations and de-
rive the effect upon the values of the measurements. In
other words, spatial autocorrelation statistics measure the
amount that the measurements depart from the require-
ments of independence [Odland (1988)]; it may happen
that values of a variable sampled at nearby locations are
more similar than those sampled at locations more dis-
tant from each other. Spatial autocorrelation can occur
at multiple spatial scales or vary with spatial orientation.
For anisotropic materials, the spatial variability along the
x-axis differs from that of the y-axis.

The aim of the presented work was to incorporate spatial
statistics properties in to a virtual tissue algorithm. In this
respect, this paper presents a novel approach to the gener-
ation of statistically and spatially equivalent virtual fruit
microstructure using an ellipse tessellation algorithm.

2 Materials and methods

2.1 Microscopic images geometrical parameter calcu-
lation

The study was based on images of fruit cellular structures
obtained from light microscopy. Sample preparation
and image acquisition procedures outlined by Mebatsion,
Verboven, Verlinden, Ho, Nguyen and Nicolaı̈ (2006)
were followed. Samples from apple (cv. Cameo), Onion
and Conference pear parenchyma tissues were used. The
geometrical characteristics of cells were estimated after
the transformation of the digital images to representa-
tive polygons defined by points on the natural bound-
ary of the cells. From the resulting coordinates, the cen-
troidal points, areas, perimeters, aspect ratios and orien-
tations of each approximated polygonal cells were de-
termined using moment calculation and moment based
ellipse-fitting algorithms [Mebatsion, Verboven, Verlin-
den, Ho, Nguyen and Nicolaı̈ (2006)].

2.2 Virtual tissue generation

2.2.1 Voronoi diagrams

Voronoi diagrams are generated by introducing planar
cell walls perpendicular to the lines connecting neigh-
bouring points resulting in a set of convex polygons in
2D, filing the underlying space [Okabe, Boots, and Sug-
ihara (1992)]. Both Poisson Voronoi diagram (PVD) and
centroid based Voronoi diagram (CVD) were generated
from random set of points and geometric centres, respec-
tively [Mebatsion, Verboven, Verlinden, Ho, Nguyen and
Nicolaı̈ (2006)].

2.2.2 Ellipse tessellation

Microscopic fruit cell sections are elliptically shaped (as-
pect ratio greater than one) [Mebatsion, Verboven, Ver-
linden, Ho, Nguyen and Nicolaı̈ (2006); Schotsmans
(2003)]. The ellipse-fitting algorithm approximates ev-
ery cell of the microstructure with the corresponding el-
lipse that has the same second moment of area, from
which aspect ratio and orientation of cellular images is
determined.

An ellipse is a conic that can be described by an implicit
second order polynomial:

F(x,y) = ax2 +bxy+cy2 +dx+ey+ f = 0 (1)

with an ellipse-specific constraint:

b2−4ac < 0 (2)

where a, b, c, d, e, f are the coefficients of the ellipse
and (x,y) are coordinates of sample points lying on it.
The polynomial F(x, y) is called the “algebraic distance”
of a point (x,y) to the conic F(x, y) =0. By introducing
vectors

a = [a,b,c,d,e, f ]T

x =
[
x2,xy,y2,x,y,1

]T
(3)

the above equation can be rewritten as:

F(a;x) = a · x = 0 (4)

Fitting an ellipse to a general conic is to minimize the
algebraic distance over the set of data points in the least
square sense. To ensure an ellipse-specificity of the so-
lution, because the vector a can be arbitrary scaled, the
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following constraint equation can be considered instead
of equation 2 [Fitzgibbon, Pilu and Fisher (1999)]:

4ac−b2 = 1 (5)

This is a quadratic constraint, which may be expressed in
matrix form aTCa = 1as

aT

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

a = 1 (6)

The minimization procedure can be carried out by defin-
ing design vector χi for the individual points (xi,yi) as

F(a;xi) =
[
x2

i xi yi y2
i xi yi

] · [a b c d e f ]
= χi ·a (7)

Then assembling the design vectors in to a design matrix
D of size N x 6

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

x2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...

