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Meshless Local Petrov-Galerkin (MLPG) Mixed Finite Difference Method for
Solid Mechanics

S. N. Atluri', H. T. Liu?, and Z. D. Han?

Abstract: The Finite Difference Method (FDM),
within the framework of the Meshless Local Petrov-
Galerkin (MLPG) approach, is proposed in this paper
for solving solid mechanics problems. A “mixed” in-
terpolation scheme is adopted in the present implemen-
tation: the displacements, displacement gradients, and
stresses are interpolated independently using identical
MLS shape functions. The system of algebraic equations
for the problem is obtained by enforcing the momentum
balance laws at the nodal points. The divergence of the
stress tensor is established through the generalized finite
difference method, using the scattered nodal values and a
truncated Taylor expansion. The traction boundary con-
ditions are imposed in the stress equations directly, us-
ing a local coordinate system. Numerical examples show
that the proposed MLPG mixed finite difference method
is both accurate and efficient, and stable.

keyword: Meshless method, Finite difference method,
MLPG

1 Introduction

The meshless method, as indicted by its name, is a com-
putational method, which does not require a mesh dis-
cretization of the domain of the problem. As com-
pared to its mesh-based counterpart, viz., the finite ele-
ment method, the meshless method has its inherent ad-
vantages, due to the elimination of elements and there-
fore, element-related limitations, such as the element-
dependent phenomena in crack propagation, the inability
in dealing with severe element distortions, and the cost
of producing high-quality meshes for complex structures.
The meshless method has been accepted by researchers
and engineers as a successful alternative to the finite el-
ement method for some classes of problems, such as the
crack propagation problems. Tremendous efforts have
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been put into the research and practice of the meshless
approaches, such as the smooth particle hydrodynam-
ics (SPH) and the element free Galerkin method (EFG).
However, these approaches require certain meshes or
background cells for the purpose of integration of the
weak form, and therefore are not truly meshless methods.
Recently, Atluri and Zhu [Atluri and Zhu (1998); Atluri
(2004)] proposed the Meshless Local Petrov-Galerkin
(MLPG) approach, in which both the trial functions and
the test functions are constructed on local subdomains,
and no background integration cells are required. There-
fore, the MLPG method is a truly meshless method for
solving the general problems defined by Partial Differen-
tial Equations (PDEs). A general review and discussion
on the meshless method in general, and the MLPG ap-
proach in particular, can be found in the monograph by
Atluri (2004).

The MLPG method provides the flexibility in the choice
of the test and trial functions, and therefore makes it pos-
sible to construct various meshless implementations, by
combining different trial and test functions. For example,
in Han and Atluri (2004), a series of MLPG approaches
is constructed for solving elasto-static problems. They
adopted the Moving Least Squares (MLS) as well as
the augmented Radial Basis Functions (RBF) as the trial
functions; and the Heaviside function, Dirac delta func-
tion and the Kelvin fundamental elasticity solutions were
alternatively adopted as the test functions.

Generally speaking, the meshless method is intrinsi-
cally more expensive than the traditional element-based
method such as the finite element method, due to the
fact that the meshless interpolation usually involves more
nodes and has more complex shape functions. This com-
plexity, and the attendant high computational expense,
prevent the meshless method from fully fulfilling its po-
tential. In a series of efforts to simplify and speed up the
meshless implementation, Atluri et al. (2004) proposed
the so-called MLPG “mixed” finite volume method, in
which both the displacements and the displacement-
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gradients are interpolated using the identical shape func-
tions, independently. As a result, the continuity re-
quirement on the trial functions is reduced by one or-
der, and the complex second derivatives of the shape
function are avoided. In addition, the Heaviside func-
tion is adopted as the test function and the domain in-
tegration in the local weak form is eliminated. High-
performance implementations of the MLPG mixed fi-
nite volume method (MFVM) were reported for elasto-
static problems [Atluri, Han, Rajendran (2004), Han,
Atluri (2004a)], elasto-dynamic problems [Han, Atluri
(2004b)], nonlinear problems [Han, Rajendran, Atluri
(2005)], and dynamic problems with large deformation
and rotation [Han et al. (2006); Liu et al. (2006a)].

