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The Application of a Hybrid Inverse Boundary Element Problem Engine for the
Solution of Potential Problems
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Abstract: A method that combines a modified back
propagation Artificial Neural Network (ANN) and
Boundary Element Analysis (BEA) was introduced and
discussed in the author’s previous papers. This paper dis-
cusses the development of an automated inverse bound-
ary element problem engine. This inverse problem en-
gine can be applied to both potential and elastostatic
problems.
In this study, BEA solutions of a two-dimensional po-
tential problem is utilised to test the system and to train
a back propagation Artificial Neural Network (ANN).
Once training is completed and the transfer function is
created, the solution to any subsequent or new problems
can be obtained quickly and in real-time without any fur-
ther modelling or processing time with a high degree of
accuracy. This provides substantial savings on compu-
tational time and provides instant solutions to a given
problem with infinite combinations of alternative bound-
ary conditions. This approach is particularly useful when
parametric optimisation of an existing component is re-
quired, which may typically involve several iterations in
order to obtain valid results. In this paper the inverse
problem engine will be explained in detail.
The logic behind its Graphical User Interface (GUI) will
be explained and results will be discussed. Using this
technique we can for example identify the temperature
at the cutting tool tip or on the external surface due to
cutting force, from accurate internal temperatures.

keyword: Boundary Element Modelling, Artificial
Neural Network, Back Propagation, Linear Extrapola-
tion, Weight Updating.

1 Introduction

Boundary Element Analysis (BEA) is now an estab-
lished techinique widely used in many industries and
fields of research ranging from biomechanics [Muller-
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Karger, Gonzalez, Aliabadi and Cerrolaza (2001)] to air-
craft structural health monitoring [Forth and Staroselsky
(2005)]. In terms of structural analysis, the technique is
almost exclusively used for discrete event simulation. In
practice BEA of a large structure involves the discrete
solution for a single time-step. If the effect of changing
loads or other boundary conditions is required, this will
usually involve expensive and often time consuming re-
modelling and/or re-runs of the solution software.

The inverse problem method has been identified as one
technique avaialable for reducing the number of model
iterations required and/or determining key locations to
apply thermocouples. Previous research has utilised the
fundemental solution method [Hon and Wei (2005)] and
matrix algebraic tools [Ling and Atluri (2006)] for solv-
ing inverse heat conduction problems.

Researchers at the University of the West of England
(UWE) have also been investigating and developing hy-
brid solution schemes for solving inverse problems. This
has led to a vast amount of research being conducted in
the application of inverse methodology in engineering,
computing and biomechanics. This Research began in
1995 and since then has been gaining momentum.

This methodology has been successfully applied by the
authors to solve inverse experimental (strain gauge and
photoelasticity) mechanics such as the determination of
the interfacial load at the interface between prosthetic
socket and the residul limb for below-knee amputees
[Amali, Noroozi, Vinney, Sewell and Andrews (2006)].
The inverse problem engine has also been sucessfully ap-
plied to FEA, where both the direct and inverse FEA has
been solved in real-time. This was demonstrated in previ-
ous papers where the internal stresses, displacements or
strain data from FEA analysis was used to determine the
load on a simplified aircraft wing [Noroozi, Amali, Vin-
ney and Sewell (2005)]. Research is currently underway
to develop a generalised Hybrid Inverse Problem Engine
(HIPE), which uses a combination of experimental, nu-
merical and artificial intelligence methods to solve most
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classes of inverse problem.

This paper discusses the application of one version of this
inverse problem engine to solve an inverse Boundary El-
ement problem utilising a modified Trefftz method which
was first introduced in 1926 [Trefftz (1926)]. The inverse
methodology is based on the combined application of Ar-
tificial Neural Networks (ANN) and BEA. The proposed
solution strategem has been compiled into an automated
inverse Boundary Element problem solver with a power-
ful Graphical User Interface (GUI). It is assumed that the
reader is familiar with BEA and its application to both
potental and elastostatic problems.

