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SPH in a Total Lagrangian Formalism
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Abstract: To correct some of the main shortcomings of
conventional SPH, a version of this method based on the
Total Lagrangian formalism, T. Rabczuk, T. Belytschko
and S. Xiao (2004), is developed. The resulting scheme
removes the spatial discretisation instability inherent in
conventional SPH, J. Monaghan (1992).
The Total Lagrangian framework is combined with the
mixed correction which ensures linear completeness and
compliance with the patch test, R. Vignjevic, J. Camp-
bell, L. Libersky (2000). The mixed correction utilizes
Shepard Functions in combination with a correction to
derivative approximations.
Incompleteness of the kernel support combined with the
lack of consistency of the kernel interpolation in con-
ventional SPH results in fuzzy boundaries. In corrected
SPH, the domain boundaries and field variables at bound-
aries are approximated with the default accuracy of the
method.
Additionally, these corrections are introduced into the
Total Lagrangian SPH and compared to the conventional
SPH and to a number of selected corrected variants, G.
Johnson, R. Stryk, S. Beissel (1996), J. Bonet, S. Ku-
lasegaram (2002), and P. Randles, L. Libersky (1996).
The resulting Total Lagrangian SPH scheme not only en-
sures fist order consistency but also alleviates the parti-
cle deficiency (kernel support incompleteness) problem.
Furthermore a number of improvements to the kernel
derivative approximation are proposed.
To illustrate the performance of the Total Lagrangian
SPH and the mixed correction, four numerical examples
ranging from simple 1D dynamic elasticity to 3D real en-
gineering problems are also provided.
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1 Introduction

It is well known that the conventional SPH method ini-
tially proposed by L. Lucy (1977) and Gingold and Mon-
aghan (1977) has a number of shortcomings including in-
consistency (not even zero order consistent for arbitrary
distribution of particles), rank deficiency , J. Sweegle, D.
Hicks, S. Attaway (1995), and a spatial discretisation re-
lated instability, T. Rabczuk, T. Belytschko and S. Xiao
(2004) and J. Sweegle, D. Hicks, S. Attaway (1995) often
called tensile instability.

The recent improvements of the conventional SPH
method which have given the method first order consis-
tency, R. Vignjevic, J. Campbell, L. Libersky (2000) and
, J. Bonet, S. Kulasegaram (2002), have been achieved by
modifying the properties of the kernel function itself, see
W. Liu, Y. Chen (1995) and W. Liu, S. Jun, J. Adee, T.
Belytschko (1995) or by applying corrections to the inter-
polation integral, R. Vignjevic, J. Campbell, L. Libersky
(2000), J. Bonet, S. Kulasegaram (2002). The outstand-
ing problems with tensile instability combined with the
lack of rigorous treatment of boundary conditions still
hamper the full exploitation of the method.

A number of solutions to the tensile instability problem
have been proposed, including non-collocational SPH
(where stress and velocity fields are discretised at dif-
ferent locations R. Vignjevic, J. Campbell, L. Libersky
(2000), C. Dyka, R. Ingel (1995)) and Lagrangian ker-
nel based interpolation T. Rabczuk, T. Belytschko and
S. Xiao (2004). In this paper the interest is focused on
Lagrangian kernels in a total Lagrangian framework for
SPH and the different types of corrections necessary for
first order consistency.

A comprehensive overview of current correction tech-
niques with the SPH discretised conservation equations
in a total Lagrangian framework is given. Additionally,
the effects of the normalisation of the kernel and ac-
curacy of approximations of the derivatives are consid-
ered. An alternative to the approach considered in this
paper which does not have stability problems related to



182 Copyright c© 2006 Tech Science Press CMES, vol.14, no.3, pp.181-198, 2006

the spatial discretisation is the Meshless Local Petrov-
Galerkin (MLPG) method, Atluri, S.N (1998, 2004) and
Han (2005) but this alternative requires additional effort
and care in the treatment of boundary conditions.

A number of numerical examples ranging from simple
1D dynamic elasticity to 3D real engineering problems
are also provided to illustrate the performance of the To-
tal Lagrangian SPH and the mixed correction.

2 Conventional SPH

The SPH method is based on the convolution principle
or interpolant integral. Thus, any exact physical field
(scalar, vector or tensor) ψ(x̃, t) which depends on posi-
tion x̃ and on time t can be approximated by its smoothed
value 〈ψ(x̃, t)〉 given by

< ψ(x̃, t) >=
Z

DhW

ψ(s, t).W(|x̃− s| ,h).
(

ρ(s, t).ds
ρ(s, t)

)
(1)

Where: W (|x̃− s| ,h) is the kernel function and, h is a
geometrical parameter which defines size of the kernel
support, ρis the density and DhW is the compact support
of the kernel.

DhW =
{

x̃− s/ |x̃− s| ∈ ℜN ,W(|x̃− s| ,h) ∈ ℜ∗}
= {�x− s/ |�x− s| ∈ ℜN , |�x− s| ∈ [−C.h,+C.h]} (2)

Where: C is a constant

The second equality is only valid for kernels with sym-
metric support.

The kernel W(|x̃− s| ,h) should have the following prop-
erties:Z

DhW

W(|x̃− s| ,h).ds = 1 (3)

W(|x̃− s| ,h) h→0−→ δz (4)

Where: δzis Dirac delta function.