...
x2

i xiyi y2
i xi yi 1

...
...

...
...

...
...

x2
N xNyN y2

N xN yN 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

Following conic sections fitting to scattered data pro-
cedure [Fitzgibbon (1997)] the constraint ellipse-fitting
problem reduces to

Minimizing E = ‖D a‖2 , subject to the constraint

aTCa = 1 (9)

Introducing Lagrange multiplier λ and differentiating
the following systems of simultaneous equations are ob-
tained (for details refer to Fitzgibbon (1997)].

DT Da−λCa = 0

aTCa = 1 (10)

The solution of the minimization problem represents the
best-fit ellipse for the given set of points.

These ellipses were used to quantify the orientation and
aspect ratio of cells on a microscopic image. The cell

areas and centroids of each cell were also determined by
means of a numerical procedure. The model tissue ge-
ometry was generated from the ellipses, which were trun-
cated when neighbouring areas overlap. By doing so, as
many truncated ellipses as there are cellular images were
generated filling the entire cellular space. Fig. 1 shows
the mechanism of generating non-overlapping truncated
ellipses. For every microscopic cell, an ellipse is fitted
and for every fitted ellipse, the algorithm searches a re-
gion that is not in the intersection with the rest fitted el-
liptical regions. This yields a set of truncated ellipses,
representing the fruit microstructure.

Figure 1 : The ellipsoidal virtual tissue generating mech-
anism.

2.3 Description of geometric characteristics

2.3.1 Identification of pore spaces

In plant tissue, free spaces called intercellular spaces (or
pores) make up a large fraction of a tissue. Intercellu-
lar spaces are mainly classified into two types depend-
ing on their origin. Those originating from the sepa-
ration of cells along their edges (called schizogenous
intercellular spaces) and others originating from dying
cells (lysigenous intercellular spaces) [Kuroki, Oshita,
Sotome, Kawageo and Seo (2004)]. Based on their con-
tents, intercellular spaces can also be classified as gas
filled and liquid filled. Gas filled intercellular spaces,
even though with small volume fraction, are thought
to be the diffusion pathways through plant organs for
respiration and photosynthesis. Diffusion in these gas-
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filled spaces is about 10, 000 times faster than in water
[Terashima, Miyazawa and Hanba (2001)]. Hence, accu-
rate identification of pore spaces in the tissue is an im-
portant component of microstructural modelling.

Intercellular spaces are clearly visible on a micrograph
as cavities of various shapes and sizes as can be seen
in Fig.2. These spaces are irregular, elongated objects
that are concave towards the centre [Lewicki and Pawlak
(2005)]. However, it is not easy to make a distinction
between intercellular spaces and cells from microscopic
images alone. Even with careful experienced analysis,
incurring an error is inevitable. As a result, the identifi-
cation of intercellular spaces should be supported by the
use of a microscope.

Figure 2 : Micrograph of apple (cv. Cameo) parenchyma
tissue. Shaded areas are intercellular spaces. (dimen-
sions in pixels; 1pixel=1.85185µm).

2.3.2 Shape factor, roundness and aspect ratio of cellu-
lar materials

There are different parameters such as shape factor,
roundness and aspect ratio which have been used to de-
scribe the shape of cellular images [Schotsmans (2003);
Lewicki and Pawlak (2005); Mebatsion, Verboven, Ver-
linden, Ho, Nguyen and Nicolaı̈ (2006)].

The shape factor, s f of the cells is defined to be propor-
tional to the ratio of the areas of cellular images to the
squares of perimeters:

s f =
4πA
P2 (11)

where A is the area, and P is the perimeter of the cell.

The shape factor is actually the measure of how far cellu-
lar images are from being circular or spherical in two and
three dimensions, respectively. The shape factor values
range between zero and one. The shape factor of circular
objects is one.