2 Artificial Intelligence - Inverse Problem Analysis

An Artificial Intelligence approach, specifically an ANN,
as an Inverse Problem Solver can be utilised for predict-
ing the potential (external temperatures on a body) from
the known internal temperatures as has been shown from
preliminary evaluation of the inverse technique detailed
elsewhere [Noroozi, Amali and Vinney (2001); Noroozi,
Amali and Vinney (2002); Noroozi, Amali and Vinney
(2003)]. In general, ANNs were established from the
study of the biological nervous system. In other words
Neural Networks are an attempt at creating machines to
behave like the human brain by using components that
behave like biological ‘neurons’. These elements are all
interconnected and work in conjunction with each other,
hence the development of the name ‘Neural Network’.
According to Kohonen (1998), the first theorists to con-
ceive the fundamentals of neural computing were W. S.
McCulloch and W. A. Pitts in 1943. An ANN can of-
ten be thought of as a black box device for information
processing that accepts inputs and produces outputs (Fig.
1).

Inverse problems are classed as problems where the
responses (i.e. internal temperatures on a body) are
known however the external temperatures, which gener-
ated them, are not. The ANN works by forming a math-
ematical relationship (function) between example data
(i.e. internal/external temperatures) which are given to
it (Fig. 1). Looping of the network continues until the
network response (output) matches the desired response
or at least the error function reaches an acceptably small
value (i.e. minimisation of the error function). Many in-
put/desired response pairs (training data) are used to train
a network. A Backpropogation ANN uses a Mean Square
Error (MSE) error function, which is defined as a sum of
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Figure 1 : An Artificial Neural Network (ANN) as a
black box for the prediction of external temperatures
from internal temperatures

the squared errors between the desired and network re-
sponse over all the network responses for all the training
patterns.

Once the relationship is formed new input data (prob-
lem data) can be given to the system, which will out-
put the expected temperatures causing this response. A
trained network can generate real-time solutions to any
inverse problem, accurately, quickly and indepent of
problem size. Results obtained so far using this auto-
mated solver now called Hybrid Inverse Problem Engine
(HIPE) have been very encouraging [Noroozi, Amali and
Vinney (2001); Noroozi, Amali and Vinney (2002)]. A
detailed theoretical treatment of the ANN can be found
elsewhere [Amali, Noroozi, Vinney, Sewell and Andrews
(2001)].

3 Hybrid Inverse Boundary Element Problem En-
gine Design

Developing an Inverse Problem Engine, utilising an
ANN, that is capable of determining the loads on a com-
plex component requires four main areas to be consid-
ered based on the discussion in the previous section:

1. Acquisition of training data – this should allow the
reliable capture and generation of training data (i.e.
external temperatures and the internal temperature
responses).

2. ANN architecture – this should determine an ac-
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curate mathematical relationship (function) for the
training data in as short a time period as possible
(i.e. minimisation of the error function to an accept-
able accuracy in the minimum number of loops).

3. ANN software – this should enable all the tasks
required for network training, utilisation and data
analysis to be accessed and performed within a sim-
ple and logical GUI.

4. Acquisition of problem data – this should allow the
reliable capture of problem data (i.e. internal tem-
peratures due to real external temperatures).

The developments in each of these areas will be dis-
cussed in the following sections and the resultant system
is presented through a case study.

3.1 Acquistion of training Data

To find the relationship between the internal and external
temperatures on a body the ANN requires a method of
reliably determining the internal temperature responses
on the body to be analysed when known external tem-
peratures are applied to that body. The external temper-
atures and its related internal temperature data must then
be stored as ANN inputs and outputs pairs. A large num-
ber of these pairs are required for the ANN to accurately
train (i.e. find an accurate relationship between the inputs
and outputs). A simulation of the body under consider-
ation can be produced with the known external tempera-
tures applied. The Boundary Element program will then
determine the internal temepratures at key locations that
were caused by the external temepratures.

4E3E2E1E

55I35I25I15I

44I34I24I14I

43I33I23I13I

42I32I22I12I

41I31I21I11I

Figure 2 : Example training file

The number of required external/internal temperature
patterns required will be large which means that a large
number of simulations with varying external tempera-
tures would be required to gather enough training data.
However it was found that the amount of data collected
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Figure 3 : Generation of a) training output (external tem-
peratures) patterns and b) training input (internal temper-
atures

could be dramatically reduced using the theory of super-
position to generate training and testing patterns from the
independent parent patterns. The example training file in
Fig. 2 is for four external temperature surfaces (E1 to E4)
and five internal temperatures (I1 to I5) which are cap-
tured when the temperature E is applied at that position
on the body. This is collected by the software applying a
temperature to surface one and collecting the five internal
temperatures that are produced on the body surface due
to this external temperature. This would be repeated for
external temperature surfaces two, three and four.