For numerical applications the domain of integration has
to be discretised, in that case Eq. (1) is approximated by:

< ψ(x̃I) >≈ ∑
J∈Ni

ψ(x̃J) ·W(|x̃I − x̃J |,h) · mJ

ρ(x̃J)
(5)

Where: mJ is the mass associated with particle J, Ni is
the set of particles interacting with Ith particle and dsJ =
mJ/ρ(x̃J)·,S = {J ∈ N/−C.h ≤ x̃I − x̃J ≤C.h}

The interpolation defined by Eq. (5) is not even zero or-
der consistent for irregular distribution of particles.

The spatial derivative of ψ is approximated as:

<
∂ψ(x̃I)

∂x
>≈ ∑

J∈Ni

ψ(x̃J).
∂W
∂�xJ

(x̃I − x̃J ,h).
mJ

ρ(x̃J)

= ∑
J∈Ni

ψ(x̃J).WIJ
mJ

ρJ
(6)

This derivative approximation is inaccurate even for con-
stant and linear fields.

Using approximations defined by Eqs. (5) and (6) it is
possible to derive several forms of the discretised equa-
tions of conservation, for details see J. Monaghan (1992).
One of the forms is given below.

• Conservation of mass

ρ̇ = −ρ∇ · ṽ ⇒ ρ̇I = ρI ∑
J∈S

mJ

ρJ
(ṽJ − ṽI) ·∇WIJ

(7)

• Conservation of momentum

v̇ =
1
ρ

∇ ·σ ⇒ v̇I = ∑
J∈S

m j

(
σI

ρ2
I

+
σJ

ρ2
J

)
∇WIJ

(8)

• Conservation of energy

ė =
1
ρ

∇ · (σṽ
)− ṽ · ˙̃v

⇒ ėI = −σ I

ρ 2
I

: ∑
J∈S

m J (ṽJ − ṽI)∇ WIJ (9)

A common characteristic of these equations is that con-
servation of linear momentum and energy is satisfied lo-
cally. This is in part due to the fact that the kernels used
in the interpolation are symmetric.

3 Overview of correction and normalization tech-
niques.

Several approaches have been developed for improving
the consistency of the conventional SPH method, in this
section we refer to three methods termed normaliza-
tion, correction and normalization and correction. These
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terms are used interchangeably in literature but we ad-
here to the following convention: normalization refers
to the improvement which gives the zero order consis-
tency to the interpolation method while correction refers
to the improvement of the approximation of the gradi-
ent and gives the interpolation scheme first order con-
sistency. The term normalized-corrected refers to the
corrected gradient approximation combined with nor-
malised smoothing function.

3.1 Kernel normalization.

Normalization or kernel correction is aimed at mak-
ing the interpolation scheme 0th order consistent by re-
moving the effects of the kernel domain incompleteness
and irregularity in locations of sampling points (parti-
cles). The approximation of fields using a Normalised
Corrected SPH (NCSPH) interpolation has been pub-
lished, R. Vignjevic, J. Campbell, L. Libersky (2000),
P. Randles, L. Libersky (1996), J. Bonet, S. Kulasegaram
(2000). Some authors have chosen to use properties of
the integrals of motion (linear and angular momentum)
to derive Normalisation and Gradient Correction for ker-
nel interpolation, see J. Bonet, S. Kulasegaram (2000).
This approach lacks generality and does not provide the
insight into the origin and the nature of the problem.
A full derivation of the correction proposed by Vignje-
vic, Campbell and Libersky (2000), is given below. The
derivation is based on Noether’s theorem, I. Gelfand, S.
Formin (1963), i.e. the homogeneity and isotropy of
space. The mixed interpolation correction ensures that
homogeneity and isotropy of space are preserved in the
process of spatial discretisation. Consequently, conser-
vation of linear and angular momentum is ensured.

The normalization of the smoothing function guarantees
that the condition given in Eq. (10) is satisfied over the
entire domain.

∑
J∈S

W (x̃− x̃J ,h)
mJ

ρ
(

⇀xJ

) = 1 (10)

A normalised smoothing function which correctly repro-
duces a constant field and satisfies the above condition is
known as Shepard function and is given by:

W̃ (x̃−x̃J ,h) =
W (x̃−x̃J,h)

∑
J∈S

mJ
ρJ

W (x̃−x̃J,h)
(11)

The derivation of this form starts with the assumption

that an interpolation technique should not affect homo-
geneity of space. A way of demonstrating this is to prove
that the discretised solution space itself is independent of
a translation of the coordinate axes. In order to express
this statement mathematically one can start by writing the
general expression for the SPH interpolation of a vector
field:〈

F̃(x̃)
〉∣∣

x̃=x̃I
= ∑

J∈S

mJ

ρJ
F̃(x̃J)W (x̃I − x̃J ,h) (12)

If the field to be interpolated is the solution space then
F̃ = x̃ and Eq. (12) becomes:

〈x̃〉|x̃=x̃I
= ∑

J∈S

mJ

ρJ
x̃JW (x̃I − x̃J ,h) (13)

In a different, translated coordinate system, this equation
is:〈

x̃′
〉∣∣

x̃′=x̃′I
= ∑

J∈S

mJ

ρJ
x̃′JW

(
x̃′I − x̃′J ,h

)
(14)