The roundness of cellular images, on the other hand, is
defined as the reciprocal of the shape factor. It is also a
measure of the circularity of cells [Schotsmans (2003)].
As the shape factor, the roundness value of circular ob-
jects is unity and the higher the roundness, the more the
shape of the cell deviates from circle.

The definition of aspect ratio of cellular images is defined
as the ratio of the major and the minor axes of the hy-
pothetical ellipse that has the same second moment area
as that of cellular images [Mebatsion, Verboven, Verlin-
den, Ho, Nguyen and Nicolaı̈ (2006)]. The aspect ratio
gives more detailed information when used together with
the orientation of the cells (from the positive x-axis) as
to how the cellular images are situated in spatial domain
than the shape factor, which says nothing about spatial
arrangement of cells.

2.4 Statistics

2.4.1 Statistical distributions

Fitting distributions to data sets by assuming a pre-
specified distribution (e.g. lognormal) with distribution
parameters (e.g. mean and variance) obtained from the
data were carried out. Both the assumed and the empiri-
cal cumulative distribution functions (CDFs) at each data
point were obtained. If the maximum distance between
the assumed CDF and the empirical CDF were small, the
assumed CDF was accepted as good fit [Justel, Pena and
Zamar (1997)]. In this study, the Kolmogorov-Smirnov
test (K-S test) of Goodness of Fit (GoF) at the 5% level of
significance was used. The skewness, and kurtosis values
of the microscopic and ellipse tessellated virtual tissues
were also calculated to compare the degree of deviation
of the area distribution with that of the normal distribu-
tion. The skewness coefficient of the normal distribution
is zero. The kurtosis coefficient for normal distribution
is 3 and values that are greater than 3 are distributions
which are slim and have long tails whereas fat distribu-
tions with short tails have kurtosis values less than 3.
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The skewness coefficient was calculated as follows:

S = E

[(
X −µx

σ

)3
]

(12)

where µx and σ are the mean and the standard deviation
of the variables under consideration.

The kurtosis coefficient was calculated as:

K = E

[(
X −µx

σ

)4
]

(13)

2.4.2 Autocorrelation Statistics

In order to calculate autocorrelation statistics, it is nec-
essary to express the spatial arrangement in terms of
some function that assigns values to pairs of locations
in order to represent their location with respect to one
another by means of a “weighting function” [Cliff and
Ord (1972); Odland (1988); Brown (1982); Kelejian and
Prucha (2001)]. It is also possible to use a distance func-
tion to study the spatial arrangement based on clustering
characteristics [Yotte, Riss, Breysse and Ghosh (2004)].

For data sets that are not arranged regularly or represent
area units of different size and shape, weights could be
defined as distance based weights [Brown (1982); Sch-
abenberger and Pierce (2002)]. In this study, the weight-
ing function was defined as the inverse of the distance
between the geometric centres (centroids) of two cellular
regions.

For a real valued stationary random field u(x,y)over a
spatial domain the autocorrelation function can be ex-
pressed as:

ρ(h) =
n

n
∑
i

u2
i

E(u j −ui) (14)

where:

ui = u(i)−E(u),E(u) = the expectation value of u with
his the separation distance between two regions in the
spatial domain (in this case the distance between the ge-
ometric centres of two regions); n is the total number
of regions in the domain and u is the variable of inter-
est whose correlation statistics is to be measured. In our
study, the term u(i) represents the area of the individual
cells.

For spatial datasets lacking global spatial association, the
result of the autocorrelation function is difficult to in-
terpret. Moreover, determining local spatial autocorrela-
tion statistics from global spatial autocorrelations is not
straightforward [Sokal, Oden and Thomson (1981)]. As
a result, the need for other spatial variability measures
becomes apparent. There are two types of numerical
statistic tests for the measure of local spatial variability.
These are Moran’s I and Geary’s C tests.