Using superposition any number of training patterns (n)
are generated (Fig. 3) using a random number genera-
tor (rand()) which produces values between the minimum
and a maximum temperature value specified by the user.
The maximum and minimum values should be the limits
of the temperature that can occur on the body.

3.2 ANN Architecture

The architecture of the ANN (i.e. the number of layers,
the amount of training and testing data, the values as-
signed to the network learning variables) will determine
the accuracy of the predicted temperature data. The set-
ting of the architecture should require as little interven-
tion from the user as possible. Ideally the architecture of
the ANN should be preset and be suitable for all Bound-
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ary Element problems. The full ANN architecture used
for the inverse problem engine can be found in Tab. 1.

Another important factor in accurately and efficiently
training an ANN is to determine the number and posi-
tions of the internal temperature readings required to pre-
dict the external temperatures. It is recognised that to
successfully train a Backpropagation ANN the layers in
the network should be convergent (i.e. the number of in-
puts should be greater than the number of outputs). If
the converse is true the network would be divergent and
the network could not be trained. The positions of the
internal temperature readings are also important as some
regions of a body are much more sensitive to external
temperature changes than others. To produce efficient
training data the internal temperature data should be cap-
tured at the sensitive regions.

The number of required patterns was found to be 1420
which meant that 1420 sets of random external tempera-
tures on each surface and the resultant internal temper-
atures caused by these external temperatures were re-
quired to provide enough input/output data to find the
relationship between them.

Rarely is the data collected from Boundary Element
Analysis completely accurate or data captured from ther-
mocouples free from noise as there are many possible
sources in a normal working environment. Therefore the
software adds further noisy patterns to the training files to
account for any noise that may come from the inaccuracy
of the model or from thermocouple data. The number of
noisy patterns, maximum absolute value of noise to add
to the surface data and the percentage of each pattern to
modify are set in the ANN architecture.

3.3 ANN Software

The ANN software must make the process of collecting,
generating, training and analysing ANN data as simple
as possible for the user who may not have any previous
experience of ANN analysis. This has been achieved by
logically ordering and standardising the ANN software
tasks (Fig. 4).

All data generated from each task is automatically trans-
ferred to other tasks that require this data. Collected data
is hidden from an inexperienced user but is available if
required for troubleshooting purposes. The data analysis
software is also simple to interpret, is referenced to the
original model.

Table 1 : Architecture of the Artificial Neural Network
Architecture Feed Forward Back propaga-

tion
Data process Normalisation
Noise generator +/-5 degrees on 10% of train-

ing patterns
Range of Tempera-
tures

user-defined minimum and
maximum

Number of nodes in
input layer (Internal
Temperature Nodes)

Defined in the Boundary Ele-
ment Model

Number nodes in
output layer (Ex-
ternal Temperature
Surfaces)

Defined in the Boundary Ele-
ment Model

Number of nodes in
hidden layer

Equal to the number of layers
in the output layer

Number of training
patterns

1420

Number of testing
patterns

50

Number of problem
patterns

1

Number of loops Defined by user
Learning rate 0.0005
Momentum constant 0.0003

3.4 Acquisition of Problem Data

Problem data is the captured internal temperature data on
the body due to the real external temperatures. It is intro-
duced to the trained network so that it can predict the ex-
ternal temperatures on the body’s surface. It is essential
that the internal temperature data is captured at identical
locations for both the training and problem data, if not the
results will be invalid. Therefore this data should also
be collected using the same Boundary Element model
or from thermocouples attached to the actual body be-
ing analysed in the same position as for the collection of
training data.