In an effort to further improve the efficiency of the MLPG
implementation, Atluri et al. (2006b) proposed a MLPG
“mixed” collocation method, in which the Dirac delta
function is adopted as the test function, and therefore the
system of equations is established at nodal points only.
In the collocation implementation, the traction bound-
ary conditions are imposed by a penalty method, and the
displacement boundary conditions are applied directly
to the system of equations by the standard collocation
approach. The MLPG mixed collocation method has
achieved a great success, since it results in a stable con-
vergence rate, while being much more efficient than the
MLPG finite volume method.

In this paper, we explore the implementation of the
MLPG finite difference method for solid mechanics
problems. The idea of using the finite difference method
in approximating the derivatives of a function, and in
solving elasticity problems, can be traced to the early
work of Jensen (1972) and Perrone and Kao (1975). In
their implementation, the truncated Taylor series was
adopted to form the finite difference operator on arbi-
trary grids. Liszka and co-workers (1996) developed a
new version of the finite difference method, called hp-
Meshless cloud method, using the MLS to fit the trun-
cated Taylor series on a set of nodal values. In their im-
plementations, the finite difference equations were con-
structed directly from the neighboring nodal values and
therefore a strong node- distribution dependence was
observed. In addition, the system of equations at the
traction-boundary nodes was established directly from
the boundary equations; and these were not compatible
with the in-domain nodal equations formed by the linear
force balance law. In the present MLPG mixed finite dif-
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ference method, we define a shrink factor, and the sam-
pling points are shifted from the nodal points. The sys-
tem of equations is constructed by using the same linear
force balance law for both the in-domain as well as the
boundary nodes, and thus the incompatibility is removed.
To increase the stability, and reduce the smoothness re-
quirement on the shape functions, the “mixed” interpola-
tion scheme is adopted: the displacements, displacement
gradients, and stresses are interpolated independently us-
ing identical MLS shape functions. The traction bound-
ary conditions are imposed on the stress equations di-
rectly.

2 Formulations

In this section, we formulate an MLPG mixed finite dif-
ference method for solving linear solid mechanics prob-
lems.

2.1 Meshless Interpolation

Among the available meshless approximation schemes,
the moving least squares (MLS) is generally considered
to be one of the best methods to interpolate random data
with a reasonable accuracy, because of its completeness,
robustness and continuity. The MLS is adopted in the
current MLPG finite difference method; while the im-
plementation of other meshless interpolation schemes is
straightforward within the present framework. For com-
pleteness, the MLS approximation is briefly reviewed
here, and a more detailed discussion on the MLS can be
found in Atluri (2004).

With the MLS interpolation, a function u(x) can be
approximated over a number of scattered local points
(nodes) {x;}, I =1,2,...,m) as

ey

where p’(x) is a monomial basis, and a(x) is an
undetermined-coefficient vector. The linear monomial
basis can be expressed as p’(x) = [1,x;,x]for two-
dimensional problems and p’ (x) = [l,xl,xz,ngor three
dimensional problems, respectively. The coefficient-
vector a(x) is determined by minimizing the weighted
discrete L, norm, defined as

— '
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where wy(x) are the weight functions and i’ are the fic-
titious nodal values, respectively. A fourth order spline
weight function is used in the present study. Once the
coefficient vector a(x) is determined and substituted into
Eq. (1), the function u(x) can be approximated by these
nodal values as

ux) = 3 (i 3)
J=1

where 4/ is the virtual nodal value at node J, and ¥/ (x) is
the shape function. It is well known that the MLS shape
function does not have the Dirac Delta property. How-
ever, the trial functions can be expressed in term of the
true nodal values with the use of mapping relationship
between the virtual and true nodal values, as [Atluri, Kim
and Cho (1999)]

u(x) = i @’ (x)u’ “)
=1

2.2 Mixed Approach

For a linear elastic body €2 undergoing infinitesimal de-
formations, the equations of balance of linear and angular
momentum can be written as

0

ij.j T Ji ij jiv O, ox;
Here and in the following parts of the paper, the tensor
notation is adopted, and a repeated index implies sum-

mation. The boundary conditions are given as

u;=u;onl,

lj=0jjn; =t;onI, (6)
In the above equations, f; is the body force; %; and ;
are the prescribed displacements and tractions on the dis-
placement boundary I';, and the traction boundary I, re-
spectively. n; is the outward unit normal to the boundary
I'. In the present study, the isotropic linear elastic consti-
tutive relation is assumed, namely the stress tensor o;; is
linearly related to the strain tensor €;; as