2.4.2.1 Moran’s I test

Moran’s I test is the most popular test for spatial corre-
lation. The test procedure standardizes the variables by
subtracting the mean and deflating by a specific factor
(usually the variance). The Moran’s I is defined as:

I =
n

n
∑
i=1

n
∑
j=1

wi j

n
∑
i=1

n
∑
j=1

uiu j

n
∑

i=1
u2

i

, i �= j (15)

where wi j , is the inverse of the separation of geometrical
centres of two regions.

Moran’s I is merely the spatial auto covariance, standard-
ized by the variance of the data sets and the weighting
function. The weighting function defines the arrange-
ment of regions on a map. It is the measure of connectiv-
ity of the set of regions

Moran’s Ihas an expected value of E(I) = −( 1
n−1

)
. Val-

ues of I that exceed the expected value indicate positive
spatial autocorrelation in which values tend to be similar
to neighbouringvalues. Values of I below the expectation
indicate negative spatial autocorrelation in which neigh-
bouring values tend to be dissimilar. If I=0, then ui and
u j are independent.

The hypothesis of no spatial autocorrelation is rejected at
α(usually 5%) significance level if

Z(I) =
|I−E(I)|

σI
(16)

is more extreme than the Zα/2 cut-off of a standard Gaus-
sian distribution [Cliff and Ord (1970); Cliff and Ord
(1981); Brown (1982); Odland1(1988); Schabenberger
and Pierce (2002)]. σI is the estimate of the standard de-
viation.

σI =
[

n2S1 −nS2 +3S2
0

S2
0(n2 −1)

] 1
2

(17)
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where S0 =
n
∑
i=1

n
∑
j=1

wi j , S1 = 2
n
∑
i=1

n
∑
j=1

(wi j)2 and S2 =

4
n
∑
i=1

(
n
∑
j=1

wi j

)2

The p-value, the significance of the statistical tests, can
be calculated from the standard normal cumulative prob-
ability table using the calculated Z value as:

p−value = prob(Z ≥ Z(I)) (18)

When the global statistics of spatial association is not sig-
nificant, one can proceed to test the individual local spa-
tial association coefficients by the method described in
the next section.

2.4.2.2 Local indicators of spatial association (LISA)

The idea of local indicators of spatial association (LISA)
is that, although there may be no spatial autocorrelation
globally, there might be local pockets of positive or nega-
tive spatial autocorrelation in the data, so-called hot spots
and cold spots, respectively [Schabenberger and Pierce
(2000); Sokal, Oden and Thomson (1998)]. Spot defini-
tions based on autocorrelation measures designate sites
as unusual if the spatial dependency is locally much dif-
ferent from the other sites. The LISA for each observation
also gives an indication of the extent of significant spa-
tial clustering of similar values around an observation.
The LISA permits the decomposition of the global coef-
ficient of spatial association into separate parts, making
it possible to identify individual locations that are major
contributors of the global association [Sokal, Oden and
Thomson (1998)].The LISA version of the Moran’s I is

Ii =
n

n
∑
i

u2
i

ui

n

∑
j

wi ju j (19)

The term
n
∑
j
wi ju j is formally known as the spatial lag for

u at location i. In the absence of spatial autocorrelation,

Ii has the expected value E(Ii) =
−

n
∑

i=1
wi j

n−1 . The interpre-
tation of LISA is that if Ii is smaller than E(Ii), the sites
connected to site i (called pivot site) have attribute val-
ues dissimilar from attributes at site i. A high (low) value
at site i is surrounded by a low (high) values. On the
other hand, if Ii is greater than E(Ii), sites connected to
site i show similar value. A high (low) value at site i is

surrounded by a high (low) values. The map of LISA in-
dicates which regions of the domain behave differently
from the rest [Sokal, Oden and Thomson (1998)]

2.4.2.3 Geary’s C test

Geary’s C test is an alternative statistics for spatial au-
tocorrelation constructed by using another measure of
covariation. The test uses the sum of the square differ-
ence between pair of data values as a measure of covari-
ation instead of the joint covariance and standardize in a
slightly different way to get a correlation defined as fol-
lows:

C =
n−1

2
n
∑

i=1

n
∑
j=1

wi j

n
∑

i=1

n
∑
j=1

wi j(ui−u j)2

n
∑
i=1

u2
i

(20)

The expectation value of Geary’s C is 1 (one) for in-
dependence among neighbouring values. It is inversely
related to Moran’s I and it does not provide identical
inference as it emphasizes the differences in values be-
tween pairs of observations, rather than the covariation
between pairs. Moran’s I gives more global indicator,
whereas the Geary’s C coefficient is more sensitive to
differences in small neighbourhoods. Moreover, the effi-
ciency of Moran’s I tests is generally better than that of
Geary’s C [Odland (1988)].

The significance of the Geary’s Cspatial statistics can be
calculated in the same way as the Moran’s Istatistics. The
standard deviation under normality assumptions given as
[Cliff and Ord (1972); Cliff and Ord (1981)]:

σc =
[
(2S1 +S2)(n−1)−4S2

0

2(n+1)S2
0

] 1
2

(21)

All computations were carried out in the Matlab version
7.0.1-programming environment (The Mathworks, Nat-
ick, MA).

3 Results and Discussion

3.1 The spatial analysis of Voronoi tessellations

The virtual tissues that were generated using Poisson
Voronoi tesselation algorithms had similar geometrical
statistical properties of the fruit microstructure [Mebat-
sion, Verboven, Verlinden, Ho, Nguyen and Nicolaı̈
(2006)]. To see whether the virtual tissues resemble
that of the real microstructure spatially, Moran’s I and
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(a)                                                                                  (b) 

Figure 3 : Voronoi tessellations of apple parenchyma tissue: (a). Centroid based Voronoi diagram (CVD); (b).
Poisson Voronoi diagram (PVD).

Geary’s C autocorrelation tests were performed. All the
spatial tests showed that both PVD and CVD were far
from representing the fruit microstructural tissues. The
cellular image, the CVD and the PVD shown in Fig.1 and
Fig.3a & 3b had Moran’s I values of -0.0076, 0.0387, and
0.0485, respectively. A white random (completely uncor-
related) field that has the same number of cells as that of
the image could have a Moran’s I value of -0.0061. The
cellular image, therefore, tended towards no spatial cor-
relation. The Moran’s I values of the Voronoi tissues, on
the other hand, were greater than that of the random field,
and according to the rule of Moran’s I test, there were
positive spatial autocorrelations between neighbouring
Voronoi cells, i.e. nearby values had similar areas. Nev-
ertheless, the degree of similarity was different. More
PVD cells were clustered in a certain region than that of
the CVD and the microscopic images. This difference
could also be detected visually using figure 3a & 3b.

The statistical results on Moran I values also support the
above conclusion. There was no indication that cellular
images were spatially correlated. The Z values of the im-
age, the CVD and PVD were calculated to be equal to
0.1543 (p=0.44), 4.7859 (p=79*10−8), and 5.9538 (p=
182×10−11), respectively. Since the Z value from the ta-
ble of the Normal distribution at 5% level of significance
is 1.96 and that of the CVD and the PVD are greater than
this value, we conclude in favour of the presence of pos-

itive spatial correlation in Voronoi tissues. On the other
hand, there was no evidence to reject the hypothesis of no
spatial correlation in cellular images ( Z=0.1543<1.96 or
p=0.440>0.05).

The Geary’s C values of the cellular image, the CVD
and the PVD were 1.0084, 0.9343 and 0.8593, respec-
tively. The Geary’s C value of the cellular images was
greater than 1, which is considered to be the value for a
white random field, while the corresponding values of the
Voronoi geometries were less than 1. This indicated that
there was a positive spatial correlation within the Voronoi
cells but not with that of the cellular image. The statis-
tical analysis using the Z scale shows that there was no
evidence to reject the hypothesis of no spatial correla-
tion in cellular images and CVD cells with Z scale val-
ues 0.137 (p=0.444) and 1.0282 (p=0.152), respectively.
The Z scale value of PVD, on the other hand, was 2.2528
(p=0.02), which is greater than the Z value of from the
table of Normal distribution, and hence we conclude in
favour of the presence of positive spatial correlation.