4 Hybrid Inverse Boundary Element Problem En-
gine Case Study

A study was performed to assess the developed system
which is detailed in the following sections. The prob-
lem chosen for the case study is shown in Fig. 5 where
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Figure 4 : Software flowchart

a rectangular plate is heated to 1000oC on the left edge,
-500oC on the right edge and insulated on the other two
sides. The aim of the case study is to determine the us-
ability and accuracy of the Inverse Problem Engine by
comparing the actual temperatures on the left and right
edge found using direct analysis with the predicted tem-
peratures found using the Inverse Problem Solver.

1000o -500oC

Insulated 

Insulated 

Figure 5 : Schematic diagram of the plate with typical
boundary conditions

4.1 Define the Boundary Element Model

The model geometry, boundary definitions and internal
nodes (Fig. 6b) are defined by creating a text file in the

format shown in Fig. 6a.

The locations of the internal nodes to be analysed must
be chosen for their sensitivity to changes in the exter-
nal temperatures as discussed previously. It must also be
ensured that there are more internal nodes defined than
temperature surfaces to produce a convergent network.
Eighteen internal nodes (network inputs) have been de-
fined for this problem which is more than the four surface
temperatures (network outputs).

The defined surface temperatures will determine the
maximum and minimum temperature range the network
will train between. In this problem the ANN will gener-
ate training data between -500 and 1000oC at locations
T1, T2, T3 and T4.

4.2 Running the Inverse Problem Solver

The solver has been developed into a windows-based
graphical interface which can be accessed via an exe-
cutable file. When first entered the user is asked to select
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Figure 6 : a) Model file and b) final model

Figure 7 : Selecting a working directory

a working directory where all files related to the analysis
will be stored (Fig. 7).

The main dialog window will then appear (Fig. 8) where
all functions relating to the solving of the inverse prob-
lem can be accessed. The model file can be loaded by
clicking the ‘Load Input Data’ button. The contents of
the file will appear in the Model Details window for re-
view.

Figure 8 : Main dialog window
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4.3 Run the BEA Analysis

Figure 9 : Dialog appears when analysis is successful

To find the direct solution to the model click the ‘Run
BEA Analysis’ button. If the analysis is successful the
dialog box shown in Fig. 9 will appear. It is then possible
to view the results file detailing the internal temperatures
by clicking on the ‘View Result File’ button.

4.4 Generate Training Data and Train Network

For inverse analysis it is required that the model is run
several times to gather the superposition data. In this
case four runs are required as the temperature is to be
predicted in four locations (T1 to T4), where:

run 1: T1= maximum external temperature value and T2
to T4 are set to zero.

run 2: T2= maximum external temperature value and T1,
T3 and T4 are set to zero.

run 3: T3= maximum external temperature value and T1,
T2 and T4 are set to zero.

run 4: T4= maximum external temperature value and T1
to T3 are set to zero.

The results of each run can be viewed by clicking the
‘View Inverse Results File’ button. From these runs a
training file of the form shown in Fig. 2 will be cre-
ated and which can subsequently be utilised to produce
the required training patterns to train the ANN. The cre-
ated training data file can be viewed by clicking the ‘View
Training Data’ button.

Training of the network is performed by clicking the
‘Train ANN’ button (Fig. 10a) which when pressed
will firstly generate the specified number of training pat-
terns from the generated training data file and then will
perform training. Training can be manually paused or
stopped using the ‘Pause Training’ and ‘Stop Training’
buttons. The training will stop automatically if the test-
ing error goes below 10% (i.e. the network should predict
accurately to within 90% of the actual temperature value)
as the network will be deemed to be trained at this error
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Figure 10 : ANN training a) dialog window and b) graph

level. Fig.10b shows the reduction in error as the network
trains for the model in Fig. 6. The graph shows the error
reaches 0.1 in approximately 13000 loops (i.e. iterations
of the network). This took approximately five minutes to
achieve.

4.5 Generate Problem Data

The validity of the trained network can be assessed by
entering internal temperatures as problem data for known
eternal surface temperatures and ensuring that the ANN
predicts these correctly. Click the ‘Generate Problem
Data’ button to enter four surface edge temperatures
between the maximum and minimum values set in the
model (Fig. 11). The program will then perform a direct
BEA analysis of the model using the entered values of
edge temperatures. The calculated internal temperatures
from this model will then be used as the input problem
data to the network.