(N

1
0;j = Cijueu = Cijkl[i(”i,j +uj;)]

where C;jy, is the elasticity tensor, which has the property
of Cijki = Cjiki-

In the traditional implementation, the meshless approxi-
mation in Eq. (4) can be used to interpolate the displace-
ments in Eq. (7). Thereafter, the stresses and strains are
determined from a direct-differentiation of the displace-
ments in the whole solution domain. Such differentiation
operations are required in forming the system equations
whenever the derivatives are involved in integrals. It has
been well accepted in most element-based methods, in
which the simple shape functions are defined based on
the element shape. However, this implementation is not
efficient in the meshless methods, because i) the mesh-
less approximation is not efficient in calculating such
derivatives everywhere in the domain, especially when
the MLS approximation is used; ii) the requirement of
the completeness and continuity of the shape functions is
one-order higher for smoother derivatives.

In the present study, the mixed approach is used for the
derivatives [Atluri (2004)]. First, Eq. (4) can be used to
interpolate displacements, as the shape function is used
for the nodal displacement variables in the traditional im-
plementation, as

®)

In addition, the same shape function is also used for the
displacement gradients, as

ui’j(X) = Z CI)K(X)ufj (9)
K=1

or for the stresses

oij(x) = Y, ®*(x)c}; (10

where uf, uf; and cf; are the nodal values of displace-
ments, displacement gradients and stresses at the point
xK, respectively, which can be treated as an independent
set of variables. Without losing generality, by differenti-
ating the displacements in Eq. (8) with respect to x; at
each nodal point xX, we obtain:

ou; Lol (xK) ) &
Kk _ Ui g _ KJ T
U =-—x")=) ——u = ) R;u; (11
Thus, Eq. (9) can be written as:
uij(x) = Y, X O ()R} uj (12)

K=1J=1
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Like wise, we may define from Eqgs. (7), (10), and (11):

m n
Gl] ZZ l]qu)K RKJ (13)

where, by definition, the transformation matrix R is con-
stant and banded, and can be applied to the strains and
stresses. Thus, the nodal displacement gradient variables
as well as stresses are expressed in terms of the nodal dis-
placement variables. The number of system equations is
then kept as the same number as the nodal-displacement
variables, after the transformation. In addition, such a
transformation is performed locally, and the system ma-
trix retains its bandedness. For numerical implementa-
tion, it is not necessary to calculate and store the matrix
R explicitly.

With the use of the mixed approach, the derivatives of the
displacements as well as other secondary field variables
keep the same order of the completeness and smoothness
as the primary variable. Only lower-order polynomial
terms are required in the meshless approximations, and
a smaller nodal influence size can be chosen, to speed
up the calculation of the shape functions. Any addi-
tional differentiation operations are avoided when per-
forming the integrals to form the system equations. It
improves the efficiency of the meshless methods dramat-
ically, which is demonstrated by solving same typical ex-
amples.

In summary, the mixed MLPG method allows for a sim-
ple way to relate the displacement-gradients as well as
the stresses to the nodal displacements, without differen-
tiate displacement field everywhere.

2.3 Finite Difference Operator

Now, we present an alternate approach, based on general-
ized finite-difference method, for determining the gradi-
ents of the displacements at arbitrarily distributed nodes
in a meshless approximation, from the values of the dis-
placement at these same nodes.

From the MLS interpolation, for a node /,there exit sev-
eral neighbor-nodes which influence the values of an in-
terpolated variables at node /, as shown in Figure 1.
For a neighbor node J, h// = x’ — x/, represents the
distance-vector between nodes J and I. A shrink factor y
¢(0 < ¢ < 1) is defined here, to locate a sampling point
between the node J and [/ (the squares in Figure 1). We

expand the displacement vector in the vicinity of node /,
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h./]

Figure 1 : The finite difference scheme: the circles rep-
resent the neighbor nodes of / and the squares denote the
sampling points for the finite difference scheme.

as:

j—a)ul;+0 ([x=x|?) (14)

Here, u! = u'x') and u! i= uf_ jX') are the nodal values

of the displacements, and their gradients at node /, re-
spectively. Therefore, the error between the linear Taylor
expansion, and the displacement-gradient at the sampling
points J, can be expressed as

err! = uf —I—C_,hjluf,j —u;(x! +¢h’) (15)

By considering all the sampling points around node /, the
weighted discrete L, error norm is defined as:

[uf—l—c_,hj’uf’j—ui(XI—I—gh”)]z (16)

m
= Z wy(x)
J=1

Here, w;(x) are the weight functions, which are chosen
to be the same as the weight functions in the MLS. By
minimizing the weighted discrete L, norm in Eq. (16),
the displacement gradients at node / can be calculated
as:

Z

= 3 Hfulx' o) -

[ X —|—th1) 1}

Hul (17)
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Here, H; = 3 H’ and H— (ATWA) ™' A7W with
J=1
h” w1 0 0
A=c| : andW= | . o (18)
h™! 0 0 wy

It should be mentioned that the dimension of matrix A
is decided by the number of the neighbor nodes of node
1. Based on the requirement of MLS, we have more in-
dependent neighbor nodes for a linear or higher order
monomial basis. Therefore, the system represented in
Eq. (17) is usually an overdetermined system and thus
the inverse of the matrix A exists.

With the meshless interpolation for the displacements,
we evaluate u;(x! 4+ ch’') from Eq. (8) as:

n
= 3 e ot
K=1

ui(x' +ch’) (19)

Thus the displacement gradients at node / in Eq. (17) can
be expressed as

n
ZH./(DK X +ghl1)
K=1

Hu

M=

<
Il
_

Mz

G)ju H]u (20)

J

—_

in which, some more neighbor nodes may be introduced
because u;(x' +ch’’) in Eq. (17) may have different
neighbor nodes other than those of the node /. The co-
efficient matrixes G); and H ; are constant and banded lo-
cally. Thus the direct differentiation operation @’;(x*)
in Eq. (11) can be replaced by the operator developed in
Eq. (20), through the meshless interpolation.

It should be pointed out that the differential operator de-
fined in Eq. (20) is very general, and not limited to the
differentiation of the displacements. In conjunction with
the mixed approach, this operation can be used to cal-
culate any higher-order independent variables, instead of
differentiating the shape functions directly. From the nu-
merical point of view, such constant matrixes speed up
the efficiency of the algorithm when more differential op-
erations are involved in the PDEs, such as the Nervier-
Stokes Equations for the fluid mechanics. Thereafter,
the present differential operator be applied for any or-
der of differential operations for higher-order PDEs, in
conjunction with the present mixed approach, in a very
straight-forward manner.

3 MLPG Methods Based on FD Operator

3.1 MLPG Mixed Finite Difference Method

It is well-known that the MLPG approach is a general
framework to formulate various meshless methods for
solving various partial differential equations (PDEs). It
employs the various test functions within the various lo-
cal sub-domains. The advantages of the MLPG approach
include the lack of any restriction on the choices of the
test functions and the local sub-domains. Thereafter, var-
ious MLPG methods have been developed and applied to
solve different physical problems. A complete summary
has been presented in Atluri (2004). In the present study,
a general finite difference method is employed to evalu-
ate the divergence of the stress tensor.

With the independent mixed interpolation for the
stresses, we can express the derivatives of the stress ten-
sor at node / in Eq. (17) using the neighboring nodal
values as

M
Gll'j-,k = Z G)icl/]
J=1

2D

The constant coefficient matrixes G); and H ; are the same
as those developed for the displacement gradients in Eq.
(20). To establish the system of equations for the elas-
ticity problem, we may enforce the balance of linear mo-
mentum at each node, by evaluating the divergence of the
stress tensor. This can be expressed as

M
[ __ J [ __ 0.
Gijj i = ZGJG{] Hjoj | +f; =0;
forl:l,z,...,N (22)

where N is the number of total nodes in the solution do-
main. The above equation can be rewritten in the matrix
form as

K .S—-H -S'=f; forI=1,2,..N (23)
Here, ffg is the body force vector at node /; S is the nodal
stress component vector and S’ is the stress component

vector of node /.

With the constitutive relationship in Eq. (7) and the trans-
formation matrix in Eq. (11) or Eq. (20), we can rewrite
the system equations for the nodal displacements as

K-u=f (24)
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With the present finite difference method, the PDEs can
be solved locally without explicit local sub-domains. It
has been simplified by sharing the same information
about the neighbor nodes that was used for the mesh-
less interpolation. This method also completely avoids
any direct differentiation of the shape functions. It gives
more freedom in choosing the proper meshless interpo-
lation methods.