Like the results of Moran’s I test, PVD seemed to have
more clustered cells than the CVD and the cellular im-
ages. To investigate the location of the clustered cells
and its deviation from randomness, the LISA test could
be carried out. Fig. 4a-4c show the LISA spatial repre-
sentation of the image, the CVD and the PVD, respec-
tively. The concentration of high LISA values in certain
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regions of the PVD (e.g., around x=600 and y=450) indi-
cate clustering of cells with similar area. This is defined
in Fig. 3b. The LISA, Moran’s I and Geary’s C tests
clearly showed that the PVD, which had similar geomet-
rical properties as the microscopic images, was far from
representing the microscopic tissue spatially.

3.2 The spatial analysis of ellipse tesselation

Fig. 2&5a show an apple microscopic image (cv.
Cameo) and its equivalent ellipse tessellation virtual tis-
sue. The shaded regions represent the intercellular re-
gions. Fig. 5b shows the detailed magnified form of
the virtual tissue. The statistical comparison between
area, aspect ratio and orientation distributions of the mi-
croscopic images and virtual tissues are represented in
Fig. 6a-6c. There was a good agreement between all
the geometrical property distributions investigated. The
skewness and kurtosis of the area distribution of the mi-
croscopic images and the ellipse tessellated virtual tissue
gave comparable results.

The skewness values of the cellular images and the vir-
tual tissues were 3.71 and 3.80, respectively. Moreover,
the kurtosis coefficients of the cellular images and the
ellipse virtual tissue were calculated to be 0.98 and 1.00,
respectively. Geometrically speaking, all of the above re-
sults suggest that the ellipse tessellated virtual is a good
representative of the micrograph.

The spatial comparison using Moran’s I and Geary’s C
tests also showed that the virtual tissue was a good ap-
proximation of the real microscopic image. The Moran’s
I values of ellipse tessellated virtual tissue is -0.0071
showing negative spatial association. Concerning the Z
scale of the ellipse tesselation, there is no enough ev-
idence to reject the null hypothesis of no spatial cor-
relation (with Z = 0.1019 < Zα/2 or p = 0.46 > 0.05).
Moreover, the Geary’s C value is calculated to be equal
to 1.0093 supports the presence of spatial similarity be-
tween the micrograph (with C=1.0084) and the ellipse
tessellated virtual tissue. The LISA test clearly shows
the presence of comparable trend in local spatial associa-
tions between microscopic images and ellipse tessellated
counterparts (Fig.4a & 7a).

3.3 Advantages of ellipse tesselation over Voronoi tes-
selation

Mebatsion, Verboven, Verlinden, Ho, Nguyen and
Nicolaı̈ (2006) implicated the drawbacks of the Voronoi

tesselation algorithms to generating virtual equivalents of
regular anisotropic tissues such as onion. Such geome-
tries were far from being considered as random and get-
ting their geometrically equivalent virtual tissues was dif-
ficult. Moreover, when very large cells were surrounded
by very small ones the Voronoi tesselation algorithm fails
to generate the virtual equivalents. Because of the char-
acteristics of Voronoi tessellations algorithm, edges must
be equally spaced from the generating points and this
promotes smaller cells to become larger and vice versa.
Both of the above drawbacks of Voronoi tesselation al-
gorithms were overcome by using the new ellipse tessel-
lation algorithm. Fig. 8a & 8b show the microscopic
and ellipse based virtual tissues of onion epidermis. As
the figures show except for some regions where three
or more fitted ellipses met, the ellipse tesselation algo-
rithm generated virtual tissues that resemble the regu-
lar anisotropic onion micrograph. Since the algorithm
merely search for two non-overlapped regions at a time,
it fails to resolve the rare event of finding three or more
intersecting fitted ellipses.