Where x̃′ is the coordinate vector in the new coordinate
system. If the translation vector by which the origin of
the coordinate system was moved is defined as Δx̃ then
the relationship between x̃ and x̃′is:

x̃′ = x̃−Δx̃ (15)

If the interpolated coordinates of a point are independent
of the translation of coordinate axes then the following
should hold:〈
x̃′
〉

= 〈x̃〉−Δx̃ (16)

By substituting Eq. (16) into Eq. (15) for both x̃Iand x̃J

one obtains:

〈
x̃′
〉
= ∑

J∈S

mJ

ρJ
x̃JW (x̃I − x̃J ,h)−−Δx̃ ∑

J∈S

mJ

ρJ
W (x̃I − x̃J ,h)

(17)

or〈
x̃′
〉

= 〈x̃〉−Δx̃ ∑
J∈S

mJ

ρJ
W (x̃I − x̃J ,h) (18)

By comparison of Eq. (18) and Eq. (16) it is clear that
the discretised space will only be homogeneous if kernel
function satisfies condition given in Eq. (12).



184 Copyright c© 2006 Tech Science Press CMES, vol.14, no.3, pp.181-198, 2006

The form of the kernel function that satisfies this
condition can be obtained by dividing Eq. (17) by
∑

J∈S

mJ
ρJ

W (x̃I − x̃J ,h), i.e:

〈
x̃′
〉

= ∑
J∈S

mJ

ρJ
x̃J

W (x̃I − x̃J,h)
∑
j

m j

ρ j
W (x̃I − x̃J ,h)

−Δx̃

= ∑
J∈S

mJ

ρJ
x̃JW̃ (x̃I − x̃J ,h)−Δx̃ (19)

Where: W̃ is the Shepard function.

3.2 Correction of the derivatives.

A simple correction technique involves modification of
the kernel gradient by introducing a correction matrix de-
noted by L, J. Bonet, S. Kulasegaram (2002), or B, P.
Randles, L. Libersky (1996), in literature. This correc-
tions are aimed at restoring 1st order consistency.

There are several ways in which this correction can be
obtained, two derivations are presented here.

First let’s start by considering a function ψ(x′) in a 1-
D space which is assumed to be sufficiently smooth in
the domain that contains x. Performing the Taylor series
expansion for ψ(x′) in the vicinity of x yields:

ψ
(
x′
)

= ψ(x)+
(
x′ −x

) ∂ψ(x)
∂x

(x′ −x)2

2
∂2ψ(x)

∂x2 + ...

(20)

Multiplying both sides of the equation by a smoothing
function Wand integrating over the sub-domain S:

Z

S

ψ
(
x′
)

W
(
x′
)

dx′ = ψ(x)
Z

S

W
(
x′
)

dx′

+
∂ψ(x)

∂x

Z

S

(
x′ −x

)
W
(
x′
)

dx′

+
∂2ψ(x)

∂x2

Z

S

(x′ −x)2

2
W
(
x′
)

dx′ + ... (21)

In order to approximate the derivative of the function ψ
rather than the function ψ itself, the function W can be
replaced by the derivative of the function W in the above

expression as follows:

Z

S

ψ
(
x′
) ∂W (x′)

∂x
dx′ = ψ(x)

Z

S

∂W (x′)
∂x

dx′

+
∂ψ(x)

∂x

Z

S

(
x′ −x

)∂W (x′)
∂x

dx′

+
∂2ψ(x)

∂x2

Z

S

(x′ −x)2

2
∂W (x′)

∂x
dx′ + ... (22)

From where the corrected expression for the first deriva-
tive, neglecting higher order terms, is given by:

∂ψ(x)
∂x

=

R
S

(ψ(x′)−ψ(x)) ∂W (x′)
∂x dx′

R
S

(x′ −x) ∂W (x′)
∂x dx′

(23)

A discrete form of the expression above is given by:

〈
∂ψ(xI)

∂x

〉
=

∑
J∈S

mJ
ρJ

(ψJ −ψI) ∂WIJ
∂x

∑
J∈S

mJ
ρJ

(xJ −xI) ∂WIJ
∂x

(24)

Where the derivatives are with respect to the x′ and WIJ =
W (xI −xJ ,h).
The above is the discretised expression for the gradient
correction of a function ψ(x′); the numerator is the ker-
nel approximation for the first derivative of a function
and the denominator acts as the correction factor. It is
easy to extend the procedure to 2D and 3D.

From the above expression it is not entirely clear how the
1st order consistency of the method gets restored. An
alternative approach to derivation of the correction of
the derivatives may provide additional insight. To this
end one can consider approximation of a linear function
based on SPH framework.