3.2 Boundary Conditions

For the node on the traction boundary, the stress com-
ponents should satisfy the traction boundary conditions

forK=1,2,....,N; (25)
with Nj is the number of the traction boundary nodes,
and nX is the outward normal at the boundary node K.
The above equation can be rewritten in term of the stress
component vector, as

ME.SK =%, fork=1,2,...,N, (26)
where MX is the general coupling matrix between the
stress components, representing the traction boundary
conditions.

v

Figure 2 : The local coordinates system.

If the normal n¥ is parallel to the global coordinates, MX
is a diagonal unit matrix. For the nodes with the normal
not being parallel to the global coordinates, a local co-
ordinate system can be defined, by taking the local x’ f
direction coinciding with the outward normal direction
nX, as shown in Figure 2. Eq. (26) can be rewritten in
the local coordinate system as

ME .8 =t fork=1,2,....N, (27)
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where

K= QK.sK; M'* =MK. (QX)~land QX is the local
transformation matrix between the local and global co-
ordinates. With the use of the local coordinate system,
the general coupling matrix M’ K becomes diagonal and
therefore, the stress components, in terms of S’ K canbe
solved from the boundary conditions in Eq. (27). Here,
we can represent the known stress degrees of freedom
(DOFs) at node K as S f — t* and the other unknown
stress DOFs as S'% .

With the coordinate transformation, the second term of
the system equation in Eq. (22) established on the trac-
tion boundary node K can be expressed as

H sK=H" (QX) ! s
—K _ _
=H -[(Q);"-87 +(Q¥);"-87]
=0 Q)T +H - (Q1); Qs
SR : G (28)
where QF, QX and (QX) !, (QX), ! are the sub-matrixes

of QX and its inverse (QX)~! corresponding to the stress
DOFs of 'X and 8’5, respectively.

Substituting Eq. (28) back to the system equation in Eq.
(22), we have

—K
KC.S—H" -SK =£f +-£F (29)
in which the traction boundary conditions have been im-
posed. It can be also transformed to the displacement-
based system equations, as in Eq. (24). Therefore, it is

solvable with properly proposed displacement boundary
conditions [Han and Atluri (20044a)].

3.3 Comparison between the MLPG Mixed Methods

There are three MLPG mixed methods developed under
the MLPG approach: i) MLPG Mixed Finite Volume
Method; ii) MLPG Mixed Collocation Method, and iii)
MLPG Mixed Finite Difference Method. They all use the
mixed approach to interpolate the variables of different
orders independently, through the MLS approximation.
The mixed approach requires only a first-order polyno-
mial basis in the MLS approximations of both strains as
well as displacements. A smaller support size can be
used in the present MLPG mixed method, and the num-
ber of nodes is reduced dramatically, especially for 3D
cases. The local integrals in the present method contain
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Table 1 : Comparison between the MLPG mixed methods

A: Meshless interpolation of the displacements

ipg”"q “p°

n
K K.
o; = E C. RMu’
J=1

m
MLS _ K K . K _ K
Approximation u,(x) = ;CD (X)u;, VxeQ; u; =u,(x) Al
B: Determine the displacement-gradients and stresses
g K K
u, (x) =Y ®F ;(u, VxeQ Bl
K=l
Primal Approach m P P
(direct o, (x)= ZCZ.MCD g(Xu, , VxeQ B2
differentiation) K=l
N K K
o, (X)= ZCMCD g(Xu, , VxeQ B3
K=l
N 7 K K
u, ;(x)= Z(D Xu;;, VxeQ
K=l
B4
K K ou, . x . K
where u; , =u, (X" )=—-(X"), atthe nodal point X
’ ’ Ox;
Mixed Approach _ g K K
(All derivatives 0y (x) = Zq) (X)o; . Vx e
. K=l B5
are interpolated
: K _ Ky _ K [ K . K
independently) where o, =0, (x")=C,, u, (X), atthe nodal point X
g K K
0, (X)= ZCD (X)o;,, VxeQ
K=l
B6
K K Oy «x . K
where 0, =0, (X" ) =——(X"), at the nodal point X
X
m
Combinationof | 0, (X) =Y ®*i(x)o, , VxeQ
Primal & Mixed K=1 B7
A h . .
bproaches where O-i;( is defined in Eq. B5
C: Evaluate the nodal derivative values at the nodal points for the mixed approach
n J oK n
Direct K _ o’ (x") _ K. J . K
differentiation | i~ ZT“ =2 Ru; . atthe nodal point x Cl
J=1 j J=1
at the nodal point xX C2
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n

n aq)J(XK)
K J KI __J L K
ik = Z—O-ij => R, o , atthe nodal point X C3
J=1 axk J=1
M
ulKJ = Z®fulj —HjuiK, at the nodal point X~ Cc4
J=l
M
Finite-difference K _ K. J 17 .K . K
operator o; =Cy, (JZ:‘@(] u, —H u, ), atthe nodal point X C5
M
K K _J 7 K UK
Ok =2®k o; —H,o; , atthe nodal point X C6
J=l