4.6 Manually Enter Problem Data

Click the ‘Manually Enter Problem Data’ button to enter
the temperature for each internal node of the model in a
dialog window (Fig. 12). As there are eighteen internal
nodes in the model eighteen internal temperatures will
need to be specified to predict the temperatures on the
four surfaces that caused them.
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Figure 11 : Generating problem data dialog window

Figure 12 : Entering problem data dialog window

4.7 Analyse Predicted Temperatures

Once the problem data has been entered it is possible to
use the trained network to predict the external temper-
atures caused by the given set of internal temperatures
(problem data). Clicking the ‘Run ANN’ button will pro-
duce a graph of the predicted external temperatures as
shown in Fig. 13. Column T1 to T4 represents the pre-
dicted temperature on surfaces T1 to T4 as defined in the
model file (Fig. 6).

To validate the trained ANN the ‘Generate Problem
Data’ function was used to apply six sets of four external
temperatures (Actual Temperatures) generating six prob-
lem patterns. The problem patterns were then introduced
to the network and the predicted external temperatures
that caused them found (ANN Temperatures). The com-
parison of the Actual and ANN predicted temperatures
can be found in Fig. 14.

The results in Fig. 14 clearly shown that the ANN can
predict four external temperatures caused by eighteen in-
ternal temperatures with a high level of accuracy within
the specified temperature range.

5 Discussion

The problem engine can solve both direct and the inverse
problems with ease, however due to current fast com-

Figure 13 : Predicted external temperature graph

puting powers available, the direct solution can easily be
performed using multiple runs of the same problems with
varied Boundary conditions. However inverse problem,
in a classical way requires a vast number of iterations,
which even with high-speed computing power can still be
time consuming and there is no guarantee of a unique so-
lution. This is when the Hybrid Inverse Problem Engine
(HIPE) comes to its own and identifies a unique solution.

In industrial applications, it will be quite time consum-
ing to generate surface temperature for over 1400 sets
of training data using thermocouples. However, an op-
timised BEA model of a thermal problem can easily be
validated by the data obtained from thermocouples lo-
cated at strategic location on the surface. Once it is sure
that BEA is a true representation of the industrial case
then, combined with superposition, it can be used to gen-
erate all the required training data quickly and efficiently.
This way the real-time solver can easily be generated in
an industrial enviroment. This ability is invaluable for
real-time thermal analysis and monitoring of processes
where the knowledge of temeperature distributions are
key factors and can change randomly (i.e. the tempera-
ture at a cutting tool tip or on an external surface due to
cutting force).

So far this system has only been used for steady-state
thermal conduction problems however, the system can
easily be used or the network can easily be trained to
have time dependent parameters as input data. Here the
validation and convergence may take longer but the ben-
efits it can offer in the long term can by far outweigh the
intial setup.

Once trained the real-time inverse problem solver is in-
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Figure 14 : Comparison of actual and predicted external temperatures for six problem patterns

dependent of the size of the problem therefore the solu-
tion to any inverse thermal monitoring problem will be
quick and the outputs can be almost instantaneous. This
makes the application of such a numerical system in con-
trol system, processes or in an embeded real-time system
a possibility.

The main focus of this paper was to demonstrate how
fast and efficient this hypothesis is. Further work may
be undertaked to improve the solution integrity and en-
hance its reliability and accuracy. Other objectives will
be to assess its potential benefits in terms of time, cost
and relative accuracy.

6 Conclusions

A tool has been developed and tested through a case
study that enables the user to solve both direct and in-

verse Boundary Element problems with ease. The soft-
ware developed provides a simple to use interface, which
allows simple analysis of the obtained results. A sum-
mary of the main development and achievements to date
are detailed below, the developments are:

• an easy to use Graphical User Interface (GUI).

• a training methodology.

• a Boundary Element specific Inverse Problem En-
gine.

A critical appraisal of the system has highlighted several
areas that require future investigation, which include:

• the development of a thermocouple data acquisition
collection interface.
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• investigation of the technique utilising time depen-
dent parameters.

• the assessment of the potential of the tool for inves-
tigation of complex problems.

If these recommendations for further investigation can be
achieved a complete and fully robust system could be de-
veloped.
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