Let’s consider a linear velocity field in a 1-D defined as:

v = a +bx (25)

Where: a and b are constants. The approximation of gra-
dient of this velocity field L based on corrected SPH is:

L =
∂v
∂x

=

(
−∑

J∈S

mJ

ρJ
(vJ −vI)

∂WIJ

∂x
.B

)
(26)
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Hence, B can be readily obtained as:

B =

(
−∑

J∈S

mJ

ρJ
(xJ −xI)∇WIJ

)−1

(27)

Correction factor B is equivalent to the expression in the
denominator in Eq. (24). The above derivation has been
extended to 3-D by Randles and Libersky (1996), the ten-
sor form of the correction can be written as follows:

B =

(
−∑

J∈S

mJ

ρJ
(x̃J − x̃I)⊗∇WIJ

)−1

(28)

or in index notation:

Bαβ =

(
−∑

J∈S

mJ

ρJ
(xα

J −xα
I )

∂W

∂xβ

)−1

(29)

3.3 Normalisation of the kernel with correction of the
derivatives.

Another possible correction technique is achieved by
combining the normalized smoothing function with the
correction of the derivatives, R. Vignjevic, J. Campbell,
L. Libersky (2000), J. Bonet, S. Kulasegaram (2002).
In this particular case, one starts with the normalized
smoothing function (the Sheppard function) and the as-
sumption that an interpolation technique should not af-
fect isotropy of space. One way of demonstrating this is
to prove that the interpolation is independent of a rotation
of the coordinate axes. The same holds for the SPH ap-
proximation. The change in coordinates due to a rotation
of the coordinate axes is:

x̃′ = Cx̃ (30)

Where: C is the rotation matrix. For small rotations this
can also be written as:

x̃′ = x̃−Δ�φ× x̃ (31)

Where Δ�φ is the rotation vector.

If one wants to ensure that the SPH approximation does
maintain the fact that space is isotropic then the approxi-
mation has to satisfy the following condition:〈
x̃′
〉≡ 〈Cx̃〉= C〈x̃〉 (32)

or

〈C〉= C (33)

This means that the rotation matrix has to be approxi-
mated exactly.

In order to develop this equation one can start by rewrit-
ing

x̃′ = x̃−Δ�φ× x̃

= x̃−∇
(

Δ�φ× x̃
)
· x̃

= x̃−φxx̃

= (I−φx) x̃ (34)

Where Δφx is a skew-symmetric matrix:

Δφx =

⎡
⎣ 0 −Δφz Δφy

Δφz 0 −Δφx

−Δφy Δφx 0

⎤
⎦ (35)

Consequently the rotation matrix, for small rotations, is
given by:

C = I−φx (36)

The approximation of the rotated coordinates is:

〈
x̃′
〉≡ 〈Cx̃〉 = 〈C〉 〈x̃〉 = 〈I−φx〉 〈x̃〉 (37)

The condition given in Eq. (33) can be rewritten as:

I−φx = 〈I−φx〉 (38)

or

φx = 〈φx〉 (39)

Expanding this expression leads to:

〈φx〉= ∑
J∈S

mJ

ρJ
Δ�φ× x̃J ⊗∇W̃ (x̃I − x̃J ,h)

= ∑
J∈S

mJ

ρJ
(φxx̃J)⊗∇W̃ (x̃I − x̃J ,h)

= φx ∑
J∈S

mJ

ρJ
x̃J ⊗∇W̃ (x̃I − x̃J ,h) (40)

Therefore, to preserve space isotropy, i.e. φx = 〈φx〉 the
following condition has to be satisfied.

∑
J∈S

mJ

ρJ
x̃J ⊗∇W̃ (x̃I − x̃J ,h) = I (41)
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The approximation of the derivative which satisfies this
condition can be obtained by multiplying Eq. (40) by[

∑
J∈S

mJ
ρJ

x̃J ⊗∇W̃ (x̃I − x̃J,h)
]−1

:

〈φx〉 = φx = ∑
J∈S

mJ

ρJ
(φxx̃J)⊗∇W̃ (x̃I − x̃J,h)×

[
∑
J∈S

mJ

ρJ
x̃⊗∇W̃ (x̃I − x̃J ,h)

]−1

= ∑
J∈S

mJ

ρJ
(φxx̃J)⊗∇W̃ (x̃I − x̃J,h)B

= ∑
J∈S

mJ

ρJ
(φxx̃J)⊗ ∇̃W̃ (x̃I − x̃J,h) (42)

The forms of the normalised kernel function and the ap-
proximation of the first order derivatives which provide
first order consistency are given in Table 1.

Using the NCSPH approximations the conventional SPH
conservation equations assume the following form:

〈ρ̇I〉 = ρI ∑
J∈S

mJ

ρJ
(ṽJ − ṽI) · ∇̃W̃ IJ (43)

〈
˙̃vI
〉

= ∑
J∈S

m j

(
σi

ρ2
i

+
σ j

ρ2
j

)
∇̃W̃IJ (44)

〈ėI〉= −σ i

ρ 2
i

: ∑
J∈S

m J (ṽJ − ṽI)⊗ ∇̃ W̃ IJ (45)

An alternative approach to normalised-corrected SPH as-
sumes that the denominator in the normalised smooth-
ing function W̃IJ given in Table 1 remains constant. In
this case, the derivative of the normalised function is ex-
pressed by:

∇W̃i j =
1
C

∇Wi j (46)

Where: C is simply

nnbr

∑
J=1

mJ

ρJ
W (x̃I − x̃J ,h) (47)

for the normalised corrected form of Eq. (46) a correc-
tion term B would have to be introduced such that

∇̃W̃i j =
1
C

∇Wi jB (48)

Table 1 : Corrected forms of the kernel function and its
gradient

or, in index notation:

∇̃W̃α =
1
C

∂W
∂xβ

Bβα (49)

Eq. (49) provides a simplified form of Eq. (10). which
restores first order consistency to the conventional SPH.