D: MLPG approach for satisfying equilibrium equations

L (0., + f1)v,dQ =0, un-symmetric local weak-form

Method

D1
Local weak Form | where V, is the test function, € is the local sub-domain.
L}v tv,dl — L (o;v,; — Jiv,)dQ = 0, symmetric local weak-form D2
E: Various MLPG methods
Heaviside test function (v, =1);
MLPG Mixed )
Finite Volume symmetric local weak-form (Eq. D2); El
Method Mixed approach for the stresses (Eq. B5)
Direct differentiation of the displacements for the stresses (Eq. C2)
Dirac delta test function (v, = 5(x — x*));
MLPG Mixed un-symmetric local weak-form (Eq. D1);
EAOIE}?CSUOH Mixed approach for the stresses (Eq. B5) E2
ctho Direct differentiation of the displacements for the stresses (Eq. C2)
Direct differentiation of the stresses for their divergence (Eq. C3)
Dirac delta test function (v, = 5(x — x*));
MLPG Mixed un-symmetric local weak-form (Eq. D1);
Finite Difference | \fixed approach for the stresses (Eq. BS) E3

Direct differentiation of the displacements for the stresses (Eq. C2)
Finite-difference operator of the stresses for their divergence (Eq. C6)

only the strains, without involving the derivatives of the
displacement explicitly. Thus, all the mixed methods are
more suitable for non-linear problems with large defor-
mations, due to their simplicity and efficiency. However,
three methods are different from each other in several
aspects, including the local sub-domains, local weak-

forms, trial and test functions, and differential operators.
They demonstrate the flexibility of the MLPG approach,
as a general framework, in developing various meshless
methods. A brief summary is presented in Table 1 and a
flowchart in Fig. 3.
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A: Meshless interpolation of the displacements
A A
B: Primal approach: Mixed Approach:
Direct differentiation of Independent approximation for displacement-
displacement-gradients gradients and stresses
and stresses
C: Direct differentiation Finite difference
of the displacements operator for
for evaluating their evaluating their
gradients and stresses gradients and stresses
at the nodal points at the nodal points
D: MLPG various local weak-forms
E: Various test functions

!

Various MLPG Methods

Figure 3 : Flowchart for developing various MLPG methods

A fa) A A

Figure 4 : The patch test: a rectangle under uniform ten-
sion. The two nodal configurations

4 Numerical Examples

In this section, several 2D numerical examples, as solved
by the proposed meshless finite difference method, are
presented. The examples include: 1) the patch test,
2) cantilever beam under transverse loading, 3) curved
beam bent by a force at the end, and 4) infinite plate with
a circular hole under uniaxial load.

4.1 The Patch Test

P

| A8
!

2 %
i1

Figure 5 : A cantilever beam under a transverse load at
the end

I

The standard patch test: a rectangular plate under uni-
form tension load (see Fig. 4) is solved as the first exam-
ple. The material parameters are as follows: the Young’s
modulus £ = 1.0, and the Poisson’s ratio v = 0.25. Plane
stress condition is assumed for the 2D problem and 9
nodes are used. Two nodal configurations are used for the
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patch: one is regular and another is irregular, as shown in
Fig. 4. The proper displacement constraints are applied
to the bottom edge.

The simulation results show a linear displacement along
the lateral edges, and constant displacement along the top
edge; the normal stress in the loading direction is con-
stant and there is no shear stress in the solution domain.

4.2 Cantilever Beam

In the second example, we solve a cantilever beam under
a transverse load at the tip, as shown in Fig. 5. For this
problem, the exact displacement solution for plane stress
is given in Timoshenko and Goodier (1970) as

Uy = —% [3x(2L—x)+ (2+v) (" = ?)]
Uy = % [x* (BL—x) +3v(L—x)y* + (4 +5v) *x]

(30)

where the moment of inertia I = ¢* /3.