On the other hand, as is shown in Fig.9a & 9b, conference
pear tissue with small cells surrounded by large ones was
accurately described by our new tesselation algorithm.
The pore geometries of ellipse tesselation could easily
be generated from the microscopic information (assigned
as pores in the microscopic images) rather than random
generation of pores in the Voronoi tessellations.

4 Applications

The geometry of each ellipse-tessellated diagram, de-
scribed by the corresponding point coordinates could be
transferred into a finite element code (Femlab, COM-
SOL, Stockholm, Sweden) via an interfacing Matlab
code (The Mathworks, Natick, MA). The cell walls were
determined by shrinking the cell geometry until the de-
sired cell wall thickness was obtained. The cells, the
pores and the cell walls were then exported as separate
bodies so that different conditions could be specified.
The Femlab mesh generator performed meshing of the
tessellation automatically. These meshed representative
virtual tissues could be used to perform in silico exper-
iments for the simulation of gas and moisture transport
in pome fruit tissues under different simulations condi-
tions. Fig. 10 shows the ellipse tessellated diagram in
the Femlab environment.
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(a)                                                                                                       (b)

(c)

Figure 4 : Spatial comparison between images and Voronoi tessellations of apple parenchyma tissue: (a). Image;
(b). Centroid based Voronoi diagram (CVD); (c). Poisson Voronoi diagram (PVD).

5 Conclusions

A novel ellipse tesselation algorithm for generation of
fruit was developed. Compared to the more common
algorithm of Voronoi diagrams, both the centroid based
Voronoi diagrams (CVDs) and the Poisson Voronoi dia-
grams (PVDs), ellipse tesselation was superior for gener-
ating the microstructure of tissue. The difficulty of gener-
ating virtual tissues for regular microscopic fruit tissues
(such as onion) and tissues with large cells surrounded
by smaller ones or vice versa was overcome by our new
tessellation algorithm. The ellipse tessellated virtual tis-

sues were proved spatially and statistically representative
to the fruit microstructure.

The shape of fruit cells were described in terms of their
aspect ratio (defined as the ratio of the major and minor
axes of an idealized ellipse that has the same area mo-
ments as that of the cells) rather than the shape factor
and roundness which were the measure of how cellular
geometries deviate from being circular. The use of as-
pect ratio was better to define the shape of fruit cells than
the shape factor or roundness as the measure of ellipsicity
includes the measure of circularity.
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(a)                                                                                                      (b) 

Figure 5 : Ellipse tessellated virtual apple parenchyma tissue: (a) virtual tissue; (b) magnified view of a virtual
tissue.

Such a microstructural model has large potential in
multiscale modelling of gas and moisture transport in
fruits. It avoids a tiresome classical continuum modelling
approach where transfer properties that appear in the
macroscopic transport equation are determined experi-
mentally. As such, the heterogeneous properties of tissue
and complex microstructural structures are rather recog-
nized and separate model parameters and boundary con-
ditions are defined to perform in silico experiments. This
leads to a better understanding of the physics of the pro-
cess .The transition from microstructure to macrostruc-
ture is then achieved by appropriate averaging proce-
dures.

Notation

a, b, c, d, e, f ellipse coefficients
F(x, y) polynomial function
a, x vectors
C, D matrices
λ Lagrangian multiplier
s f shape factor
A area (µm2)
P perimeter (µm)
S skewness coefficient
µx mean of a variable
σ standard deviation

K kurtosis coefficient
u(x,y) stationary random field
ρ(h) autocorrelation function
ui = u(i)−E(u) deviation from the mean
n number of regions
I Moran’s coefficient
Ii local Moran’s coefficient
C Geary’s coefficient
Z Z scale coefficient
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