One can see that generally WCNSPH(x,x − s,h) �=
WCNSPH(s, s− x,h), i.e. the kernel function is no longer
symmetric this should be reflected in the form of the
semidiscretised conservation equations based on this
type of interpolation.

4 Total Lagrangian formalism for SPH.

4.1 Conservation Equations in the Total Lagrangian
formalism.

To describe motion of continuum equation of conserva-
tion of mass momentum and energy and the constitutive
laws have o be integrated.

Usually, when using total Lagrangian approach the initial
state of the domain of interest is regarded as the reference
state. In this analysis the same assumption was made,
hence the conservation and constitutive equations will be
expressed in terms of material coordinates.

This implies that when the Spatial and Material reference
frames are coincident the mapping that transforms ma-
terial into spatial coordinates at time t=0 is the identity
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mapping:

x̃ = φ (X,0) = I · X̃ = X̃ (50)

At any other instant of time, the motion is described by
x̃ = φ

(
X̃, t
)
. The displacement of a material point is

given by the difference between its current position and
its original position. This is expressed as:

u
(
X̃, t
)
= φ

(
X̃, t
)−φ

(
X̃,0

)
= φ

(
X̃, t
)−X̃ = x̃−X̃ (51)

An important variable in the description of body kine-
matics is the deformation gradient F. It is clear from the
definition above that the deformation gradient can also
be related to the displacements u in the following way:

F =
∂x̃

∂X̃
=

∂
(
u+ X̃

)
∂X̃

=
∂u

∂X̃
+ I (52)

Where: I is the second order isotropic tensor.

In a Total Lagrangian formalism, the conservation of
mass adopts the algebraic form given by Eq. (53) where:
The Jacobian J is the determinant of the deformation gra-
dient F.

J0ρ0 = Jρ (53)

In the special case where the material and the spatial ref-
erence frames are coincident at time t=0 the Jacobian
J0 = 1 and consequently conservation of mass equation
reduces to:

J−1ρ0 = ρ (54)

The Momentum Equation in the Total Lagrangian for-
malism is given by:

ü =
1
ρ0

∇0P+b (55)

Where: P is the nominal or the First Piola-Kirchhoff
stress and b are the body forces per unit mass.

Finally, the conservation of energy is given by:

ė =
1
ρ0

Ḟ : P (56)

Where ė is the rate of change of internal energy and Ḟis
the material velocity gradient.

To discretise Eq. (56) it is necessary to calculate Ḟ. This
can be achieved by discretising Eq. (52) as:

〈FI〉 = −∑
J∈S

(uJ −uI)⊗ ∇̃0W̃IJV0
J + I (57)

The velocity gradient used in Eq. (56) can be expressed
as:〈
ḞI
〉

= −∑
J∈S

(ṽJ − ṽI)⊗ ∇̃0W̃IJV0
J (58)

In Eqs.(57) and (58) the symbol ∇̃0 represents the cor-
rected approximation of the differential operator with re-
spect to the material coordinates and V0

J is the initial vol-
ume of particle J.

In order to calculate the stress rates using a rate form of
a constitutive relation, it is necessary to determine the
Green-Lagrange Strain Rate. Starting with the Green
strain tensor expressed in terms of the gradient of defor-
mation:

E =
1
2

(
FTF− I

)
(59)

And by taking the time derivative of Eq. (59) one gets
the Green-Lagrange strain rate tensor which can be cal-
culated using Eq. (57) and Eq. (58).

Ė =
1
2

(
ḞTF+FTḞ

)
(60)

To integrate the constitutive equation, the Green-
Lagrange strain rate tensor Eq. (60) is transformed into
the rate of deformation tensor through the following ex-
pression:

ε̇ = (F−T ĖF
−1) (61)

The stress is integrated incrementally in time:

σi j (t +dt) = σi j (t)+ σ̇i jdt

= σi j (t)+(σ∇
i j ++σikωk j +σ jkωki)dt (62)

Where: the dot denotes the material derivative, ωis the
spin tensor and σ∇

i j = Ci jklε̇kl is the Jaumann stress rate.

To integrate the conservation of momentum equation
Cauchy stress is transformed into Nominal stress using
the following transformation:

P =
(
JF−1σ

)
(63)

Eq. (63) is used to update accelerations in the conserva-
tion of momentum equation, Eq. (55).
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Figure 1 : Schematic for Problem 1

4.2 Normalised-corrected Total Lagrangian interpo-
lation.

In the Total Lagrangian formalism the neighbourhood of
particle I remains fixed throughout the simulation. The
interpolation correction used in this formalism is a direct
extension of the correction methods developed for the or-
dinary SPH equations presented above.