The problem is solved using the meshless finite differ-
ence method under a plane stress condition, with the fol-
lowing constants: P=1, E =1, ¢ =2, L =24, and
v = 0.25. Regular uniform nodal configurations with
nodal distances, d, of 2.0, 1.0, 0.5, and 0.33 are used. The
corresponding numbers of nodes are 39, 125, 441, and
949, respectively. The nodal configuration for d = 1.0 is
shown in Fig. 6.

This problem is simulated using the MLS, with a first or-
der monomial basis. The support size is chosen as 1.15d
and the shrink factor ¢ = 0.3. Fig. 6 shows the normal-
ized vertical displacement at the center of the beam for
the nodal configuration with d = 1.0. The simulation pre-
diction agrees with the analytical solution very well.

le

Figure 6 : The nodal configuration of the cantilever beam
for d=1.0
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The shrink factor ¢ plays an important role in the fi-
nite difference scheme. When ¢ = 1.0, the derivatives
of stress are obtained by the finite difference method
directly from the neighbor nodal values; while a small
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Figure 7 : The normalized vertical displacement of the
cantilever beam under the end load

shrink factor confines the finite difference to a close re-
gion around the point of interest. In the current study, five
shrink factors, ¢ =0.1, 0.2, 0.3, 0.5, and 1.0 are used to
investigate the shrink factor’s effect. The relative vertical
displacement error defined as follows, is used to repre-
sent the accuracy of the simulation in the following parts
for this example.

1 & Vi—vi>2
€= - —
\/ng( Vi

Here, v; and V; are the analytical and calculated verti-
cal displacement component along the center line of the
beam, respectively, and n is the total number of nodes
involved. The relative displacement errors for the vari-
ous shrink factors are shown for two nodal configurations
(d =1.0 and 0.5) in Fig. 8, and it is seen that a moderate
shrink factor leads to better results.

3D

The support size (the size of the influence domain) is an-
other important parameter in meshless approaches. It is
related to both the accuracy of the solution, as well as
the computational efficiency. On one hand, too small a
support size will cause the meshless approximation algo-
rithms singular, since not enough neighbor nodes are in-
cluded. On the other hand, too large a support size leads
to the loss of interpolation locality. In the current study,
circular support domains are adopted for the 2D prob-
lems, with the radius being defined as the support size.
Four support sizes are chosen for the cantilever beam
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Figure 8 : The influence of the shrink factor in the can-
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problem, and they are defined to be proportional to the , — P [sine (D(l —v)logr+A(1—3v) 4 M)
E

nodal distance, as 1.15, 1.3, 1.5, and 1.8, respectively.
Two nodal configurations are used (d =1.0 and 0.5) and
the shrink factor is chosen as 0.3 for the current simu-
lations. Fig. 9 shows that accurate results are obtained
for small support sizes. This observation is encouraging,
since a smaller support size makes the present method
even more efficient, by speeding up the MLS approxima-
tion and reducing the bandwidth of the stiffness matrix.

The convergence rate is studied with four nodal configu-
rations (d =2.0, 1.0, 0.5, and 0.33). The shrink factor is
chosen as 0.3 and the support size is 1.15d. The relative

P
o =, [—cose (—D(l —v)logr+A(5+v)r* +

T T T T T T T
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Figure 10 : The convergence rate in the cantilever beam
under the end load

displacement errors of the vertical displacement are used
for showing the convergence rate in Fig. 10. The results
clearly show that a stable convergence is obtained for the
present meshless finite difference method.

4.3 Curved Beam

In this example, the problem of a curved beam under an
end load is used to evaluate the present method. The
problem is shown in Fig. 11, for which the following
exact displacement solution for plane stress is given in
Timoshenko and Goodier (1970):

2

—2DBcosB+ K sin®+ Lcos 6 |

B(1+v)
2
+2D0sin6 + K cos® + Lsin0 |

(32)
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Figure 11 : A curved beam under a end load

with the constants are given as

N:az—bz—l—(az—l—bz)logg

s Lp_ @b
2N 2N
)
By
2N
B(1
K_—(D(l—v)logro—l—A(l—3v)r(2)+7( ;I—v))
.
0
a+b
ro =
L)
(33)

The problem is solved for the plane stress condition, with
P=1,E=1,a=13,b=17, and v=0.25. Regular uni-
form nodal configurations with nodal distance, d, of 2.0,
1.0, 0.5 and 0.33 are used. The corresponding numbers
of the nodes are 39, 125, 441, and 949. The nodal con-
figuration of d = 1.0 is shown in Fig. 12.