The smoothing function is given in terms of the material
coordinates X . Therefore the normalized kernel can be
expressed as follows:

W̃
(
X̃J − X̃I ,h

)
=

W
(
X̃J − X̃I ,h

)
∑

J∈S

mJ
ρJ

W
(

X̃J −
⇀

XI ,h
) (64)

Since the denominator of the above expression remains
constant, the derivative of the normalized kernel can be
evaluated as:

∇W̃IJ =
1
C

∇WIJ (65)

Where C = ∑
J∈S

mJ
ρJ

W
(
X̃I − X̃J,h

)
The expression for the gradient correction term is given
by:

B =

(
−∑

J∈S

mJ

ρJ

(
X̃J − X̃I

)⊗∇W̃

)−1

(66)

The gradient correction B operates over the gradient of
the smoothing function according to Eq. (48). Hence,
the final expression for the corrected gradient of defor-
mation, in a Total Lagrangian framework is:

〈FI〉 =

(
−∑

J∈S

(uJ −uI)⊗∇0W̃IJV0
J

)
B+ I (67)

The corrected momentum equation is:

〈aI〉 =

(
−∑

J∈S

(PJ −PI)⊗∇0W̃IJV0
J

)
: B (68)

and the corrected conservation of energy equation is ex-
presses as

〈ėI〉= PJ :

[(
−∑

J∈S

mJ

ρIρJ
(vJ −vI)⊗∇0W̃IJV0

J

)
B

]
(69)

The Total Lagrangian corrected equations are much sim-
pler for numerical implementation than their Eulerian
corrected SPH counterparts. Few examples are given in
the following section.
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Figure 2 : Kernel derivative estimates for particle X1

5 Numerical Examples.

5.1 Approximation of constant and linear velocity
fields

Consider the following set of discrete points in 1-D
and their associated value of velocity as shown in Tab.
2. We would like to evaluate the approximation of
the velocity gradient at every point using conventional
SPH, normalized-corrected SPH and Total Lagrangian

normalized-corrected SPH.

Results.

The advantages of the Total Lagrangian normalized cor-
rected code become evident in this simple example. Fig.
2, 3 and 4 show the uncorrected and corrected values of
the derivatives for two particles with incomplete support
(Particles 1 and 2) and a particle with complete support
(Particle 3). The resulting values for the velocity gradient
approximation can be found in Tab. 3 and 4 in Appendix
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Figure 3 : Kernel derivative estimates for particle X2

A.

Tab. 4 shows the approximation of a linear velocity field
using three SPH schemes and the effect of symmetrisa-
tion over the approximation. Ordinary SPH (Approxima-
tion C) is incapable of approximating the derivative nei-
ther with nor without symmetrisation in the interpolating

equation. The Total Lagrangian scheme (Approximation
B) can approximate the gradient only if the symmetrisa-
tion term is present in the equation whereas the scheme
suggested by Vignjevic, Campbell and Libersky (2000),
Bonet and Kulasegaram (2002) and Bonet, Kulasegaram,
Rodriguez-Paz and Profit (2004) (Approximation A) re-
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Figure 4 : Kernel derivative estimates for particle X3 to X6

Table 2 :

Linear Constant

X1 -0.04 0.002

X2 -0.06 0.002

X3 -0.08 0.002

X4 -0.1 0.002

X5 -0.12 0.002

X6 -0.14 0.002

Particle 

Number

Velocity Field

quires no symmetrisation for the approximation of the
derivatives.

Tab. 3 provides the results for the approximation of a
constant velocity field. All schemes can easily handle
this problem, they all work well when the symmetrisation
term is present and only one of them (Approximation A)
provides accurate results when the symmetry term gets
removed.

5.2 Simulation of Titanium and Aluminium plate im-
pact test .

The capabilities of the Total Lagrangian normalized-
corrected SPH are demonstrated on this 2-D example.

The materials under consideration are Aluminium as the
target plate and Titanium as the flyer plate.

The plates are modelled using the elastic-perfectly plas-
tic material model. The initial velocity of the flyer is
550.00ms−1. The material properties are as follows: Ti-
tanium; density4530.00Kgm−3, mass 0.0442Kg, Young

Figure 5 : Two plate impact sequence, Effective Plastic
strain shown.

modulus 1.16E05 MPa, Poisson ration 0.342, Alu-
minium; density2780.00Kgm−3, mass 0.112Kg, Young
modulus 0.743E05 MPa, Poisson ratio 0.342. The SPH
model is discretised in 5000 particles.

Results.

The results shown in Fig. 5 show the impact sequence
of the two plates and the resulting contours of effective
plastic strain. The type of contact algorithm used is de-
scribed in T. De Vuyst, R. Vignjevic, J. Campbell (2005).
The type of correction used in the SPH code is denoted
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Table 3 : Constant velocity field approximation.

Method A)

Mehotd B)

Method C)

Method A) Method B) Method C)

X2-X1 -2024.0987 -2122.5335 -1085.0600

X3-X1 -237.8687 -188.6016 -96.4500

X1-X1 2262.0091 0.0000 0.0000

X1-X2 1170.7575 1147.9624 1085.0600

X2-X2 56.8991 0.0000 0.0000

X3-X2 -1126.1052 -1147.9624 -1085.0600

X4-X2 -101.5514 -102.0376 -96.4500

X1-X3 94.3253 94.3321 96.4500

X2-X3 1061.8778 1061.8778 1085.0600

X3-X3 0.0000 0.0000 0.0000

X4-X3 -1061.8778 -1061.8778 -1085.0600

X5-X3 -94.3253 -94.3253 -96.4500

0.0000

0.0000

0.0000

0.0924

0.0041

0.0000

0.0473

0.0039

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Using Method 

C)

Approximation for Particle 1:

Approximation for Particle 2:

Approximation for Particle 3:

Using Method 

B)

Approximation for Particle 1:

Approximation for Particle 2:

Approximation for Particle 3:

Approximation of             with  symmetrisation terms:

Using Method 

A)

Approximation for Particle 1:

Approximation for Particle 2:

Approximation for Particle 3:

Using Method 

C)

Approximation for Particle 1:

Approximation for Particle 2:

Approximation for Particle 3:
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Approximation for Particle 1:

Approximation for Particle 2:
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i Particle

With 

respect to 
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Corrected  Derivative  Value

Particle 1
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Approximation for Particle 1:
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Table 4 : Linear velocity field approximation.

Method A)

Mehotd B)

Method C)

Method A) Method B) Method C)

X2-X1 -2024.0987 -2122.5335 -1085.0600

X3-X1 -237.8687 -188.6016 -96.4500

X1-X1 2262.0091 0.0000 0.0000

X1-X2 1170.7575 1147.9624 1085.0600

X2-X2 56.8991 0.0000 0.0000

X3-X2 -1126.1052 -1147.9624 -1085.0600

X4-X2 -101.5514 -102.0376 -96.4500

X1-X3 94.3253 94.3321 96.4500

X2-X3 1061.8778 1061.8778 1085.0600

X3-X3 0.0000 0.0000 0.0000

X4-X3 -1061.8778 -1061.8778 -1085.0600

X5-X3 -94.3253 -94.3253 -96.4500

-0.9999

-0.9999

-1.0004

-2.8488

-1.1224

-0.9999

-1.4564

-1.0610

-1.0224

-0.9999

-0.9999

-1.0004

-0.9999

-1.0000

-1.0004

-0.5112

-0.9452

-1.0224

With respect

to particle

Corrected  Derivative  Value

Using 

Method B)

i Particle

Particle 1

Particle 2

Particle 3

Approximation of             with no symmetrisation terms:

Approximation for Particle 1:

Approximation for Particle 2:
Using 

Method A)
Approximation for Particle 3:

Approximation for Particle 1:

Approximation for Particle 2:

Approximation for Particle 3:

Approximation for Particle 1:

Approximation for Particle 2:

Approximation of             with  symmetrisation terms:

Using 

Method C)
Approximation for Particle 3:

Using 

Method A)

Approximation for Particle 1:

Approximation for Particle 2:

Approximation for Particle 3:

Using 

Method B)

Approximation for Particle 1:

Approximation for Particle 2:

Approximation for Particle 3:
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Method C)

Approximation for Particle 1:

Approximation for Particle 2:

Approximation for Particle 3:
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by B) in Problem 1 since this scheme proved to be com-
putationally efficient and numerically accurate. The cor-
rected SPH equations employed for this simulation are
supplied in section 4.2 of this document.

5.3 Normal Impact.

This problem illustrates the normal impact of a prismatic
projectile on a square, 0.30 x 0.30 m Al7010T7651 plate,
with an 0.011 m thickness. The projectile velocity is
137.00 ms−1, 0.74 Kg weight and is characterised as lin-
ear elastic. The material model employed to simulate the
behaviour of the target plate is the Johnson Cook Model
with damage. The behaviour is described through the
Johnson-Cook model:

σyield = (A+Bεpn
)(1+C ln(ε̇∗)) [1− (T ∗)m] (70)

where A, B, C, n, and m are input constants and the
temperature T ∗ is the homologous temperature which is
raised to the power m in Eq. (70), this is given by:

T ∗ =
T −Troom

Tmelt −Troom
(71)

The Johnson-Cook model also includes damage parame-
ters that enable element or particle deletion at a specified
effective plastic strain

ε f = [D1 +D2 exp(D3σ∗)] [1+D4 ln(ε̇∗)] [1+D5T ∗]
(72)

where ε f is the strain at failure, D1 −−D5 are the failure
parameters and σ∗ is the ratio of pressure divided by the
effective stress:

σ∗ =
P
σ

(73)

where effective stress σis found from:

σ =

√
3
2

Si jSi j (74)

Fracture occurs when the damage parameter,

D = ∑ Δεp

ε f
(75)

reaches the value of 1.

Figure 6 : SPH discretisation and effective plastic strain
for normal plate impact

The Johnson-Cook model requires an equation of state
to be specified. Two equations of state have been con-
sidered in this paper. The linear polynomial equation of
state was used to characterise the behaviour of the tar-
get plate. The polynomial equation of state is given as
follows:

P = C0 +C1µ+C2µ2 +C3µ3 ++
(
C4 +C5µ+C6µ2)E

(76)

where E is the internal energy, C0 −−C6 are coefficients
with C1 being the bulk modulus, and the excess compres-
sion µ is:

µ =
ρ
ρ0

−1 (77)

with ρ0 as the initial material density.

Results.

Fig. 6 shows the results of the simulation using the To-
tal Lagrangian SPH code. The plots presented in Fig. 7
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Figure 7 : LS-DYNA vs Total Lagrangian SPH results for normal impact.

show how the SPH and FE results compare. The SPH
results are remarkably similar to the FE results, but dis-
crepancies were observed for the total deflection of the
plate in the direction of impact. This can be easily ex-
plained due to the fact that only four SPH particles were
defined through the plate thickness. The more refined
LS-DYNA model employs a finer discretisation through
the plate thickness (10 solid elements). Nevertheless,
the maximum error observed in the value of deflection
is about 18% and the source of error can be attributed
to a coarser SPH discretisation which can be straightfor-
wardly corrected.