For the curved beam, the displacement and stress fields
are more complicated than those in a straight beam, with
many non-polynomial terms. However, the simulation
using the MLS with the first order monomial basis is still
accurate. The horizontal and vertical displacements for
the nodal configuration with d = 0.5 are shown in Fig.
13 and good agreement with the analytical solutions is
obtained.

Here and in the following parts for the curved beam prob-
lem, the relative displacement error is defined through

CMES, vol.15, no.1, pp.1-16, 2006

Figure 12 : The nodal configuration of the curved beam
for d=1.0
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Figure 13 : The normalized vertical and horizontal dis-
placement of the curved beam under the end load

the relative error of the maximum vertical and horizontal
displacement as

(34)

Here, u, and u, are the analytical displacement compo-
nents at the center of the beam end; while u, and u, are
the corresponding displacement components obtained by
the MLPG mixed finite difference simulations. Fig. 14
and Fig. 15 show the influence of the shrink factor and
the support size, respectively. Similar to the results in
the cantilever beam, a moderate shrink factor and small
support size lead to better results for the current beam
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Figure 16 : The convergence rate of the curved beam
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problems. Fig. 16 shows the stable convergence rate for
the curved beam.

4.4 Infinite Plate with a Circular Hole

Finally, we show the computational results of an infinite
plate with a circular hole subjected to a uniaxial traction
P at infinity as shown in Fig. 17. The exact solutions for
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Figure 15 : The influence of the support size in the
curved beam under the end load

-«

Figure 17 : An infinite plate with a circular hole under
a uniaxial load

stresses and displacements for this problem are

a [3 3a*
oy = P{l 3 [5 cos (20) +cos (46)] + 5,4 €08 (46)}
a® [1 3a*
o, =—P { ) [5 cos (28) — cos (46)] + 5,4 Cos (46)}
271 , at
Oy =—P { 3 [5 sin (20) + sin (46)] — 545N (46)}

(35)
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and

B P Kk—1
“Z1\'| 2

2 4

-|-a7 [1+(1+%)cos(20)] — %COS(ZO)}

+cos (26)]

4G r r3 (36)

2 4
o — — {(1 LA a—}sin(Ze)
respectively. In the above equations, G is the shear mod-
ulus and ¥ = (3 —v)/(1 +v) with v the Poisson’s ratio.
Due to symmetry, only the upper right square quadrant
of the plate is modeled [see Fig. 17]. The edge length
of the square is Sa with a being the radius of the circular
hole. Symmetry boundary conditions are imposed on the
left and bottom edges, and the tractions obtained from
the analytical solution [Eq. (35)] are applied to the top
and right edges.

The problem is solved using the MLPG mixed finite dif-
ference method, under a plane stress condition, with the
following constants: P =1, £ =1, and v = 0.25. Two
regular nodal configurations with 126 and 380 nodes, and
one irregular nodal configuration with 204 nodes are used
in the current simulation. Fig. 18 shows the nodal con-
figurations and the boundary conditions imposed on the
edges. The MLS with linear basis is used in the simu-
lation and the shrink factor is 0.3 and the support size is
1.25d with d being the average nodal distance. The hor-
izontal displacement u, along the bottom edge (y = 0)
and the stress component G, along the left edge (x = 0)
are shown in Fig. 19 and Fig. 20, respectively. Com-
pared with the analytical solutions, good agreements are
obtained for both the displacement and stress.

5 Closure

An MLPG mixed finite difference method is developed in
this paper, in which the stresses and displacements are in-
terpolated using the same shape functions independently.
The generalized finite difference method (FDM) is de-
veloped to compute the derivatives of stresses, using the
nodal values in the local domain (the neighbor nodes) of
definition. To establish the system of equations, the lin-
ear force balance laws are enforced at both the in-domain
as well as the boundary nodes through the same general-
ized FDM. The FDM is applied only to the nodal pairs
of the neighbor nodes in the meshless interpolation, and
it is suitable for solving the problems with the completed
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Figure 20 : The normal stress ¢, along x = 0 for the two
nodal configurations

geometries. The stress components are computed from
the traction boundary conditions through a local coordi-
nate system, and the boundary stress values are imposed
into the stress equations directly. Numerical examples
show the suitability of the MLPG mixed finite difference
method in solving various elasticity problems, including
the ones with complex displacement and stress solutions.
Acknowledgement: This work is supported by the US
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