5.4 Spall fracture simulation of OFHC Copper using
total Lagrangian SPH and Johnson-Cook with
damage.

In this example, spall fracture was simulated using a 3-D
arrangement of 9375 SPH particles as shown in Fig. 8.
Symmetry planes were imposed to ensure a one dimen-
sional state of strain across the plate thickness. The thick-
ness ratio between flyer and target plates is 1:2 which al-
lows us to easily verify the location of spall within the
target plate when fracture occurs.

Two cases were simulated. In the first case, the flyer plate
impacts the target with a 290.00ms−1 velocity. In the
second case, the flyer travels at 305.00ms−1 . A particle-
to-particle contact algorithm was used to simulate the in-
teraction of the two plates and details can be found in
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Figure 8 : Spall fracture simulation: A)SPH discretisa-
tion, B) Finite Element discretisation.

Figure 9 : Two plate impact scenarios in SPH: A) Spal-
lation occurs, impact velocity 305.00ms−1. B) No spal-
lation occurs, impact velocity 290.00ms−1

Figure 10 : Two plate impact scenarios in FE: A) Spal-
lation occurs, impact velocity 305.00ms−1. B) No spal-
lation occurs, impact velocity 290.00ms−1.

De Vuyst, Vignjevic and Campbell (2005). The Johnson-
Cook model together with the Gruneisen equation of
state, was used to characterize the two copper plates. The
Gruneisen equation of state with cubic shock velocity-
particle velocity defines pressure for a compressed mate-
rial as:

P =
ρ0C2

0µ
[
1+
(
1− γ0

2

)
µ− a

2µ2
]

[
1− (S1 −1)µ−S2

µ2

µ+1 −S3
µ3

(µ+1)2

]2

+(γ0 +aµ)E (78)

where C0 is the is the intercept of the us −up curve S1,S2

and S3 are the coefficients of the slopes of the us − up

curve, γ0is the Gruneisen gamma, and a is the first or-
der volume correction to γ0, µ as defined in the previous
example.

For expanded materials the pressure is defined as:

P = ρ0C2
0µ+(γ0 +aµ)E (79)

The damage parameters Di required by the Johnson-
Cook with damage model were obtained from V.
Ikkurthi, S. Chaturvedi (2004) and are as follows: D1 =
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Figure 11 : Target plate back surface velocity plot. Simulations show Total Lagrangian SPH vs Finite Element
results.

0.54, D2 = 4.89, D3 = −3.03, D4 = 0.014, and we set
D5 = 0.0

The value of the constants required were obtained from
D. Steinberg (1996) for OFHC Copper:A = 90.00MPa,
B = 292.00MPa, C = 0.025, n = 0.31, m = 1.09. The

values for the shear modulus G,the density ρ and the
value for the specific heat cv were also obtained from
D. Steinberg (1996): 47.70GPa, 8960.00 Kgm−3 and
383.00J Kg−1 K−1respectively.

The Gruneisen equation of state constants were obtained
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from D. Steinberg (1996) for OFHC Copper: Co =
3940.00ms−1, S1 = 1.489, S2 = 0.0, S3 = 0.0, γ0 = 2.02
and b = 0.47.

Results.

The results of this simulation are presented in Fig. 9, 10
and 11. Two possible outcomes of the SPH simulation
are presented in Fig. 9, where the formation of a spall
layer within the domain is dependant upon the impact
velocity of the flyer. The localization of the spall layer
can be verified by simple inspection. Since the thickness
ratio between the flyer and the target plate is 1:2, it is
expected that fracture within the target will occur where
reflected rarefaction waves produce a state of high ten-
sion (i.e. halfway through the target plate). The SPH
simulations demonstrate that even in zones of high ten-
sile stresses, numerical fracture is avoided by the superior
stability qualities of the Total Lagrangian scheme (Refer
to Fig. 9, B). Consequently, only real fracture is visual-
ized in the specimen (Fig. 9, A). Fig. 10 replicates the
same scenarios with conventional FE. The localization of
the spall fracture is equivalent to that in SPH. The result-
ing target plate back surface velocity is presented in Fig.
11. The correlation between SPH and FE results is re-
markable during both, spall (velocity =305 ms−1) and no
spall (velocity=290 ms−1) scenarios.

6 Conclusions

The effectiveness of the total Lagrangian SPH approach
and the normalization and correction terms introduced
was demonstrated in the examples presented here. The
results suggest that this technique is just as accurate
as its ordinary SPH counterpart when symmetrisation
terms are considered in the discretised equations. A full
derivation of the mixed interpolation correction based on
Noether’s theorem was presented. This correction en-
sures that homogeneity and isotropy of space are pre-
served in the process of spatial discretisation. Conse-
quently, conservation of linear and angular momentum is
ensured. The corrections introduced render the method
1st order consistent and the normalization of the smooth-
ing function ensures the particle deficiency problem at
the boundaries gets corrected. A clear advantage of the
Normalised-Corrected Total Lagrangian SPH method be-
comes evident when this technique is introduced in a
numerical code since this approach is much easier for
implementation and computationally less expensive than
the ordinary normalized-corrected technique.
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